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Summary:

This chapter addresses the time-dependent behaviour of nuclear reactors. This chapter is
concerned with short- and medium-time phenomena. Long-time phenomena are studied in the
context of fuel and fuel cycles and are presented in Chapters 6 and 7. The chapter starts with an
introduction to delayed neutrons because they play an important role in reactor dynamics.
Subsequent sections present the time-dependent neutron-balance equation, starting with
“point” kinetics and progressing to detailed space-energy-time methods. Effects of Xe and Sm
“poisoning” are studied in Section 7, and feedback effects are presented in Section 8. Section 9
is identifies and presents the specific features of CANDU reactors as they relate to kinetics and
dynamics.
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1 Introduction

1.1 Overview

The previous chapter was devoted to predicting the neutron flux in a nuclear reactor under
special steady-state conditions in which all parameters, including the neutron flux, are constant
over time. During steady-state operation, the rate of neutron production must equal the rate of
neutron loss. To ensure this equality, the effective multiplication factor, keff, was introduced as a
divisor of the neutron production rate. This chapter addresses the time-dependent behaviour
of nuclear reactors. In the general time-dependent case, the neutron production rate is not
necessarily equal to the neutron loss rate, and consequently an overall increase or decrease in
the neutron population will occur over time.

The study of the time-dependence of the neutron flux for postulated changes in the macro-
scopic cross sections is usually referred to as reactor kinetics, or reactor kinetics without feed-
back. If the macroscopic cross sections are allowed to depend in turn on the neutron flux level,
the resulting analysis is called reactor dynamics or reactor kinetics with feedback.

Time-dependent phenomena are also classified by the time scale over which they occur:

 Short-time phenomena are phenomena in which significant changes in reactor prop-
erties occur over times shorter than a few seconds. Most accidents fall into this
category.

 Medium-time phenomena are phenomena in which significant changes in reactor
properties occur over the course of several hours to a few days. Xe poisoning is an
example of a medium-time phenomenon.

 Long-time phenomena are phenomena in which significant changes in reactor prop-
erties occur over months or even years. An example of a long-time phenomenon is
the change in fuel composition as a result of burn-up.

This chapter is concerned with short- and medium-time phenomena. Long-time phenomena
are studied in the context of fuel and fuel cycles and are presented in Chapters 6 and 7. The
chapter starts with an introduction to delayed neutrons because they play an important role in
reactor dynamics. Subsequent sections present the time-dependent neutron-balance equation,
starting with “point” kinetics and progressing to detailed space-energy-time methods. Effects
of Xe and Sm “poisoning” are studied in Section 7, and feedback effects are presented in
Section 8. Section 9 identifies and presents the specific features of CANDU reactors as they
relate to kinetics and dynamics.

1.2 Learning Outcomes

The goal of this chapter is for the student to understand:

 The production of prompt and delayed neutrons through fission.

 The simple derivation of the point-kinetics equations.

 The significance of kinetics parameters such as generation time, lifetime, reactivity,
and effective delayed-neutron fraction.

 Features of point-kinetics equations and how they relate to reactor behaviour (e.g.,
reactor period).

 Approximations involved in different kinetics models based on flux factorization.
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 First-order perturbation theory.

 Fission-product poisoning.

 Reactivity coefficients and feedback.

 CANDU-specific features (long generation time, photo-neutrons, CANDU start-up,
etc.).

 Numerical methods for reactor kinetics.

2 Delayed Neutrons

2.1 Production of Prompt and Delayed Neutrons: Precursors and Emitters

Binary fission of a target nucleus X

X

A
Z X occurs through the formation of a compound nucleus

1X

X

A
Z X

which subsequently decays very rapidly (promptly) into two (hence the name “binary”)

fission products Am and Bm, accompanied by the emission of (prompt) gamma photons and
(prompt) neutrons:

11
0

X X

X X

A A
Z Zn X X  , (1)

(2)

The exact species of fission products Am and Bm, as well as the exact number of prompt neu-
trons emitted,

pm , and the number and energy of emitted gamma photons depend on the

mode m according to which the compound nucleus decays. Several hundred decay modes are

possible, each characterized by its probability of occurrence pm. On average, p prompt

neutrons are emitted per fission. The average number of prompt neutrons can be expressed as:

p m pm
m

p  . (3)

Obviously, although the number of prompt neutrons emitted in each decay mode, pm , is a

positive integer (1, 2, 3…), the average number of neutrons emitted per fission, p , is a frac-

tional number. pm as well as p depend on the target nucleus species and on the energy of

the incident neutron.

The initial fission products Am and Bm can be stable or can further decay in several possible
modes, as shown below for Am (a similar scheme exists for Bm):

1

0
2 1

0
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3
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


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 
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 
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 


 .

Fission products Am that decay according to mode 3, by emitting a low-energy beta particle, are
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called precursors, and the intermediate nuclides A'm3 are called emitters. Emitters are daugh-
ters of precursors that are born in a highly excited state. Because their excitation energy is
higher than the separation energy for one neutron, emitters can de-excite by promptly emitting
a neutron. The delay in the appearance of the neutron is not caused by its emission, but rather
by the delay in the beta decay of the precursor. If a high-energy beta particle rather than a low-
energy one is emitted, the excitation energy of the daughter nuclide is not high enough for it to
emit a neutron, and hence decay mode 2 does not result in emission of delayed neutrons.

2.2 Prompt, Delayed, and Total Neutron Yields

Although one cannot predict in advance which fission products will act as precursors, one can
predict how many precursors on average will be produced per fission. This number is also equal
to the number of delayed neutrons ultimately emitted and is called the delayed-neutron yield,

d . For incident neutron energies below 4 MeV, the delayed-neutron yield is essentially inde-

pendent of the incident-neutron energy. If delayed neutrons are to be represented explicitly,
the fission reaction can be written generically as:

p p d dn X A B n n          . (4)

The total neutron yield is defined as the sum of the prompt and delayed neutron yields:

d p    . (5)

The delayed-neutron fraction is defined as the ratio between the delayed-neutron yield and the
total neutron yield:

d


 . (6)

For neutron energies typical of those found in a nuclear reactor, most of the energy dependence
of the delayed-neutron fraction is due to the energy dependence of the prompt-neutron yield
and not to that of the delayed-neutron yield. This is the case because the latter is essentially
independent of energy for incident neutrons with energies below 4 MeV.

2.3 Delayed-Neutron Groups

Precursors can be grouped according to their half-lives. Such groups are called precursor groups
or delayed-neutron groups. It is customary to use six delayed-neutron groups, but fewer or
more groups can be used. For analysis of timeframes of the order of 5 seconds, six delayed-
neutron groups generally provide sufficient accuracy; for longer timeframes, a greater number

of groups might be needed. Partial delayed-neutron yields dk are defined for each precursor

group k. The partial delayed-neutron group yield represents the average number of precursors
belonging to group k that are produced per fission. Correspondingly, partial delayed-neutron
fractions can be defined as:

dk
k





 . (7)

Obviously,
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max

1

k

k
k

 


 . (8)

Values of delayed-group constants for 235U are shown in Table 1, which uses data from
[Rose1991].

Table 1 Delayed-neutron data for thermal fission in 235U ([Rose1991])

Group Decay Constant, k (s-1) Delayed Yield, dk (n/fiss.) Delayed Fraction, k

1 0.01334 0.000585 0.000240

2 0.03274 0.003018 0.001238

3 0.1208 0.002881 0.001182

4 0.3028 0.006459 0.002651

5 0.8495 0.002648 0.001087

6 2.853 0.001109 0.000455

Total - 0.016700 0.006854

3 Simple Point-Kinetics Equation (Homogeneous Reactor)

This section presents the derivation of the point-kinetics equations starting from the time-
dependent one-energy-group diffusion equation for the simple case of a homogeneous reactor
and assuming all fission neutrons to be prompt.

3.1 Neutron-Balance Equation without Delayed Neutrons

The time-dependent one-energy-group diffusion equation for a homogeneous reactor without
delayed neutrons can be written as:

2( , )
( , ) ( , ) ( , )f a

n r t
r t D r t r t

t



       




  

, (9)

where n represents the neutron density, f is the macroscopic production cross section, a is

the macroscopic neutron-absorption cross section,  is the neutron flux, and D is the diffusion
coefficient. Equation (9) expresses the fact that the rate of change in neutron density at any

given point is the difference between the fission source, expressed by the term ( , )f r t 


, and

the two sinks: the absorption rate, expressed by the term ( , )a r t 


, and the leakage rate,

expressed by the term 2 ( , )D r t  


. If the source is exactly equal to the sum of the sinks, the

reactor is critical, the time dependence is eliminated, and the static balance equation results:

20 ( ) ( ) ( )f s s a sr D r r       
  

, (10)

which is more customarily written as:

2 ( ) ( ) ( )s a s f sD r r r       
  

. (11)



Reactor Dynamics 7

©UNENE, all rights reserved. For educational use only, no assumed liability. Reactor Dynamics – December 2016

To maintain the static form of the diffusion equation even when the fission source does not
exactly equal the sum of the sinks, the practice in reactor statics is to divide the fission source
artificially by the effective multiplication constant, keff, which results in the static balance
equation for a non-critical reactor:

2 1
( ) ( ) ( )s a s f s

eff

D r r r
k

       
  

. (12)

Using the expression for the geometric buckling:

2

f

a

eff

g

k
B

D





, (13)

Eq. (12) becomes:

2 2( ) ( ) 0s g sr B r    
 

. (14)

Note that the geometrical buckling is determined solely by the reactor shape and size and is
independent of the production or absorption macroscopic cross sections. It follows that
changes in the macroscopic cross sections do not influence buckling; they influence only the
effective multiplication constant, which can be calculated as:

2

f

eff

a g

k
DB



 

. (15)

Because the value of geometrical buckling is independent of the macroscopic cross section, the
shape of the static flux is independent of whether or not the reactor is critical.

To progress to the derivation of the point-kinetics equation, the assumption is made that the
shape of the time-dependent flux does not change with time and is equal to the shape of the
static flux. In mathematical form:

( , ) ( ) ( )sr t T t r  
 

, (16)

where T(t) is a function depending only on time.

It follows that the time-dependent flux ( , )r t


satisfies Eq. (14), and hence:

2 2( , ) ( , )gr t B r t   
 

. (17)

Substituting this expression of the leakage term into the time-dependent neutron-balance
equation (9) the following is obtained:

2( , )
( , ) ( , ) ( , )f g a

n r t
r t DB r t r t

t



      




  

. (18)

The one-group flux is the product of the neutron density and the average neutron speed, with
the latter assumed to be independent of time:

( , ) ( , )vr t n r t 
 

. (19)
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The neutron-balance equation can consequently be written as:

2( , )
v ( , ) v ( , ) v ( , )f g a

n r t
n r t DB n r t n r t

t



   




  

. (20)

Integrating the local balance equation over the entire reactor volume V, the integral-balance
equation is obtained:

2( , ) v ( , ) v ( , ) v ( , )f g a

V V V V

d
n r t dV n r t dV DB n r t dV n r t dV

dt
      

   

. (21)

The volume integral of the neutron density is the total neutron population ˆ( )n t , which can also

be expressed as the product of the average neutron density ( )n t and the reactor volume:

ˆ( , ) ( ) ( )
V

n r t dV n t n t V 


. (22)

The volume-integrated flux ˆ ( )t can be defined in a similar fashion and can also be expressed

as the product of the average flux ( )t and the reactor volume:

ˆ( , ) ( ) ( )
V

r t dV t t V    


. (23)

It should be easy to see that the volume-integrated flux and the total neutron population satisfy
a similar relationship to that satisfied by the neutron density and the neutron flux:

ˆ ˆ( ) ( , ) ( , )v ( )v
V V

t r t dV n r t dV n t     
 

. (24)

With the notations just introduced, the balance equation for the total neutron population can
be written as:

2ˆ( )
ˆ ˆ ˆv ( ) v ( ) v ( )f g a

dn t
n t DB n t n t

dt
   

. (25)

Equation (25) is a first-order linear differential equation, and its solution gives a full description
of the time dependence of the neutron population and implicitly of the neutron flux in a homo-
geneous reactor without delayed neutrons. However, to highlight certain important quantities
which describe the dynamic reactor behaviour, it is customary to process its right-hand side
(RHS) as follows:

 2ˆ( )
ˆv ( )f g a

dn t
DB n t

dt
   

. (26)

3.2 Average Neutron-Generation Time, Lifetime, and Reactivity

In this sub-section, several quantities related to neutron generation and activity are defined.

Reactivity
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Reactivity is a measure of the relative imbalance between productions and losses. It is defined
as the ratio of the difference between the production rate and the loss rate to the production
rate.

2

2 2

ˆ ˆ ˆproduction rate - loss rate
ˆproduction rate

loss rate 1
1 1 1

production rate

f a g

f

f a g a g

f f eff

DB

DB DB

k








 

     
  

 

    
     

 
. (27)

Average neutron-generation time

The average neutron-generation time is the ratio between the total neutron population and the
neutron production rate.

v

1

vˆ

ˆ

ˆ

ˆ

rateproduction

populationneutron

fff
n

nn











. (28)

The average generation time can be interpreted as the time it would take to attain the current
neutron population at the current neutron-generation rate. It can also be interpreted as the
average age of neutrons in the reactor.

Average neutron lifetime

The average neutron lifetime is the ratio between the total neutron population and the neutron
loss rate:

     2 2 2

ˆ ˆneutron population 1
ˆloss rate ˆv va g a g a g

n n

DB DB n DB
   

      


. (29)

The average neutron lifetime can be interpreted as the time it would take to lose all neutrons in
the reactor at the current loss rate. It can also be interpreted as the average life expectancy of
neutrons in the reactor.

The ratio of the average neutron-generation time and the average neutron lifetime equals the
effective multiplication constant:

 2

2

1

v

1

v

a g f

eff

a g

f

DB
k

DB





  
  

  




. (30)

It follows that, for a critical reactor, the neutron-generation time and the neutron lifetime are
equal. It also follows that, for a supercritical reactor, the lifetime is longer than the generation
time and that, for a sub-critical reactor, the lifetime is shorter than the generation time.

3.3 Point-Kinetics Equation without Delayed Neutrons

With the newly introduced quantities, the RHS of the neutron-balance equation (26) can be
written as either:
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 
 

 
2

2 ˆ ˆ ˆv ( ) v ( ) ( )
f g a

f g a f

f

DB
DB n t n t n t

 
 



  
     

 
(31)

or

 
 

 
2

2 2

2

1
ˆ ˆ ˆv ( ) v ( ) ( )

f g a eff

f g a g a

g a

DB k
DB n t DB n t n t

DB




   
     

 
. (32)

The neutron-balance equation can therefore be written either as:

ˆ( )
ˆ( )

dn t
n t

dt



 (33)

or as:

1ˆ( )
ˆ( )effkdn t
n t

dt




 . (34)

Equation (33), as well as Eq. (34), is referred to as the point-kinetics equation without delayed
neutrons. The name point kinetics is used because, in this simplified formalism, the shape of
the neutron flux and the neutron density distribution are ignored. The reactor is therefore
reduced to a point, in the same way that an object is reduced to a point mass in simple kinemat-
ics.

Both forms of the point-kinetics equation are valid. However, because most transients are
induced by changes in the absorption cross section rather than in the fission cross section, the
form expressed by Eq. (33) has the mild advantage that the generation time remains constant
during a transient (whereas the lifetime does not). Consequently, this text will express the
neutron-balance equation using the generation time. However, the reader should be advised
that other texts use the lifetime. Results obtained in the two formalisms can be shown to be
equivalent.

If the reactivity and generation time remain constant during a transient, the obvious solution to
the point-kinetics equation (33) is:

ˆ ˆ( ) (0)
t

n t n e


 . (35)

If the reactivity and generation time are not constant over time, that is, if the balance equation
is written as:

ˆ( ) ( )
ˆ( )

( )

dn t t
n t

dt t



 , (36)

the solution becomes slightly more involved and usually proceeds either by using the Laplace
transform or by time discretization.

Before advancing to accounting for delayed neutrons, one last remark will be made regarding
the relationship between the neutron population and reactor power. Because the reactor
power is the product of total fission rate and energy liberated per fission, it can be expressed as:
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ˆ ˆ( ) ( ) ( )vfiss f fiss fP t E t E n t    
. (37)

It can therefore be seen that the power has the same time dependence as the total neutron
population.

3.4 Neutron-Balance Equation with Delayed Neutrons

In the previous section, it was assumed that all neutrons resulting from fission were prompt.
This section takes a closer look and accounts for the fact that some of the neutrons are in fact
delayed neutrons resulting from emitter decay.

3.4.1 Case of one delayed-neutron group

As explained in Section 2.1, delayed neutrons are emitted by emitters, which are daughter
nuclides of precursors coming out of fission. Because the neutron-emission process occurs
promptly after the creation of an emitter, the rate of delayed-neutron emission equals the rate
of emitter creation and equals the rate of precursor decay. It was explained in Section 2.3 that
precursors can be grouped by their half-life (or decay constant) into several (most commonly
six) groups. However, as a first approximation, it can be assumed that all precursors can be
lumped into a single group with an average decay constant  . If the total concentration of

precursors is denoted by ( , )C r t


, the total number of precursors in the core, ˆ ( )C t , is simply the

volume integral of the precursor concentration and equals the product of the average precursor

concentration ( )C t and the reactor volume:

ˆ( , ) ( ) ( )
V

C r t dV C t C t V 


. (38)

It follows that the delayed-neutron production rate ( , )dS r t


, which equals the precursor decay

rate, is:

( , ) ( , )dS r t C r t
 

. (39)

The corresponding volume-integrated quantities satisfy a similar relationship:

ˆ ˆ( ) ( )dS t C t
. (40)

The core-integrated neutron-balance equation now must account explicitly for both the prompt

neutron source, ˆ ( )p f t   , and the delayed-neutron source:

2

2

ˆ( ) ˆˆ ˆ ˆv ( ) ( ) v ( ) v ( )

ˆˆ ˆ ˆv ( ) ( ) v ( ) v ( )

p f d g a

p f g a

dn t
n t S t DB n t n t

dt

n t C t DB n t n t



 

     

   
. (41)

Of course, to be able to evaluate the delayed-neutron source, a balance equation for the
precursors must be written as well. Precursors are produced from fission and are lost as a result
of decay. It follows that the precursor-balance equation can be written as:
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ˆ ( ) ˆˆ ( ) ( )

ˆˆv ( ) ( )

d f

d f

dC t
t C t

dt

n t C t

 

 

    

 
. (42)

The system of equations (41) and (42) completely describes the time dependence of the neu-
tron and precursor populations. Just as in the case without delayed neutrons, they will be
processed to highlight neutron-generation time and reactivity. Because reactivity is based on
the total neutron yield rather than the prompt-neutron yield, the prompt-neutron source is
expressed as the difference between the total neutron source and the delayed-neutron source:

 

2

2

ˆ( ) ˆˆ ˆ ˆ ˆv ( ) v ( ) ( ) v ( ) v ( )

ˆˆ ˆv ( ) v ( ) ( )

f d f g a

f g a d f

dn t
n t n t C t DB n t n t

dt

DB n t n t C t

  

  

       

     
. (43)

The RHS is subsequently processed in a similar way to the no-delayed-neutron case:

 

 
 

2

2

ˆˆ ˆv ( ) v ( ) ( )

ˆˆv ( ) ( )

ˆˆ( ) ( )

f g a d f

f g a d f

f

f f

DB n t n t C t

DB
n t C t

n t C t

  

 
 

 

 


      

    
    

   




 . (44)

The neutron-balance equation can hence be written as:

ˆ( ) ˆˆ( ) ( )
dn t

n t C t
dt

 



 

 . (45)

The RHS of the precursor-balance equation can be similarly processed:

ˆ ˆ ˆˆ ˆ ˆv ( ) ( ) v ( ) ( ) ( ) ( )
d f

d f f

f

n t C t n t C t n t C t
 

    



      

 
, (46)

leading to the following form of the precursor-balance equation:

ˆ ( ) ˆˆ( ) ( )
dC t

n t C t
dt


 

 . (47)

Combining Eqs. (45) and (47), the system of point-kinetics equations for the case of one de-
layed-neutron group is obtained:

ˆ( ) ˆˆ( ) ( )

ˆ ( ) ˆˆ( ) ( )

dn t
n t C t

dt

dC t
n t C t

dt

 






 



 
 . (48)
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3.4.2 Case of several delayed-neutron groups

If the assumption that all precursors can be lumped into one single group is dropped and

several precursor groups are considered, each with its own decay constant k , then the de-

layed-neutron source is the sum of the delayed-neutron sources in all groups:

max

1

ˆ ˆ( ) ( )
k

d k k
k

S t C t



, (49)

where ˆ ( )kC t represent the total population of precursors in group k.

The neutron-balance equation then becomes:

max

2

2

1

ˆ( ) ˆˆ ˆ ˆv ( ) ( ) v ( ) v ( )

ˆˆ ˆ ˆv ( ) ( ) v ( ) v ( )

p f d g a

k

p f k k g a
k

dn t
n t S t DB n t n t

dt

n t C t DB n t n t



 


     

   
. (50)

Processing similar to the one-delayed-group case yields:

max

1

ˆ( ) ˆˆ( ) ( )
k

k k
k

dn t
n t C t

dt

 





 




. (51)

Obviously, kmax precursor-balance equations must now be written, one for each delayed group
k:

max

ˆ ( ) ˆˆv ( ) ( ) ( 1... )k
dk f k k

dC t
n t C t k k

dt
    

. (52)

Processing the RHS of Eq. (52) as in the one-delayed-group case yields:

ˆ ˆ ˆˆ ˆ ˆv ( ) ( ) v ( ) ( ) ( ) ( )
dk f k

dk f k k f k k k k

f

n t C t n t C t n t C t
 

    



      

 
. (53)

Finally, a system of kmax+1 differential equations is obtained:

max

1

max

ˆ( ) ˆˆ( ) ( )

ˆ ( ) ˆˆ( ) ( ) ( 1... )

k

k k
k

k k
k k

dn t
n t C t

dt

dC t
n t C t k k

dt

 








 



  




, (54)

representing the point-kinetics equations for the case with multiple delayed-neutron groups.

4 Solutions of the Point-Kinetics Equations

Following the derivation of the point-kinetics equations in the previous section, this section
deals with solving the point-kinetics equations for several particular cases. The first case
involves a steady-state (no time dependence) sub-critical nuclear reactor with an external
neutron source constant over time. An external neutron source is a source which is independ-
ent of the neutron flux. The second case involves a single delayed-neutron group, for which an
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analytical solution can be easily found if the reactivity and generation time are constant. Finally,
the general outline of the solution method for the case with several delayed-neutron groups is
presented.

4.1 Stationary Solution: Source Multiplication Formula

Possibly the simplest application of the point-kinetics equations involves a steady-state sub-
critical rector with an external neutron source, that is, a source that is independent of the
neutron flux. The strength of the external source is assumed constant over time. If the total

strength of the source is Ŝ (n/s), the neutron-balance equation needs to be modified to include
this additional source of neutrons. The precursor-balance equations remain unchanged by the
presence of the external neutron source. Because a steady-state solution is sought, the time
derivatives on the left-hand side (LHS) of the point-kinetics equations vanish. The steady-state
point-kinetics equations in the presence of an external source can therefore be written as:

max

1

max

ˆ ˆˆ0

ˆˆ0 ( 1... )

k

k k
k

k
k k

n C S

n C k k

 








  



  




. (55)

Equation (55) is a system of linear algebraic equations where the unknowns are the neutron and
precursor populations. This can be easily seen by rearranging as follows:

max

1

max

ˆ ˆˆ

ˆˆ 0 ( 1... )

k

k k
k

k
k k

n C S

n C k k

 








  



  




. (56)

The system can be easily solved by substitution, by formally solving for the precursor popula-
tions in the precursor-balance equations:

max
ˆ ˆ ( 1... )k

k

k

C n k k



 

 (57)

and substituting the resulting expression into the neutron-balance equation to obtain:

max

1

ˆˆ ˆ
k

k

k

n n S
 




  

 


. (58)

Noting that the sum of the partial delayed-neutron fractions equals the total delayed-neutron
fraction, as expressed by Eq. (58), the neutron-balance equation can be processed to yield:

max

1

1 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ
k

k
k

n n n n n n n S
     




 
        

       


. (59)

The neutron population is hence equal to:

ˆn̂ S



 

. (60)
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Note that the reactivity is negative, and therefore the neutron population is positive. Equation
(60) is called the source multiplication formula. It shows that the neutron population can be
obtained by multiplying the external source strength by the inverse of the reactivity, hence the
name. The closer the reactor is to criticality, the larger the source multiplication and hence the
neutron population. Substituting Eq. (60) into Eq. (57), the individual precursor concentrations
become:

max

ˆ
ˆ ( 1... )k

k

k

S
C k k



 
 
 . (61)

The source multiplication formula finds applications in describing the approach to critical during
reactor start-up and in measuring reactivity-device worth.

4.2 Kinetics with One Group of Delayed Neutrons

Another instance in which a simple analytical solution to the point-kinetics equations can be
developed is the case of a single delayed-neutron group. This sub-section develops and ana-
lyzes the properties of such a solution. The starting point is the system of differential equations
representing the neutron-balance and precursor-balance equations:

ˆ( ) ˆˆ( ) ( )

ˆ ( ) ˆˆ( ) ( )

dn t
n t C t

dt

dC t
n t C t

dt

 






 



 
 . (62)

For the case where all kinetics parameters are constant over time, this is a system of linear
differential equations with constant coefficients, which can be rewritten in matrix form as:

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

n t n td

dt C t C t

 





 
         
       . (63)

According to the general theory of systems of ordinary differential equations, the first step in
solving Eq. (63) is to find two fundamental solutions of the type:

t
n

e
C

 
 
  . (64)

The general solution can subsequently be expressed as a linear combination of the two funda-
mental solutions:

0 10 1

0 1

0 1

ˆ( )

ˆ ( )

t t
n t n n

a e a e
C CC t

 
     

      
    . (65)

Coefficients a0 and a1 are found by applying the initial conditions.

To find the fundamental solutions, expression (64) is substituted into Eq. (63) to obtain:
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t t
n nd

e e
C Cdt

 

 





 
           
         , (66)

and subsequently:

t t
n n

e e
C C

 

 







 
         
       . (67)

Dividing both sides by the exponential term and rearranging the terms, the following homoge-
neous linear system is obtained, called the characteristic system:

0

0

n

C

 
 


 

 
           

         . (68)

This represents an eigenvalue-eigenvector problem, for which a solution is presented below.
First, the system is rearranged so that the unknowns are each isolated on one side, and the
system is rewritten as a regular system of two equations:

 

n C

n C

 
 


 

 
   

 

 
 . (69)

Dividing the two equations side by side, an equation for the eigenvalues k is obtained:

 

 



  

 
 

   


 . (70)

This is a quadratic equation in  , as can easily be seen after rearranging it to:

2 0
  

   
 

    
   . (71)

The two solutions to this quadratic equation are simply:
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2

0,1

4

2

    
  



    
      

     


. (72)

Once the eigenvalues are known, either the first or the second of equations (69) can be used to

find the relationship between n and C . In doing so, care must be taken that the right eigen-
value (correct subscript) is used for the right n - C combination. Note that only the ratio of n
and C can be determined. It follows that either n or C can have an arbitrary value, which is
usually chosen to be unity. For example, if the second equation (69) is used, and if n0 and n1 are
chosen to be unity, the two fundamental solutions are:

 

 

0

1

0

1

1

1

t

t

e

e







 



 

 
 
 
   

 
 
 
    . (73)

The general solution is then:

   

0 1

0 1

0 1

1 1
ˆ( )

ˆ ( )

t t
n t

a e a e
C t

  

   

   
           
            . (74)

4.3 Kinetics with Multiple Groups of Delayed Neutrons

Having solved the kinetics equations for one delayed-neutron group, it is now time to focus on
the solution of the general system, with several delayed-neutron groups. The starting point is
the general set of point-kinetics equations:

max

1

max

ˆ( ) ˆˆ( ) ( )

ˆ ( ) ˆˆ( ) ( ) ( 1,..., )

k

k k
k

k k
k k

dn t
n t C t

dt

dC t
n t C t k k

dt

 








 



  




. (75)

As long as the coefficients are constant, this is simply a system of first-order linear differential
equations, whose general solution is a linear combination of exponential fundamental solutions
of the type:
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max

1 t

k

n

C
e

C



 
 
 
 
 
  



. (76)

There are kmax+1 such solutions, and the general solution can be expressed as:

max

maxmax

1 1

0

ˆ( )

ˆ ( )

ˆ ( )

l

l

lk
t

l
l

l
kk

n t n

C t C
a e

CC t





   
   
      
   
     

 

. (77)

4.4 Inhour Equation, Asymptotic Behaviour, and Reactor Period

By substituting the general form of the fundamental solution, Eq. (76), into the point-kinetics
equations and following steps similar to those in the one-delayed-group case, the following
characteristic system can be obtained:

max

1

max( 1,..., )

k

k k
k

k k k

n n C

C n C k k

 
 


 




 



  




. (78)

The components Ck can be expressed using the precursor equations in (78) as:

  max( 1,..., )k
k

k

C n k k


 
 
 

. (79)

Substituting this into the neutron-balance equation in (78) yields:

 

max

1

k
k

k
k k

n n n
 

 
 


 

  


. (80)

Note that the component n can be simplified out of the above and that by rearranging terms,
the following expression for reactivity is obtained:

 

max

1

k
k

k
k k


   

 

  



. (81)

Equation (81) is known as the Inhour equation. Its kmax+1 solutions determine the exponents of
the kmax+1 fundamental solutions. To understand the nature of those solutions, it is useful to
attempt a graphical solution of the Inhour equation by plotting its RHS as a function of  and
observing its intersection points with a horizontal line at y  . Such a plot is shown in Fig. 1

for the case of six delayed-neutron groups.
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Figure 1 Graphical representation of the Inhour equation

For large (positive or negative) values of  , the asymptotic behaviour of the RHS can be ob-
tained as:

max

1

k
k

k
k k


     



    



. (82)

The resulting oblique asymptote is represented by the blue line in Fig. 1, and the RHS plot
(shown in bright green) approaches it at both  and  . Whenever  equals minus the
decay constant for one of the precursor groups, the RHS becomes infinite, and its plot has a
vertical asymptote, shown as a (red) dashed line, at that value. For 0  , the RHS vanishes, as
can be seen from Eq. (81), and hence the plot passes through the origin of the coordinate
system. Three horizontal lines, corresponding to three reactivity values, are shown in violet.
The two thin lines correspond to positive values, and the thick line corresponds to the negative
value.

Figure 1 shows that the solutions to the Inhour equation are distributed as follows:

 kmax - 1 solutions are located in the kmax - 1 intervals separating the kmax decay con-

stants taken with negative signs, such that 1 1k k k      . All these solutions are

negative.

 The largest solution, in an algebraic sense, is located to the right of 1 and is either

negative or positive, depending on the sign of the reactivity. It will be referred to as

max or 0 .

 The smallest solution, in an algebraic sense, lies to the left of
maxk and will be re-

ferred to as min or
maxk . It is (obviously) negative as well. Note that because the

generation time is usually less than 1 ms, and often less than 0.1 ms, the slope of the

oblique asymptote is very small. Consequently, min is very far to the left of
maxk ,

and hence
max max max 1k k k     . The importance of this fact will become clearer

later, when the prompt-jump approximation will be discussed.

Overall, the solutions are ordered as follows:





123456
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max maxmin 1 0 max.....k k       
. (83)

It is worth separating out the largest exponent in the general solution described by Eq. (77) by
writing:

max

0

max maxmax

0

0
1 1 1

0
1

0

ˆ( )

ˆ ( )

ˆ ( )

l

l

lk
t t

l
l

l
k kk

n t n n

C t C C
a e a e

C CC t

 



     
     
           
     
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. (84)

Furthermore, it is worth factoring out the first exponential term:

 
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max maxmax

0

0
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ˆ ( )

ˆ ( )
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             
      

           

  

. (85)

Note that because 0 is the largest solution, all exponents  0l  are negative. It follows

that for large values of t, all exponentials of the type
 0l t

e
 

nearly vanish, and hence the
solution can be approximated by a single exponential term:

0

maxmax

0

0
1 1

0

0
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ˆ ( )

ˆ ( )

t
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a e
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   
     

 

. (86)

This expression describes the asymptotic transient behaviour.

The inverse of 0 max  is called the asymptotic period:

max

1
T




. (87)

With this new notation, the asymptotic behaviour can be written as:

maxmax

0

0
1 1

0

0

ˆ( )

ˆ ( )

ˆ ( )

t

T

kk

n t n

C t C
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   
   
      
   
     

 

. (88)

Before ending this sub-section, a few more comments are warranted. In particular, it is worth
considering the solution to the point-kinetics equation (PKE) for three separate cases: negative
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reactivity, zero reactivity, and positive reactivity.

Negative reactivity

In the case of negative reactivity, all exponents in the general solution are negative. It follows
that over time, both the neutron population and the precursor concentrations will drop to zero.
Of course, after a long time, the asymptotic behaviour applies, which has a negative exponent.

Zero reactivity

In the case of zero reactivity, max vanishes, and all other l are negative. The general solution

can be written as:

max

max maxmax

0

0
1 1 1

0
1

0

ˆ( )

ˆ ( )

ˆ ( )

l

l

lk
t

l
l

l
k kk

n t n n

C t C C
a a e

C CC t





     
     
           
     
         

  

. (89)

After a sufficiently long time, all the exponential terms die out, and the neutron and precursor
populations stabilize at a constant value. Note that these populations do not need to remain
constant from the beginning of the transient, but only to stabilize at a constant value.

Positive reactivity

In the case of positive reactivity, max is positive, and all other l are negative. Hence, after

sufficient time has elapsed, all but the first exponential term vanish, and the asymptotic behav-
iour is described by a single exponential which increases indefinitely.

4.5 Approximate Solution of the Point-Kinetics Equations: The Prompt Jump
Approximation

It was mentioned in the preceding sub-section that the smallest (in an algebraic sense) solution
of the Inhour equation is much smaller than the remaining kmax solutions. This important
property will make it possible to introduce the prompt jump approximation, which is the topic
of this sub-section.

By inspecting the Inhour plot in Figure 1, and keeping in mind the expression of the oblique
asymptote given by Eq. (82), it is easy to notice that the oblique asymptote intersects the x-axis
at:

as

 





 . (90)

It is also easy to see that:

max 1k as   . (91)

Assuming a reactivity smaller than approximately half the delayed-neutron fraction (equal to
0.0065 according to Table 1), and assuming a generation time of approximately 0.1 ms, the
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resulting value of as is approximately -32.5 s-1, which is much smaller than even the largest

decay constant in Table 1 taken with a negative sign. That value is only -3 s-1. This shows that
the following inequality holds true:

max maxmin 1 0 max.....k as k          
. (92)

The general solution of the point-kinetics equations expressed by Eq. (77) can be processed to

separate out the term corresponding to
max 1k  :
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

. (93)

According to Eq. (92), for max 2l k  , all exponents of the type  
max 1l k t   are positive. The

only negative exponent is  
max max 1k k t   , which is also much larger in absolute value than all

other exponents. It follows that after a very short time, t, the first term of the RHS of Eq. (93)
becomes negligible, and the solution of the point-kinetics equations can then be approximated
by:
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. (94)

Concentrating on the neutron population, its expression is:

max 1

0

ˆ( ) l

k
tl

l
l

n t a n e




 
. (95)

Substituting this into the neutron-balance equation of the point-kinetics system, the following is
obtained:

max max max1 1

1 1 1

ˆl l

k k k
t tl l

l l l k k
l l k

a n e a n e C  
 

 

  


 


  

. (96)

Noting that the following inequality holds true:

max0,... 1l l k
 




  
 , (97)

the LHS of Eq. (96) can be approximated to vanish, and hence the equation can be approxi-
mated by:
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max max1
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which is equivalent to:
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By adding the precursor-balance equations, the following approximate point-kinetics equations
are obtained:

max
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. (100)

This system of kmax differential equations and one algebraic equation is known as the prompt
jump approximation of the point-kinetics equations. The name comes from the fact that
whenever a step reactivity change occurs, the prompt jump approximation results in a step
change, a prompt jump, in the neutron population. To demonstrate this behaviour, let the

reactivity change from 1 to 2 at time t0. The neutron-balance equation before and after t0

can be written as:

max

max

1
0

1

2
0

1

ˆˆ( ) ( ) ( )

ˆˆ( ) ( ) ( )

k

k k
k

k

k k
k

n t C t t t

n t C t t t

 


 







 




 






. (101)

The limit of the neutron population as t approaches t0 from the left, symbolically denoted as

0
ˆ( )n t , is found from the first equation (101) to be equal to:
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Similarly, the limit of the neutron population as t approaches t0 from the right, symbolically

denoted as 0
ˆ( )n t , is found from the second equation (101) to be equal to:
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Taking the ratio of the preceding two equations side by side, the following is obtained:

0 1
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ˆ( )
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n t

 
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
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


 . (104)

There is therefore a jump 0
ˆ( )n t equal to:
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1 1 2
0 0 0 0 0 0

2 2
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   
     

     
  . (105)

Of course, the actual neutron population does not display such a jump; it is continuous at t0.

Nonetheless, a very short time t after t0 (at 0t t ), the approximate and exact neutron

populations become almost equal. Note also that Eq. (105) is valid only if both reactivities 1

and 2 are less than the effective delayed-neutron fraction  .

5 Space-Time Kinetics using Flux Factorization

In the previous sections, the time-dependent behaviour of a reactor was studied using the
simple point-kinetics model, which disregards changes in the spatial distribution of the neutron
density. This section will improve on that model by presenting the general outline of space-
time kinetics using flux factorization. The approach follows roughly that used in [Rozon1998]
and [Ott1985]. A complete and thorough treatment of the topic of space-time kinetics is
beyond the scope of this text. This section should therefore be regarded merely as a roadmap.
The interested reader is encouraged to study the more detailed treatments in [Rozon1998],
[Ott1985], and [Stacey1970].

5.1 Time-, Energy-, and Space-Dependent Multigroup Diffusion Equation

The space-time description of reactor kinetics starts with the time-, space-, and energy-
dependent diffusion equation. An equivalent treatment starting from the transport equation is
also possible, but using the transport equation instead of the diffusion equation does not
introduce fundamentally different issues, and the mathematical treatment is somewhat more
cumbersome. The time-, space- and energy-dependent neutron diffusion equation in the
multigroup approximation can be written as follows:

max
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' '
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     

. (106)

The accompanying precursor-balance equations are written as:

' '
'

( , ) ( , ) ( , ) ( , ) ( , )k pk fg g k k
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c r t r t r t r t C r t
t

 

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


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. (107)

Equations (106) and (107) represent the space-time kinetics equations in their diffusion ap-
proximation. Their solution is the topic of this section.

It is advantageous for the development of the space-time kinetics formalism to introduce a set
of multidimensional vectors and operators, as follows:

Flux vector
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   , ,gr t r t   Φ
 

(108)

Precursor vector

( , ) ( , )k
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Loss operator
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Prompt production operator
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Precursor production operator for precursor group k
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(112)

Inverse-speed operator

1
'

1

v
g g

g

 v

, (113)

where
'g g is the Kronecker delta symbol.

Using these definitions, the time-dependent multigroup diffusion equation can be written in
compact form as:
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. (114)

The precursor-balance equations can be written as:

  max( , ) ( , ) , ( , ) ( 1,..., )k dk k kr t r t r t r t k k
t


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
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. (115)

As a last definition, for two arbitrary vectors ( , )r tΦ


and ( , )r tΨ


, the inner product is defined

as:

  
g V

gg

core

dVtrtr ),(),(,
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ΨΦ

. (116)

5.2 Flux Factorization

Expressing a function as a product of several (simpler) functions is known as factorization. It is a
well-known fact from partial differential equations that trying to express the solution as a
product of single-variable functions often simplifies the mathematical treatment. It is therefore
reasonable to attempt a similar approach for the space-time kinetics problem. A first step in
this approach is to factorize the time-, energy-, and space-dependent solution into a function
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dependent only on time and a vector dependent on energy, space, and time. The function
dependent only on time is called an amplitude function, and the vector dependent on space,
energy, and time is called a shape function. The sought-for flux can therefore be expressed as:

  ),()(, trtptr


ΨΦ  . (117)

Such a factorization is always possible, regardless of the definition of the function p(t). In this
case, the function p(t) is defined as follows:

),(),()( 1 trrtp


Φvw 
, (118)

where ( )rw


is an arbitrary weight vector dependent only on energy and position:

   gr w r   w
 

. (119)

According to its definition, p(t) can be interpreted as a generalized neutron population. Indeed,
if the weight function were chosen to be unity, p(t) would be exactly equal to the neutron
population.

From the definition of the flux factorization, it follows that the shape vector ( , )r tΨ


satisfies the

following normalization condition:

1),(),( 1  trr


Ψvw
. (120)

Substituting the factorized form of the flux into the space-, energy-, and time-dependent
diffusion equation, the following equations (representing respectively the neutron and precur-
sor balance) result:
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. (122)

The precursor-balance equation can be solved formally to give:
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By taking the inner product with the weight vector ( )rw


on both sides of the neutron-balance

equation and the precursor-balance equation, the following is obtained:
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Equations (124) and (125) can be processed into more elegant forms akin to the point-kinetics
equations. To do this, some quantities must be defined first which will prove to be generaliza-
tions of the same quantities defined for the point-kinetics equations.

5.3 Effective Generation Time, Effective Delayed-Neutron Fraction, and Dy-
namic Reactivity

The following quantities and symbols are introduced:

Total production operator

),(),(),( trtrtr dp
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. (126)

Dynamic reactivity
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Effective generation time
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Effective delayed-neutron fraction for delayed group k
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Total effective delayed-neutron fraction
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1

( ) ( )
k

k
k

t t 



. (130)

Group k (generalized) precursor population

ˆ ( ) ( ), ( , )k kC t r r t w ξ
 

. (131)

With the newly introduced quantities, Eqs. (124) and (125) can be rewritten in the familiar form
of the point-kinetics equations:
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1

max

( ) ( ) ˆ( ) ( ) ( )
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







 




  

 



. (132)

Of course, to be able to define quantities such as the dynamic reactivity, the shape vector
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( , )r tΨ


must be known or approximated at each time t. Different shape representations

( , )r tΨ


lead to different space-time kinetics models. All flux-factorization models alternate

between calculating the shape vector ( , )r tΨ


and solving the point-kinetics-like equations (132)

for the amplitude function and the precursor populations. The detailed energy- and space-
dependent flux shape at each time t can subsequently be reconstructed by multiplying the
amplitude function by the shape vector.

5.4 Improved Quasistatic Model

The improved quasistatic (IQS) model uses an exact shape ( , )r tΨ


. By substituting the formal

solution to the precursor equations (123) into the general neutron-balance equation (121), the
following equation for the shape vector is obtained:

     

 
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1 1
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, ( ) , ( ) ( , ) ,
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r t p t r t p t r t r t

dt t

p t r t r t

e e p t r t r t dt 

 

  




     



 
 

 
 

v Ψ v Ψ M Ψ

F Ψ

ξ F Ψ

   

 

 

. (133)

The IQS model alternates between solving the point-kinetics-like equations (132) and the shape
equation (133). The corresponding IQS numerical method uses two sizes of time interval.
Because the amplitude function varies much more rapidly with time than the shape vector, the
time interval used to solve the point-kinetics-like equations is much smaller than that used to
solve for the shape vector. Note that, other than the time discretization, the IQS model and
method include no approximation. The actual shape of the weight vector ( )rw


is irrelevant.

5.5 Quasistatic Approximation

The quasistatic approximation is derived by neglecting the time derivative of the shape vector in
the shape-vector equation (133). The resulting equation, which is solved at each time step, is:

   

 
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 
 

v Ψ M Ψ

F Ψ ξ F Ψ

  

   

. (134)

The resulting shape is used to calculate the point-kinetics parameters, which are then used in
the point-kinetics-like equations (132). As in the case of the IQS model, Equation (134) is solved
in conjunction with the point-kinetics-like equations (132). Aside from the slightly modified
shape equation, the quasistatic model differs from the IQS model in the values of its point-
kinetics parameters, which are now calculated using an approximate shape vector.

5.6 Adiabatic Approximation

The adiabatic approximation completely does away with any time derivative in the shape
equation and instead solves the static eigenvalue problem at each time t:
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 
1

( , ) , ( , ) ( , )r t r t r t r t
k

M Ψ F Ψ
   

. (135)

The resulting shape is used to calculate the point-kinetics parameters, which are then used in
the point-kinetics-like equations (132). As in the case of the IQS and quasistatic models, Equa-
tion (135) is solved in conjunction with the point-kinetics-like equations (132).

5.7 Point-Kinetics Approximation (Rigorous Derivation)

In the case of the point-kinetics model, the shape vector is determined only once at the begin-
ning of the transient (t=0) by solving the static eigenvalue problem:

 
1

( ,0) ( ,0) ( )r r r r
k

M Ψ F Ψ
   

. (136)

The resulting shape is used to calculate the point-kinetics parameters, which are then used in
the point-kinetics-like equations (132). Because the shape vector is not updated, only the
point-kinetics-like equations (132) are solved at each time t. In fact, they are now the true
point-kinetics equations because the shape vector remains constant over time. This discussion
has shown that the point-kinetics equations can also be derived for an inhomogeneous reactor,
as long as the flux is factorized into a shape vector depending only on energy and position and
an amplitude function depending only on time.

6 Perturbation Theory

It should be obvious by now that different approximations of the shape vector lead to different
values for the kinetics parameters. It is therefore of interest to determine whether certain
choices of the weight vector might maintain the accuracy of the kinetics parameters even when
approximate shape vectors are used. In particular, it would be interesting to obtain accurate
values of the dynamic reactivity, which is the determining parameter for any transient. The
issue of determining the weight function that leads to the smallest errors in reactivity when
small errors exist in the shape vector is addressed by perturbation theory. This section will
present without proof some important results of perturbation theory. The interested reader is
encouraged to consult [Rozon1998], [Ott1985], and [Stacey1970] for detailed proofs and
additional results.

6.1 Essential Results from Perturbation Theory

Perturbation theory analyzes the effect on reactivity of small changes in reactor cross sections
with respect to an initial critical state, called the reference state. These changes are called
perturbations, and the resulting state is called the perturbed state. Perturbation theory also
analyzes the effect of calculating the reactivity using approximate rather than exact flux shapes.
First-order perturbation theory states that the weight vector that achieves the best first-order
approximation of the reactivity (e.g., for the point-kinetics equations) when using an approxi-
mate (rather than an exact) flux shape is the adjoint function, which is defined as the solution to
the adjoint static eigenvalue problem for the initial critical state at t=0:

   * * * *( ,0) ,0 ( ,0) ,0r r r rM Ψ F Ψ
   

. (137)

The adjoint problem differs from the usual direct problem in that all operators are replaced by
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their adjoint counterparts. The adjoint A* of an operator A is the operator which, for any
arbitrary vectors ( , )r tΦ


and ( , )r tΨ


, satisfies:

ΨΦΨΦ ,, *AA 
. (138)

The reactivity at time t can therefore be expressed as:

* *
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( ,0), ( , ) ( , ) ( ,0), ( , ) ( , )
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
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Ψ F Ψ Ψ M Ψ

Ψ F Ψ

     

  

. (139)

The remaining point-kinetics parameters can be expressed similarly using the initial adjoint as
the weight function.

An additional result from perturbation theory states that when the adjoint function is used as
the weight function, the reactivity resulting from small perturbations applied to an initially
critical reactor can be calculated as:

)0,()0,(),0,(

)0,(),(),0,()0,(),(),0,(
)(
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rrr

rtrrrtrr
t 



ΨFΨ

ΨMΨΨFΨ 





, (140)

where the  symbols represent perturbations (changes) in the respective operators with respect
to the initial critical state. Equation (140) offers a simpler way of calculating the reactivity than
Eq. (139) because it does not require recalculation of the shape vector at each time t. Note
that, within first-order of approximation, the calculated reactivity is also equal to the static
reactivity at time t, defined as:

1
( ) 1

( )eff

t
k t

  

. (141)

In fact, perturbation theory can also be used to calculate the (static) reactivity when the initial
unperturbed state is not critical. In that case, the change in reactivity is calculated as:
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. (142)

In Eq. (142), the “0” subscript or superscript denotes the unperturbed state. Finally, for one-
energy-group representations, the direct flux and the adjoint function are equal. It follows that
in a one-group representation, the reactivity at time t can be expressed as:
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. (143)
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More generally, the static reactivity change between any two states, which is the equivalent of
Eq. (142), can be expressed using one-group diffusion theory as:
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0 0
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1 1
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r dV
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    

 









. (144)

6.2 Device Reactivity Worth

Reactivity devices are devices, usually rods, made of material with high neutron-absorption
cross section. By inserting or removing a device, the reactivity of the reactor can be changed,
and hence the power can be decreased or increased. The reactivity worth of a device is defined
as the difference between the reactivity of the core with the device inserted and the reactivity
of the same core with the device removed. Looking at this situation through a perturbation-
theory lens, the reactor without the reactivity device can be regarded as the unperturbed
system, and the reactor with the reactivity device can be regarded as the perturbed system.
Perturbation theory offers interesting insights into reactivity worth. Considering a device that is
inserted into a critical reactor and which, after insertion, occupies volume Vd in the reactor,
according to the perturbation formula for reactivity, the reactivity worth of the device is:
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. (145)

Note that the integral in the numerator is over the device volume only and that the integral in
the denominator does not change as the device moves, thus simplifying the calculations.
Moreover, if two devices are introduced, their combined reactivity worth is:
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. (146)

The interpretation of this equation is that as long as devices are not too close together and do
not have too large reactivity worths (so that the assumptions of perturbation theory remain
valid), their reactivity worths are additive.
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7 Fission-Product Poisoning

Poisons are nuclides with large absorption cross sections for thermal neutrons. Some poisons
are introduced intentionally to control the reactor, such as B or Gd. Some poisons are produced
as fission products during normal reactor operation. Xe and Sm are the most important of
these.

7.1 Effects of Poisons on Reactivity

The effect of poisons on a reactor will be studied for a simple model of a homogeneous reactor
modelled using one-group diffusion theory. For such a reactor, in a one-energy-group formal-
ism:

0

2
0

f

eff

a g

k
DB



 

. (147)

Uniform concentration

If a poison such as Xe with microscopic cross section ax is added with a uniform concentration

(number density) X, the macroscopic absorption cross section increases by:

aXaX X
. (148)

The total macroscopic absorption cross section is now:

aXaa  0 , (149)

and the new effective multiplication constant is:
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. (150)

Addition of the poison induces a change in reactivity:
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. (151)

To calculate the reactivity inserted by the poison, the concentration of poison nuclei, X, must
first be determined.

Non-uniform concentration

In the case of non-uniform poison concentration, the perturbation formula for reactivity can be
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used:
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. (152)

It can easily be seen that if the distribution is uniform, the previous formula is recovered:
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In the next sub-section, specific aspects of fission-product poisoning will be illustrated for the
case of Xe.

7.2 Xenon Effects

7.2.1 135Xe production and destruction

The mechanisms of 135Xe production and destruction are illustrated in Fig. 2.

1,135

absorption of a neutron
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
6
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Figure 2 135Xe production and destruction mechanisms

Because 135Sb decays very rapidly into 135Te, which in turn decays very rapidly into 135I, as an
approximation, 135I can be considered to be produced directly from fission. Because 135Cs has a
very long half-life, as an approximation, it can be considered stable. As a consequence of these
approximations, a simplified 135Xe production and destruction scheme can be used, as illus-
trated in Fig. 3.
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 

Figure 3 Simplified 135Xe production and destruction mechanisms

7.2.2 Determining the Xe concentration

To find the numerical density of Xe nuclei, the balance equation for iodine nuclei is first written
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as:

I f I

dI
I

dt
    

, (154)

where  is called the fission product yield and equals the average number of I nuclides created

per fission. The balance equation for Xe nuclei can be subsequently written as:

I X f X aX

dX
I X X

dt
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. (155)

Steady-state conditions

Equilibrium conditions are attained after the reactor operates for a very long time () at a

steady-state flux level ss . Under equilibrium conditions, the concentration of I nuclei is easily

found to be:

I f ss

I

I
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 
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. (156)

Similarly, the Xe concentration can be determined as:
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. (157)

Note that both I and Xe concentrations depend on flux level. However, whereas the I concen-
tration increases indefinitely with flux level, the Xe concentration levels off, and it can, at most,
become equal to:

max

( )I X f
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X
 




 


. (158)

The Xe macroscopic absorption cross section is:
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Using the notation:

13 2 10.770 10 secX
X
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


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, (160)

the Xe macroscopic absorption cross section can be rewritten as:
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. (161)
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If Xe is assumed to be uniformly distributed, then its resulting reactivity worth is:

 ( )1 I X f ss I XaX ss
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. (162)

For high reactor fluxes, in the case where ss X   , X can be neglected in the denomina-

tor, and the reactivity becomes independent of the flux level and equal to its maximum value of:

I X
Xe

 
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
 

. (163)

This is to be expected given that the Xe concentration has been found to “saturate” with in-
creased flux. The reactivity expressed in Eq. (163) is nothing but the corresponding reactivity
for the maximum Xe concentration shown in Eq. (158).

If, on the contrary, the flux is very low, in the case where ss X   , then SS can be neglected

in the denominator, and the Xe equivalent reactivity increases linearly with flux level:
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
. (164)

Xe load after shutdown: reactor dead time

If, the reactor is shut down ( 0 ), I and Xe production from fission ceases, as well as Xe
destruction through neutron absorption. The concentration of I begins to decrease exponen-
tially due to decay. If the I concentration at the time of shutdown is I0, the I concentration as a
function of time can be expressed simply as:

tIeItI  0)(
. (165)

Substituting this expression into the Xe balance equation and setting the flux to zero leads to
the following expression:

0
I t

I X
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. (166)

Denoting the Xe concentration at the time of shutdown by X0, the solution can be written as:
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If the reactor is shut down after operating for a long time at steady state, the resulting Xe
concentration is:
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. (168)
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The equivalent reactivity for uniformly distributed Xe (and assuming that the reactor was shut
down after operating for a long time at steady state) is:

( )1
( )xX Itt tI X ss I ss

X ss I X

e e e   



    

    
     , (169)

where:

13 2 11.055 10 secI
I

aX

cm



    

. (170)

The Xe concentration, and consequently the Xe reactivity worth after shutdown, increases at
first because Xe continues to be produced by decay of I, whereas consumption is now reduced
in the absence of Xe destruction by neutron absorption. After a while, however, the Xe concen-
tration reaches a maximum, starts decreasing, and eventually approaches zero. This behaviour
is shown in Fig. 4, which shows the Xe reactivity worth after shutdown from full power.

Figure 4 135Xe reactivity worth after shutdown

Because the Xe reactivity (or load) increases after shutdown, a reactor that was critical at the
time of shutdown subsequently becomes sub-critical and cannot be restarted until the Xe load
drops back to a value close to its steady-state level. The time during which the reactor cannot
be restarted due to increased Xe load after shutdown is known as reactor “dead time”. Given
the Xe half-life of approximately nine hours, the reactor dead time, which spans several half-
lives, is of the order of 1.5–2 days. Some reactors have systems to compensate for some of the
shutdown Xe load, in the form of reactivity devices that are inserted in the core during normal
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steady-state reactor operation. As Xe builds up after shutdown, removal of these devices can
counterbalance the Xe reactivity load, enabling the reactor to be brought to critical and re-
started. Adjuster rods in the CANDU reactor can serve this purpose, but only up to 30 minutes
after shutdown. Beyond 30 minutes, the Xe load becomes larger than the adjuster-rod reactiv-
ity worth. Because the Xe load increases with the neutron flux, Xe-poison dead time generally
affects only high-power reactors.

8 Reactivity Coefficients and Feedback

Macroscopic cross sections can change as a consequence of various parameters, and in turn,
these changes induce changes in keff and hence in reactivity. The usual parameters that influ-
ence reactivity are:

 fuel temperature

 coolant temperature

 moderator temperature

 coolant density.

Changes in reactivity induced by changes in any such parameter are referred to as the reactivity
effect of the respective parameter. For example, the reactivity change induced by a change in
fuel temperature is called the fuel-temperature reactivity effect. The derivative of the reactivity
with respect to any of the parameters, with the others kept constant (i.e., the partial derivative),
is called the reactivity coefficient of that parameter. To illustrate this, assume that all parame-
ters are kept constant with the exception of one, e.g., fuel temperature, which is varied. As-
sume further that reactivity is plotted as a function of the variable parameter, in this case fuel

temperature. The plot in question would be a plot of ( )fT . If a certain fuel temperature 0fT is

taken as a reference, then the effect on reactivity of deviations from 0fT can be calculated,

namely 0( ) ( ) ( )f f fT T T     . ( )fT is called the fuel-temperature reactivity effect. The

derivative of the reactivity with respect to the fuel temperature, namely
( )

( )
f

f

T f

f

d T
T

dT


  , is

called the fuel-temperature coefficient. Of course, because reactivity also depends on other
parameters, it becomes clear that this derivative should be a partial derivative. In general, if the
reactivity depends on several parameters,

1( ,... )np p 
, (171)

then the reactivity coefficient with respect to a parameter pi is defined as the partial derivative
of the reactivity with respect to that parameter:

1( ,... )
i

n
p

i

p p

p








. (172)

Of course, in reality, several parameters may vary simultaneously, and their variations may be
impossible to decouple. For example, the moderator density also varies when the moderator
temperature varies, due to thermal expansion. In this case, the single-parameter reactivity
coefficients are somewhat artificial, and additional combined reactivity coefficients can be
defined, which are of more practical use. For example, in the case of simultaneous variation of
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both moderator temperature Tm and moderator density dm, a much more useful quantity would
be:

( )

( , ) ( , )
m m

m m m m m
T d

m m m m

T d T d ddd

dT T d dT

 


 
  

 
, (173)

where the derivative
m

m

dd

dT
is specified by the thermal expansion law.

Such coefficients are called combined reactivity coefficients. One very useful combined coeffi-
cient of this kind is the power coefficient of reactivity (PCR), which is defined as:
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where the pi are all the parameters which change with power and on which the reactivity
ultimately depends, such as fuel temperature, coolant temperature, coolant density, and so on.

Because the core parameters depend on the flux level and because they influence the reactivity,
which in turn influences the flux, the reactivity coefficients are said to express the feedback
which describes the connection between the flux level and the cross-section values. When such
feedback is accounted for during a transient by recalculating the cross sections and the reactiv-
ity as functions of the flux level (and hence of power level), it is said that kinetics calculations
with feedback, or dynamic calculations, are being performed.

This sub-section will close with a presentation of a few alternate expressions for reactivity
coefficients. If reactivity is expressed using the effective multiplication constant, then the
reactivity coefficient can be expressed as follows:
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For reactors close to critical ( 1k ), this can be processed to yield:
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The last form can also be expressed as:

 )(ln
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1
pk
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pdk

pk


. (177)

The last two expressions are often used to calculate reactivity coefficients.

9 CANDU-Specific Features

Given the presentation of the basic concepts of reactor kinetics in previous sections, this section
will be devoted to presenting how some of these concepts apply to CANDU reactors.
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9.1 Photo-Neutrons: Additional Delayed-Neutron Groups

CANDU reactors are heavy-water cooled and moderated. In such reactors, neutrons can be
produced by the interaction of gamma rays (with a minimum energy of 2.22 MeV) with deute-
rium:

2 1
1 1D H n  

. (178)

Because gamma rays can be emitted by fission products with certain delays, the process is very
similar to that through which a “true” delayed neutron is emitted by an emitter which is the
daughter of a precursor. However, note than not all gamma rays will interact by photo-neutron
emission. Effective precursor concentrations can be defined for the photo-neutrons, such that
the photo-neutron production rate density is equal to:

pn pn pnS C
. (179)

The term effective photo-neutron precursor concentration is used because the effective concen-
trations must also account for the fact that not all emitted gamma rays will result in the produc-
tion of a photo-neutron and that the fraction of photo-neutrons emitted depends on the
geometrical arrangement of the core lattice. Photo-neutron precursors can be grouped by their
decay constant, similarly to “real” precursors. It is customary to use 11 photo-neutron groups,
for a total of 17 delayed-neutron groups. Once the photo-neutron groups have been defined,
photo-neutrons are treated no differently than regular delayed neutrons in the kinetics calcula-
tions.

9.2 Values of Kinetics Parameters in CANDU Reactors: Comparison with LWR
and Fast Reactors

Deuterium has a much smaller neutron-absorption cross section than hydrogen. Consequently,
CANDU reactors have a better thermalized spectrum and hence a much longer generation time
(and lifetime) than light-water reactors and even longer compared to fast reactors. The typical
generation time of a CANDU core is approximately 1 ms, compared to 0.05 ms for an LWR core.
This makes CANDU transients “slower” than LWR transients. Reactivities close in value to the
delayed-neutron fraction induce less peak power transients in a CANDU core than in an LWR
core. The difference is even larger when comparison is made with fast reactors.

9.3 CANDU Reactivity Effects

CANDU reactivity effects depend on the specific characteristics of the CANDU lattice. Of par-
ticular interest is the coolant density effect, also known as the coolant void reactivity effect,
which is absent in other types of reactors which do not separate the coolant from the modera-
tor. Plots of the various effects are shown in Figs. 5 to 8 for fresh fuel.
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Figure 5 CANDU fuel-temperature effect

The decrease in reactivity with increased fuel temperature is due primarily to an increase in
resonance absorption due to Doppler resonance broadening.

Figure 6 CANDU coolant-temperature effect
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Figure 7 CANDU moderator-temperature effect

Figure 8 CANDU coolant-density effect

It is apparent that reactivity decreases with coolant density, which means that it increases with
void fraction. This effect occurs primarily because when coolant is lost, effective moderation is
still possible due to the moderator in the calandria vessel. Overall, the reduced slowing-down in
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the coolant leads to reduced resonance absorption and an increased fast fission rate. Both
these phenomena increase reactivity when coolant is lost. As fuel burns, a mitigating factor
appears in the form of the low-lying Pu fission resonance, which begins to play a role as Pu is
created. Reduced upscattering in the coolant reduces fissions in the low-lying Pu resonance and
hence reduces reactivity, although not enough to make it negative.

9.4 CANDU Reactivity Devices

As in any reactor, power in CANDU reactors is controlled by controlling reactivity. In turn,
reactivity is controlled by means of reactivity devices which can be inserted into or removed
from the core. By inserting or removing reactivity devices from the core, the absorption rate is
varied; hence, reactivity can be varied, and power can be increased or decreased, or the reactor
can be completely shut down. Reactivity devices in CANDU reactors come under the control
either of the Reactor Regulating System (RRS) or of one of the two independent shutdown
systems (SDS1 and SDS2).

For a CANDU 6, the reactivity devices under the control of the RRS are as follows:

 14 liquid-zone-control compartments (H2O-filled)

 21 adjuster rods

 4 mechanical control absorbers

 moderator “poison”.

The reactivity devices under the control of the shutdown systems are:

SDS-1: 28 cadmium shutoff rods which fall into the core from above

SDS-2: high-pressure Gd-poison injection into the moderator through six horizontally oriented
nozzles.

The reactivity worth of these reactivity devices is shown in Table 2.

Table 2 CANDU reactivity device worth

Function Device
Total Reactivity
Worth (mk)

Maximum Reactivity
Rate (mk/s)

Control
14 liquid zone con-
trollers

7 ± 0.14

Control 21 adjusters 15 ± 0.10

Control
4 mechanical control
absorbers

10
± 0.075 (driving)
-3.5 (dropping)

Control moderator poison – -0.01 (extracting)

Safety 28 shut-off units 80 -50

Safety
6 poison-injection
nozzles

> 300 -50
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10 Summary of Relationship to Other Chapters

Chapter 5 relies on knowledge acquired from Chapter 4, Reactor Statics and indirectly on
knowledge from Chapter 3, Nuclear Processes and Neutron Physics.

11 Problems

1. 1020 nuclei of 235U undergo fission with a delayed neutron yield of 0.0125 and a delayed
neutron fraction of 0.005.
a) What is the total neutron yield?
b) How many precursors are produced?
c) How many emitters are eventually produced?

2. A radioactive waste site consists of two cylindrical tanks that contain liquid waste in the
form of fissile material in an aqueous solution. The tanks are in the form of cubes with the
side equal to 1m. The neutronic properties of the radioactive waste are: SA=0.00100cm-1,
D=1cm, nu=2.5, SF=0.00158 cm-1, v=2200 m/s. Assume all fission neutrons are prompt.
a) Calculate the reactivity, generation time and neutron life time for one of the tanks.
b) The site manager decides to save space and money, by storing the content of both tanks

in a larger cubical tank, with side 3 2m . Calculate the reactivity, generation time and
neutron life time for the new tank. Comment on the result.

3. A thin foil made of a mixture of isotopes one of which is fissile has a fission macroscopic
cross section equal to 0.001 cm-1. When fissioning, the fissile isotope produces two types of
precursors: one with yield 0.05 and a half-life of one minute, and another with yield 0.03
and a half-life of two minutes. The sample is subjected to a pulse of neutrons at t=0, and to
another pulse of neutrons at t=90s. The first pulse has a fluence of 108 n/cm2, and the
second pulse has a fluence of 5x107 n/cm2. What is the total number of precursors at t=5
minutes?
Note: Assume that the number of nuclei that react with neutrons (through fission or oth-
erwise) is negligible compared to the original number of nuclei present in the sample, and
that neutrons emitted from the sample do not interact in the sample.

4. A thin-foil of fissile material is irradiated uniformly in a neutron flux of 108 n/cm2/s, starting
at t=0. There are 1022 fissile nuclei in the sample and the fission microscopic cross section is
2000b. There is only one group of delayed neutrons. The total neutron yield per fission is
2.33. The delayed neutron fraction is 0.001 and the half-life of precursors is one minute.
The number of neutrons emitted by the sample per second is measured with a neutron de-
tector.
a) What does the detector indicate 20 minutes after the start of the irradiation?
b) At 25 minutes the irradiation stops. What does the detector indicate two minutes later?

Note: Assume that the number of nuclei that react with neutrons (through fission or
otherwise) is negligible compared to the original number of nuclei present in the sam-
ple, and that neutrons emitted from the sample do not interact in the sample.
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5. Consider a homogeneous nuclear reactor for which all neutrons are born prompt. The
reactor is cubical, with side equal to 4m. The neutronic parameters of the reactor are:

1

1

0.003

2.5

v 2200 /

a

D cm

cm

m s







 





The reactor is initially critical, operating at 3000 MW fission power. The energy liberated per
fission is approximately 200MeV. The extrapolated size of the reactor can be approximated
by its physical size.

a) Find f .

b) Calculate the volume-integrated flux in the reactor.
c) Calculate total neutron population in the reactor.
d) Calculate the neutron generation time and life time.

6. Consider a slab homogeneous reactor (infinite in the y and z directions and finite in the x
direction) extending from -2m to 2m in the x direction, and with the following parameters:

5.2

003.0

1
1










cm

cmD

a

Assume that the physical length and the extrapolated length of the reactor can be approx-
imated to be equal.
The reactor is initially critical.
a) Find the fission cross section.
b) A control plate, 1 cm thick (and extending to infinity in the y and z directions, just like

the reactor) is introduced at x=1m. The neutronic parameters of the control plate are:

1

1

0

01.0

1






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

cm

cm

cmD

f

a

c) Assuming the control plate is thin-enough so that the unperturbed flux across it can be
assumed to be constant and equal to the value at the center of the plate, calculate the
reactivity of the reactor after the introduction of the control plate.

d) Note: When a plate is inserted in the reactor, its material displaces (that is replaces) the
unperturbed reactor material at the position of the plate.
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7. Consider a reactor with 6 delayed neutron groups, with the following parameters.
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The reactor operates in steady state at 2000 MW. The energy per fission is approximately
200MeV.
What is the total delayed neutron fraction?
What is the total delayed neutron yield?
What is the precursor population for each of the groups 1 to 6?
What is the total delayed neutron source?

8. Consider a homogeneous nuclear reactor with one delayed neutron group. The reactor is
cubical, with side equal to 4m. The neutronic parameters of the reactor are:

1

1

1

1

0.003

0.00136

2.5

v 2200 /

0.005

0.2

a

f

D cm

cm

cm

m s

s















 

 








Assume the extrapolated size of the reactor equals its physical size.
a) Calculate keff.
b) The reactor is maintained subcritical by the addition of 10B, which has a microscopic

cross section of approximately 4000b. ( 24 21 10barn cm ). If 0.980k  , what is the

number density of Boron atoms?
c) An external neutron source is introduced into the reactor at point b). The neutron bal-

ance (point kinetics) equations are thus written:
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where n is the total neutron population, and S is the strength of the external source (neu-
trons/s).

If 610
neutrons

S
s

 , what is the equilibrium (steady-state) neutron population? What is the

equilibrium precursor population?
d) At t=0, the external neutron source is removed from the reactor. What are the neutron

population and the precursor population 5 seconds after the removal of the external
source?

9. Consider a reactor with six delayed neutron groups, with the following parameters:
0.001

0.005

s



 



The reactor is initially operating at a steady-state power of 1000MW. A control rod that was
initially in the core is accidentally ejected at t=0, yielding a 2mk reactivity increase. What is
the reactor power immediately after the rod ejection? Use the prompt jump approxima-
tion.

10. Consider a reactor with one delayed neutron group, with the following parameters:

1

0.001

0.005

0.02

s

s


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The reactor is initially in steady state operation at a power of 1000MW. A control rod with a
reactivity worth of 2 mk is inserted in the reactor at t=0. At t=2s, a second, identical, control
rod is inserted. What is the reactor power at t=4s?
Notes:
Use the prompt jump approximation.
The prompt jump approximation is also valid when the reactor is not initially critical.
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