# Medical Radioisotope Production Where Next?

Eleodor Nichita Faculty of Energy Systems & Nuclear Science University of Ontario Institute of Technology

> 2009-06-29 CNS Toronto Branch

### Nuclear Medicine

Use of radioactive isotopes for diagnostic
 Use of radioactive isotopes for treatment

#### Definitions

Z (atomic number) – Number of Protons in a nuclide
N- Number of neutrons in a nuclide
A (mass number)=Z+N
Isobars – Nuclides with the same A
Isotopes – Nuclides with the same Z
Isotones – Nuclides with the same N
Isomers – different energy states of the same nuclide

Symbol:  ${}^A_Z X$ 

#### **Radioactive Decay**

(Parent Nucleus Daughter Nucleus + Emitted Particle)

 $A_{Z} X \rightarrow A^{A-m}_{Z-n} Y + M^{m}_{n} P$ 

#### Common types of decay

- Alpha ( ${}_{2}^{4}\alpha$ ), Helium nucleus emission
- Beta  $\binom{0}{-1}\beta$ , electron emission
- Beta plus ( ${}^{0}_{1}\beta$ ) positron emission
- Gamma (<sup>0</sup><sub>0</sub><sup>γ</sup>), photon emission (no change in nuclear species)
- Electron capture (an electron is "captured" rather than emitted)

#### **Radioactive Decay**

Balancing the equation  $^{11}_{5}B \rightarrow ^{A}_{Z}X + ^{4}_{2}\alpha$ 11 = A + 45 = Z + 2 $_{Z}^{A}X = _{3}^{7}Li$ 

### **Radioactive Decay**

Remaining number of parent nuclides

 $N = N_{0} \times e^{-\lambda(t-t_{0})}$  $N = N_{0} \times \frac{1}{\frac{t-t_{0}}{2^{T_{1/2}}}}$ 



λ Decay constant = fraction of radioactive nuclides decaying per unit time

T<sub>1/2</sub> =  $\ln 2 / \lambda$  Half-life = time after which the number of parent nuclides is halved

### Activity

# Number of decays per unit time $\Lambda = \lambda N$

• ldps = 1 Bq (Becquerel) •  $lCi = 3.7x10^{10} Bq$ 

# Medical Applications of Radioisotopes

TherapyDiagnostic (Imaging)

# Radiotheraphy – Cancer Cell Killing by Ionizing Radiation

#### <sup>60</sup>Co Tele-Therapy Unit (External Beam)



### Brachytherapy

#### • Used for:

- Uterus
- Cervix
- Prostate
- Intraocular
- Skin
- Thyroid
- Bone



#### Radioisotopes for Radiotherapy

Half-life Isotope avg. ph. energy (MeV) 60C01.25 5.26 y <sup>131</sup>I (thyroid) 0.364 8 d 137Cs 0.66 30 y <sup>198</sup>AU 2.7 d 0.41 192**|**r 73.8 d 0.38 125 0.028 60 d 103Pd 0.021 17 d

### **Nuclear Medicine Imaging**

- Medical imaging technique that uses radioisotopes introduced into the patient's body (by ingestion, injection, or inhalation).
- Images do not depict the anatomical structure of the body.
- Images depict distribution of radiopharmaceutical, representative of biochemical processes.
- Radiopharmaceutical = Chemical Substrate + Radioactive Isotope
- Chemical substrate is chosen to identify specific pathology.
- Contrary to X-Ray CT, nuclear medicine maps the distribution of sources rather than that of the attenuation coefficient.

#### **Nuclear Medicine Imaging**



# Nuclear Medicine Scan

#### Thyroid



#### Bone



# Characteristics of Isotopes for Imaging

Half-life long-enough to allow imaging procedure Half-life short-enough so there is little residual dose to the patient after the imaging procedure is finished. Gamma emitter with little or no beta or alpha emission (beta and alpha are absorbed in the patient and hence contribute to the dose, without contributing to image formation)

#### Radioisotopes for Imaging

| Radionuclide      | Half-life | γ-ray Energy (keV) |
|-------------------|-----------|--------------------|
|                   |           |                    |
| <sup>99m</sup> Tc | 6.02h     | 140                |
| <sup>67</sup> Ga  | 3.2d      | 93, 185, 300, 394  |
| $^{201}\text{T1}$ | 3.0d      | 68-82              |
| <sup>133</sup> Xe | 5.3d      | 81                 |
| $^{111}$ In       | 2.8d      | 171, 245           |
| 131I              | 8d        | 364                |
| 123I              | 13h       | 159                |

### <sup>99m</sup>Tc

Extremely versatile for diagnostic Combined with chemical substrate Substrate determines body distribution

Radiopharmaceutical <sup>99m</sup>Tc-macroaggregated albumin <sup>99m</sup>Tc-diphosphonate <sup>99m</sup>Tc-glucoheptonate <sup>99m</sup>Tc-sulfur colloid

<sup>99m</sup>Tc-DTPA
<sup>99m</sup>Tc-HMPAO
<sup>99m</sup>Tc-Sestamibi
<sup>99m</sup>Tc-MAG<sub>3</sub>

**Clinical Application** Pulmonary perfusion

Skeletal Brain tumors Liver and spleen, sentinel node location Renal, pulmonary ventilation Brain perfusion Myocardial perfusion Renal

# <sup>99m</sup>Tc



#### <sup>99m</sup>Tc Generator (Cow)

<sup>99</sup>Mo is adsorbed in alumina column.
<sup>99</sup>Mo decays into <sup>99m</sup>Tc
<sup>99m</sup>Tc is eluted with saline .

Subsequently, <sup>99m</sup>Tc is chemically combined with the substrate and given to the patient. When little <sup>99m</sup>Tc is left, Mo *breakthrough* occurs.



# <sup>99m</sup>Tc Generator (Cow)

#### First generator (BNL)

#### • Modern generator



$${}^{99}_{42}Mo \xrightarrow{\lambda_1 = 0.015h^{-1}}{\beta} \beta^- + {}^{99m}_{43}Tc \xrightarrow{\lambda_2 = 0.166h^{-1}}{\gamma} \gamma + {}^{99}_{43}Tc$$

<sup>99m</sup>Tc decays as it is being created
 <sup>99m</sup>Tc activity
 (transient equilibrium)

$$A_{2} = \frac{\lambda_{2}\lambda_{1}N_{0}}{\lambda_{2} - \lambda_{1}} \left( e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right)$$

 Once milked, <sup>99m</sup>Tc decays fast (T<sub>1/2</sub>=6h)
 Needs to be produced (milked) on-site



### Once a Day "Milking"

After a week, the cow is exhausted. Weekly delivery schedule needed. <sup>99</sup>Mo half-life is 2.75 days, enough to allow transportation around the world.



### The Physics of Isotope Production

Production rate density  $R_p \cong N_{T0} \sigma_p \eta \Phi$ Loss rate density  $R_L = \lambda N_p$ 

Time evolution of fraction of target nuclei turned into product.

$$\frac{N_{p}(t)}{N_{T0}} \cong \frac{\sigma_{p}\eta\Phi}{\lambda} \left(1 - e^{-\lambda t}\right) = \frac{\sigma_{p}\eta\Phi}{\lambda} \left(1 - \frac{1}{2^{\frac{t}{T_{1/2}}}}\right)$$

#### The Physics of Isotope Production

Saturation (production rate = loss rate)

 $\frac{N_{sat}}{N_{T0}} = \frac{\sigma_p \eta \Phi}{\lambda} \text{ occurs after approx. 5 } T_{1/2}$ 

Saturation activity density

$$\Lambda_{d-sat} = \lambda N_{sat} = N_{T0} \sigma_p \eta \Phi = \Lambda_{d-sat}$$
$$\Lambda_{d-sat} = \frac{\rho_{T0}}{A_{T0}} N_A \sigma_p \eta \Phi$$

# **Product Concentration Curve**



### The Physics of Isotope Production

Irradiated Volume for Required Total Saturation Activity

$$V = \frac{\Lambda_{total}}{\Lambda_{d-sat}} = \frac{\Lambda_{total}}{R_p} = \frac{\Lambda_{total}}{N_{T0}\sigma_p\eta\Phi}$$

Power production in the target at saturation

$$P = E_p R_p V = E_p \Lambda_{total}$$

# <sup>99</sup>Mo Production

Neutron-induced Fission

 $^{235}_{92}U + n \rightarrow ^{99}_{42}Mo + ^{133}_{50}Sn + 4n \quad (\sigma = 580b)$ 

Neutron Activation

 $^{98}_{42}Mo + n \rightarrow ^{99}_{42}Mo + \gamma \quad (\sigma = 0.13b)$ 

Accelerator (proton)

 $^{100}_{42}Mo + p \rightarrow ^{99}_{42}Mo + p + n \quad (\sigma = 0.1b)$ 

Photo-fission  $^{238}_{92}U + \gamma \rightarrow ^{99}_{42}Mo + ^{133}_{50}Sn + 6n \quad (\sigma = 0.2b)$ 



# <sup>99</sup>Mo Production by Neutron-Induced Fission in <sup>235</sup>U

Time-dependence of fraction of target nuclei turned into product (<sup>99</sup>Mo)

$$\frac{N_P(t)}{N_{T0}} \cong \frac{\sigma_f \eta \Phi}{\lambda} \left( 1 - \frac{1}{\frac{t}{2^{T_{1/2}}}} \right) \quad ; \quad \left[ \eta = \eta_m \frac{235}{99} \right]$$

Saturation occurs after approx. 5 half-lives, i.e. 2 weeks (no need to irradiate longer)  $\frac{N_{sat}}{N_{T0}} = \frac{\sigma_f \eta \Phi}{\lambda}$ Better to have high enrichment and high flux

# <sup>99</sup>Mo Production by Neutron-Induced Fission in <sup>235</sup>U Ratio of product/target nuclei (enrichm 50%)

$$\frac{N_{sat}}{N_{U0}} = \frac{N_{sat}}{N_{T0}/r} = \frac{r\sigma_f \eta \Phi}{\lambda} = 0.5 \times 580b \times 0.061 \frac{235}{99} \times 1.5 \times 10^{14} \, n \, / \, cm^2 - s}{2.92 \times 10^{-6} \, s^{-1}}$$

#### 0.0021

- If natural U was used, then fraction = 0.00003
- <sup>99</sup>Mo can be separated chemically since target consists of other species.

<sup>99</sup>Mo Production by Neutron Activation of <sup>98</sup>Mo • Reaction  ${}^{98}_{42}Mo + n \rightarrow {}^{99}_{42}Mo + \gamma$  ( $\sigma = 0.13b$ )

Time-dependence of fraction of target nuclei turned into product (<sup>99</sup>Mo)

$$\frac{N_P(t)}{N_{T0}} \cong \frac{\sigma_c \Phi}{\lambda} \left( 1 - \frac{1}{2^{\frac{t}{T_{1/2}}}} \right)$$

Saturation occurs after approx. 5 half-lives, 82% achieved after 2.5 half-lives  $\frac{N_{sat}}{N} = \frac{\sigma_c \Phi}{2}$  Better to have high flux

31

# <sup>99</sup>Mo Production by Neutron Activation of <sup>98</sup>Mo

#### Ratio of product/target nuclei

 $\frac{N_{sat}}{N_{T0}} = \frac{\sigma_c \Phi}{\lambda} = \frac{0.13b \times 1.5 \times 10^{14} \, n \, / \, cm^2 - s}{2.92 \times 10^{-6} \, s^{-1}} = 0.000007$ 

Impossible to separate, by simple chemical processes because same species  $^{99}$ Mo Production by<br/>(p, pn) reaction(p, pn) reactionReaction $^{100}_{42}Mo + p \rightarrow ^{99}_{42}Mo + p + n$ Time-dependence of fraction of target<br/>nuclei turned into product ( $^{99}$ Mo)

$$\frac{N_{p}(t)}{N_{T0}} \cong \frac{\sigma_{p,pn} \Phi_{p}}{\lambda} \left( 1 - \frac{1}{2^{\frac{t}{T_{1/2}}}} \right)$$

Saturation occurs after approx. 5 half-lives, i.e. 2 weeks (no need to irradiate longer)  $\frac{N_{sat}}{N_{T0}} = \frac{\sigma_{p,pn} \Phi_p}{\lambda}$ Better to have high flux

# <sup>99</sup>Mo Production by Photon-Induced Fission in <sup>238</sup>U

Time-dependence of fraction of target nuclei turned into product (<sup>99</sup>Mo)

$$\frac{N_P(t)}{N_{T0}} \cong \frac{\sigma_{pf} \eta \Phi_{ph}}{\lambda} \left( 1 - \frac{1}{2^{\frac{t}{T_{1/2}}}} \right) \quad ; \quad \left[ \eta = \eta_m \frac{235}{99} \right]$$

Saturation occurs after approx. 5 half-lives, i.e. 2 weeks (no need to irradiate longer)  $\frac{N_{sat}}{N_{T0}} = \frac{\sigma_{pf} \eta \Phi_{ph}}{\lambda}$ Better to have high enrichment and high flux

# Comments on <sup>99</sup>Mo production by (p,pn)

• (p,pn)  
$$\frac{N_{sat}}{N_{T0}} = \frac{\sigma_{p,pn} \Phi_p}{\lambda}$$

 Cross section 0.1b, comparable to neutron activation.
 Needs intense proton flux over a large spatial region.

# Comments on <sup>99</sup>Mo production by photofission in <sup>238</sup>U

(p,pn)  $\frac{N_{sat}}{N_{u0}} = \frac{(1-r)\sigma_{pf}\eta\Phi_{ph}}{\lambda}$ 

Cross section 0.2b vs. 580b for neutroninduced fission.

- Needs intense photon flux over a large spatial region.
- Photon production by Bremsstrahlung very inefficient.
- Can use natural U, with r=0.007

#### Estimated World Needs of <sup>99</sup>Mo

| Region        | 6-day Ci / week | Ci / week |
|---------------|-----------------|-----------|
| North America | 6,000           | 28,000    |
| South America | 500             | 2,300     |
| Japan         | 2,400           | 11,200    |
| Europe        | 3,600           | 78,000    |
| Rest of World | 1,200           | 5,600     |
| Total         | 13,700          | 64,000    |

 $1kW \ge 1 week -> 42 Ci$ 

 Total power (in targets, allowing for 3 days processing) is approx. 3MW

### <sup>99</sup>Mo Production Reactors

NRU, Chalk River, Canada
 HFR, Petten, The Netherlands
 SAFARI-1, Pelindaba, South Africa
 BR2, Mol, Belgium
 Osiris, Saclay, France

# Reactor <sup>99</sup>Mo Production (SAFARI-1)



39

# Targets (SAFARI-1)

- Uranium/Aluminum alloy (45% <sup>235</sup>U) • Clad in Aluminum.
- 4.2 g <sup>235</sup>U in each 200 mm × 45 mm target plate
- 6 irradiation positions x 7 plates each
   Irradiation time up to 8 days @ 1.5E14
   n/cm<sup>2</sup>-s.
- <sup>99</sup>Mo activity per plate at 8 days
  - approx 500Ci

#### Chemical Processing (SAFARI-1)

Irradiated target plates dissolved in concentrated NaOH.

• Nuclides of only few elements are dissolved with Mo Purification (two anion exchange resins and one chelating resin)

- sorption of Mo
- washing to remove residual source solution
- elution of Mo
- eluate from the third column is filtered, evaporated to dryness, and re-dissolved in 0.2 M NaOH to convert to sodium molybdate (Na<sub>2</sub>MoO<sub>4</sub>).

#### Chemical Processing (SAFARI-1)



#### Chemical Processing (hot cells)

#### o dissolver cell

- dissolution vessel for irradiated target plates
- first ion exchange column
- waste tanks
- purification cell
  - second and third purification columns
- filtration cell
  - evaporator and other equipment for the filtration sampling and bottling of the <sup>99</sup>Mo solution;
- dispensing cell
  - ionization chamber for the quantification of the product
- packaging cell
  - product bottles placed into transport containers

#### <sup>99</sup>Mo Product

#### Purity (radionuclide)

- $^{131}$ I/99Mo < 5 × 10-5
- 103Ru/99Mo < 5 × 10-5
- ${}^{89}\text{Sr}/99\text{Mo} < 6 \times 10-7$
- <sup>90</sup>Sr/99Mo < 6 × 10-8
- other alpha/99Mo < 1 × 10-9</li>
- other beta/99Mo <  $1 \times 10-4$
- Radiochemical purity
  - >95% as  $Na_2MoO_4$ )
- Activty
  - >1 Ci/cm<sup>3</sup> at calibration time.
- Product solvent
  - 0.2 M NaOH,
- Calibration date
  - 3 to 7 days after shipment to the customer.
- Shelf-life
  - 7 days after the calibration date.

### SAFARI-1 Reactor, Pelindaba, South Africa

Oak Ridge Design
20 MW
In service since 1965





### NRU

National Research Universal Power • 130MW Coolant Heavy water Moderator Heavy water Vertical fuel channels In service since 1957



# NRU



#### <u>NRU</u>



#### MAPLE



Multipurpose Applied Physics Lattice Experiment Type Open-tank-in-pool Thermal power • 10 MW Coolant Light water Reflector Heavy water **Fuel material** 

#### MAPLE 2 80% Power

#### First criticality, 2003-10-09



# HANARO (MAPLE Design)

- High-flux Advanced Neutron
   Application Reactor
- 🛛 Туре
  - Open-tank-in-pool
- Max thermal power
  - 30 MW
- Coolant
  - Light water
- Reflector
  - Heavy water
- **Fuel** 
  - U<sub>3</sub>Si <sub>2</sub>in aluminum matrix, 19.75% enriched
- Absorber material
  - Hafnium
  - Secondary cooling
  - Cooling tower
- In service since 1995



Reator structure assembly

# HANARO





# HANARO Fuel



# The Trouble with Chalk River MAPLEs

A thing called Power Reactivity Coefficient (PCR)
Calculations predicted a small, negative PCR.
Commissioning measurements found a small positive PCR.
WHY?!

# **Remember Engineering?**

Engineering is the art of modelling materials we do not wholly understand, into shapes we cannot precisely analyse, so as to withstand forces we cannot properly assess, in such a way that the public has no reason to suspect the extent of our ignorance. I.E. Design so that it works without requiring exact knowledge.

#### **Chalk River MAPLEs**

- Small positive or negative PCR is insignificant in the big scheme of things.
   Nice to know why the prediction was off (More knowledge doesn't hurt.)
   So, again, Why?
- According to HS, 3 possibilities:
  - bowing target
  - bowing fuel elements
  - heating of water between reflector wall and flow tubes

3 tests necessary to elucidate the cause
Plug pulled after first 2, on May 16, 2008.

# **Realistically Speaking**

Reactor production of <sup>99</sup>Mo by fission only one economical at this point. Accelerator-based methods are not economical. World in dire need of medical radioisotopes. Market will bear a slightly higher price to amortize additional expenses with MAPLE reactors.

### Conclusion

- Restart of MAPLEs best solution.If not:
  - CANDUs
  - Some research reactors (McMaster)
  - New Reactors for Isotope Production
    - Annular Core Research Reactor (ACRR) Sandia
  - (Currently) exotic methods
    - Photofission
    - Proton activation
    - Fission in accelerator-driven systems

#### References

 <sup>99</sup>Mo Production process reproduced from: IAEA-TECDOC-1340 Manual for reactor produced radioisotopes
 Images of reactors reproduced from respective reactors' web sites and the Canadian Nuclear FAQ.