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CHAPTER 7

Thermalhydraulic Analysis

prepared by:
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Summary:

This chapter is concerned with thermalhydraulic analysis of the process systems that are
required to transport heat energy away from the nuclear reactor source and transform this heat
energy into useful work (generally electrical energy. Thermal hydraulic system behaviour is
largely determined by the simultaneous solution of the equations that govern the four variables
(flow, pressure, density and enthalpy). The general mass, energy and momentum conservation
equations are presented in general terms and are simplified to the common approximate forms
used in systems modelling. The equation of state that is required for closure is explored with
particular emphasis on implementation. Process system solution algorithms are investigated.
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1 Introduction

This chapter is concerned with thermal hydraulic analysis of the process systems that are
required to transport heat energy away from the nuclear reactor source and transform this heat
energy into useful work (generally electrical energy). Thermal hydraulic design of the process
systems is covered in the previous chapter. Design and analysis are, of course, tightly coupled.
Nuclear systems design is guided by analysis results. Analysis, in turn, is performed on a
specific design to determine its performance. It is a complex, iterative dance. Design and
analysis of the reactor process involves a number of interrelated systems:

 reactor core

 heat transport system

 steam generators

 turbines

 pressure control system

 coolant inventory control systems

 power control systems;

a number of system components:

 valves

 pumps

 pipes

 vessels

 heat exchangers;

and a number of engineering and science disciplines:

 reactor physics

 heat transfer

 fluid mechanics

 thermodynamics

 chemistry

 metallurgy

 control

 stress analysis.

The heat transport system (HTS) is of central importance since it is the interface between the
heat source and the heat sink. Good HTS performance is essential to reactor integrity, plant
performance and safety. Herein, the scope is limited to the modelling tools used in thermal
hydraulic analysis of the HTS. This chapter is a systems level chapter, not a components level
one. Component modelling is limited to approximate models that are appropriate for systems
analysis. Detailed multidimensional modelling of complex components such as steam
generators, pumps, calandria vessels, headers, etc., are not attempted.

This chapter is primarily about the interplay the two main actors in hydraulic systems: flow and
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pressure. But because we are dealing with systems involving the transfer of heat, local density
and enthalpy determine the pressure. Hence, thermal hydraulic system behaviour is largely
determined by the simultaneous solution of the equations that govern these four variables
(flow, pressure, density and enthalpy).

1.1 Learning Outcomes

The overall objectives for this chapter are as follows:

 The student should be able to explain the roles played by mass, flow, energy and
pressure in thermalhydraulic simulation.

 The student should be able to derive appropriate forms of the governing equations, and
develop a flow diagram and pseudo-code for a thermalhydraulic system simulator from
first principles.

 The student should be able to build a thermalhydraulic system simulator from first
principles.

 The student should be able to identify the terms and symbols used in thermalhydraulics.

 The student should be able to distinguish between the differential and integral form and
be able to choose, with justification, the correct form to use in various situations.

 The student should be able to recall typical values and units of parameters.

 The student should be able to recognize key physical phenomena.

 The student should be able to recognize the coupling between mass, momentum,
energy and pressure in thermalhydraulic systems.

 The student should be able to choose approximations as appropriate (# of dimesions,
transient or steady state, averaging, spatial resolution, etc.) with justification.

 The student should be able to develop, with justification, a node-link diagram given a
thermalhydraulic system.

 The student should be able to construct the matrix form of the conservation equations
for a given node-link structure.

 The student should be able to calculate any dependent thermodynamic property given
any two independent state variables using (a) the steam tables, (b) supplied codes, (c)
supplied curve fits to the steam tables.

 The student should be able to develop a flow diagram and pseudo-code for the
calculation of P and T given density and enthalpy.

 The student should be able to explain the pressure and temperature response of a
volume of fluid to perturbations given the F and G functions.

 The student should be able to develop a flow diagram and pseudo-code for the rate
method of the equation of state.

 The student should be able to develop a computer code implementing the rate method
of the equation of state.

 The student should be able to model a simple thermalhydraulic network using the
integral form of the conservation equations and the rate form of the equation of state.
The student should be able to check for reasonableness of the answers.
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 The student should be able to apply the various numerical methodologies (fully explicit
to fully implicit) to special cases of the thermalhydraulic system equations.

 The student should be able to produce a general node-link code based on the
cumulative concepts presented in this course.

 The student should be able to evaluate the efficacy of the various numerical algorithms.

1.2 The Chapter Layout

To lay the groundwork for thermal hydraulic systems analysis, Section 2 presents the general
mass, energy and momentum conservation equations in very general terms and proceeds to
derive the common approximate forms used in systems modelling. Section 3 shows how to
model hydraulic piping networks as a system of nodes connected by links and elaborates on the
appropriate equation forms for these node-link approximations. The conservation equations
requires a relationship between pressure, temperature, density and energy (the equation of
state) for closure. In Section 4, the equation of state is explored with particular emphasis on
implementation. Sections 5 and 6 cover numerical considerations. Explicit, semi-implicit and
implicit techniques are presented. At this point the reader is almost ready to conduct thermal
hydraulic simulations. Chapter 6 on Thermalhydraulic design completes the picture by
providing heat transfer and hydraulic correlations that are needed for the simulations. A
survey of industrial strength tools is outside the scope of this chapter as is a discussion of
phenomena identification and evaluation, and code verification and validation.

As with design, there is no one best model for a given analysis task, nor is there even one best
solution procedure. Good simulation is evolutionary; we learn from past successes and
failures, incorporate the latest experimental, theoretical and numerical results, employ sound
engineering principles and a solid understanding of the basics to engineer each and every new
simulation tool.
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2 Basic Equations for Thermalhydraulic Systems Analysis

2.1 Introduction

This section presents the basic mass, momentum and energy equations used in typical
computer codes for thermalhydraulic simulation. The equations are derived from first
principles and the necessary approximations lead to the requirements for empirical
correlations. Closure is obtained by the equation of state.

The known territory of the basic mass, energy and momentum conservation equations (Bird et
al [BIR60]) is explored, herein, from the perspective of thermalhydraulic systems analysis for
nuclear reactors. See also [CAR95] for seminal coverage of this topic.

Invariably in the modelling of fluids, the conservation equations are cast in one of two main
forms (Currie [CUR74]): integral or distributed approach. The distributed (differential) form
sees infrequent use in the analysis of thermalhydraulic systems since the cost and complexity of
such a detailed analysis on even a single complex component of a system is enormous, which
makes this route to the analysis of systems of such complex components unrealizable.
Recourse is generally made to the integral or lumped form so that inter-relationships of various
components comprising a system can be simulated. Necessarily, the models used for the
individual components are much simpler than that of the detailed models based on the
distributed approach. Great care must be taken to ensure that the simpler models of the
integral approach are properly formulated and not misused.

It behooves us, then, to develop the models used in thermalhydraulic systems analysis from first
principles. This will provide a traceable and verifiable methodology to aid development and
validation of system codes, to elucidate the necessary assumptions made, to show pitfalls, to
show the common roots and genealogy of specific tools like FLASH [POR69], SOPHT [CHA75a,
CHA75b, CHA77a, CHA77b, SKE75, SKE80], RETRAN [AGE82], FIREBIRD [LIN79], CATHENA
[HAN95], etc., and to help guide future development.

The exploration proceeds by first establishing and discussing the general principle of
conservation. Next, this general principle is applied in turn to mass, momentum and energy to
arrive at the specific forms commonly seen in the systems approach. Closure is then given via
the equation of state and by supporting empirical correlations. Finally, the ideas developed
are codified in a diagrammatical representation to aid in the physical interpretation of these
systems of equations and to provide a summary of the main characteristics of fluid systems.

2.2 Conservation

We start, both historically and pedagogically, with a basic experimental observation:

"CONSERVATION".

This was, and is, most easily understood in terms of mass:

"WHAT GOES IN MUST COME OUT UNLESS IT STAYS THERE

OR IS GENERATED OR LOST SOMEHOW".
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Although this should be self-evident, it is important to realize that this is an experimental
observation.

If we further assume that we have a continuum, we can mathematically recast our basic
experimental observation for any field variable, ψ: 

D
Dt   

V
ψdV =   

V
 ΓdV + 

S
S n ds (1)

where

DDt = substantial derivative1 = change due to time variations plus change due to
movement in space at the velocity of the field variable, ψ,  

V = arbitrary fluid volume,

Γ = net sum of local sources and local sinks of the field variable, ψ, within the 
volume V,

ψ = field variable such as mass, momentum, energy, etc., 

t = time,

s = surface bounding the volume, V,

n = unit vector normal to the surface, and

S = net sum of local sources and local sinks of the fluid variable, ψ, on the surface s. 

We can now use Reynold’s Transport Theorem [CUR74]:

D
Dt 

V
ψ dV = 

V

ψ

t
dV + 

S
 ψv n ds (2)

where

t = local time derivative, and

v = velocity of the field variable,

to give


V

ψ

t
dV = - 

S
 ψ v n ds + 

V
 Γ dV + 

S
S n ds . (3)

In words, this states that the change in the conserved field variable ψ in the volume V is due to 
surface flux plus sources minus sinks. We can use another mathematical identity (Gauss’

1 For a lucid discussion of the three time derivatives,

t

,
D

t
,

d
dt, see [BIR60, pp 73-74].



Thermalhydraulic Analysis 9

©UNENE, all rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016

Divergence Theorem):


S
A n ds = 

V
 A dV , (4)

where

A = any vector, such as velocity, and

 = Del operator (eg.  = x i + y j + ...) .

Thus equation 3 can be rewritten:


V

ψ

t
dV = - 

S
 ψv dV + 

V
 Γ dV + 

V
  S dV . (5)

If we assume that this statement is universally true, i.e. for any volume within the system under
consideration, then the following identity must hold at each point in space:

ψ

t
= - ψv + Γ +   S . (6)

This is the distributed or microscopic form. Equation 3 is the lumped or macroscopic form.
They are equivalent and one can move freely back and forth between the two forms as long as
the field variables are continuous.

The above derivation path is not unique. One could start with an incremental volume and
derive (1) via (6). It is largely a question of personal choice and the end use. One school of
thought, attended by most scientists, applied mathematicians and academics, since they usually
deal with the local or microscopic approach, focuses on the conversion of the surface integrals
to volume integrals using Gauss’ Theorem. The volume integrals are then dropped giving the
partial differential or microscopic form. This path works well when a detailed analysis is
desired, such as subchannel flow in fuel bundles, moderator circulation in the calandria, etc.

The second school, which sees more favour among engineers, particularly in the chemical
industry, evaluates the surface integrals as they stand without converting to volume integrals.
This leads to a lumped or macroscopic approach useful for network analysis, distillation towers,
etc.

There exists a very large number of possible derivations, each with its own advantages and
disadvantages. As more and more detail is picked up in each class of models, numerical means
have to be used. In the limit of large numbers of nodes or mesh points, etc., both methods
converge to the same solution.

Since the above equations are basic to all subsequent modelling of thermalhydraulic systems,
one should keep in mind the basis for these equations:

1) Conservation as an experimental observation.

This is usually taken for granted. However, when the conservation equations for separate
phases in a mixture are under consideration, the various sinks and sources of mass, momentum
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and energy are not entirely known and the interpretation of experimental data can be difficult
because of the complexity. It helps to keep in mind the distinctly different roles that we have
historically assigned to the players in the conservation process:

a) the local time derivative, ψt,

b) the advection term (flux), ψv,
c) the local sinks and sources, Γ, within a volume and 
d) the local sinks and sources, S, on the surface of a volume.

If a clarity of form is adopted by establishing and maintaining a one-to-one correspondence
between the form and the physical processes, then a substantial pedagogical tool will have been
achieved. This proves invaluable in experimental design (to zero in on a particular process or
parameter), model formulation and interpretation, data analysis and presentation, correlation
development, etc. A model could lose its generality because, for instance, fluxes across
interfaces are written as a term in Γ, thus making the interfacial flux a local phenomena rather 
than a boundary phenomena. This may be acceptable for a single geometry but causes the
model to break down when applied to diverse geometries.

2) The field variables are continuous within the volume V.

This is also usually taken for granted. But care must be exercised in multiphase flow where
discontinuities abound. A common approach, taken to simplify the complexity of multiphase
flow, is to average the terms in the conservation equations across the cross-sectional area of the
flow path. One could speculate that the error introduced in this manner could separate the
model from reality enough to make the solutions be "unreal", i.e. complex numbers,
singularities, etc. Further, fluctuating parameters are often smoothed by averaging over an
appropriate Δt.  These averaged parameters and products of parameters are used in models 
and compared to experiments. But there is no guarantee that, for instance,

1
Δt

Δt

 ψ v dt =






1

Δt

Δt

 ψ dt  






1

Δt

Δt

v dt .

Thus the use of time averaged parameters can lead to additional errors. Indeed, because of
the possibility of error due to space and time discontinuities, several investigators have offered
rigorous treatments for the distributed approach (see, for example, Delhaye [DEL81]). There is
no reason why these treatments could not be applied to the lumped approach, as well. But, at
this time, there is little incentive to do so since grid coarseness and experimental data are larger
sources of error. As always, the operative rule is - BUYER BEWARE.

We now proceed to treat the mass, momentum and energy equations in turn.

2.3 Conservation of Mass

Historically, mass was the first variable observed to be conserved:


V


t

 (γk ρk) dV = - 
S
 γk ρk vk n ds + 

V
 Γk dV + 

s
Sk n  ds (7)
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where

ρk = density of phase k (1 = liquid, 2 = vapour),

γk = volume fraction of phase, k, in volume V, and

Γk, Sk = phase sinks and sources, including chemical and nuclear effects.

The average density is defined as:

ρ = γ1 ρ1 + γ2 ρ2 = (1 - α) ρ1 + α ρ2 , (8)

whereρ = average density, and 

α = void fraction. 

Adding both phases together, equation 7 becomes:


V


t

 [(1 - α) ρ1 + α ρ2] dV = - 
S
 [(1 - α) ρ1 v1 + α ρ2 v2] n ds

= + 
V
 (Γ1 + Γ2) dV + 

S
(S1 + S2) n ds.

(9)

In our case, Γ1 = -Γ2 (liquid boils or vapour condenses) and Sk = 0 (no mass sources or sinks at
surfaces). Therefore:


V

ρ

t
dV = - 

S
 ρ v n ds (10)

where

ρ v = (1 - α) ρ1 v1 + α ρ2 v2 . (11)

If we apply Gauss’ Theorem and drop the integrals we have:

ρ

t
+   ρ v = 0 (12)

or


t

 [(1 - α) ρ1 + α ρ2] +   [(1 - α) ρ1 v1 + α ρ2 v2] = 0 . (13)

This is the distributed form useful for modelling detailed flow patterns such as in the calandria,
vessels, steam generators and headers. Component codes such as THIRST [CAR81a] and
COBRA [BNW76] use this approach.

In contrast, system codes such as SOPHT [CHA77a], based on Porsching’s work [POR71], use the
lumped equations. These codes represent a hydraulic network of pipes by nodes joined by
links, discussed in detail in section 3. Mass, pressure and energy changes occur at the nodes.
Momentum changes occur in the links. Thus the network is treated on a macroscopic scale
requiring an integral approach to the fundamental equations. Flow details in pipes are not
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considered. That is, diffusion, dispersion, advection, flow regimes, flow profiles, etc. are not
fundamentally accounted for but are covered by empirical correlations. Averaging techniques,
commonly used in the distributed approach are not used in the lumped approach mainly
because there is little incentive to do so. The main sources of error lie elsewhere, mainly in
the coarseness of the discretization in the direction of flow (i.e. node size) and in friction factors
and heat transfer coefficients.

Now,  ρdV is the mass, Mi, in the volume, Vi, of the ith node. Also, for our case, the surface
integral can be written as surface integrals over the individual flow paths into and out of the
volume or node. That is,

- 
S

ρ v n ds = 
j
 ρj vj Aj , (14)

where j represents inflow and outflow links with vj > 0 for inflow and <0 for outflow. Inherent

in equation 11 is the assumption that the integral, 
S

ρ v n ds can be replaced by the simple

product ρj vj Aj. This implies known or assumed (usually uniform) velocity and density profiles
across the face of the link (or pipe).

Thus we now have:

Mi

t
= 

j
 ρj vj Aj   Wj , (15)

where Wj is the mass flow. This is the typical representation in system codes. Thus for the
node-link type equations, we must add two more assumptions:

i) nodalization, and
ii) assumed velocity and density profile across the cross-section of a pipe.

These assumptions have far reaching ramifications that may not be immediately obvious. This
is discussed in more detail in section 3.

To conclude our progressive simplification, we note the steady state form of equation 15:


j
 ρj vj Aj   Wj = 0 . (16)

For a simple circular flow loop, the mass flow rate at steady state is a constant at any point in
the loop. Local area and density variations thus give rise to velocity variations around the
loop.

Local velocity then is:

v =
W

ρA
. (17)

2.4 Conservation of Momentum

Newton observed that momentum is conserved, i.e. a body moves in a straight line unless



Thermalhydraulic Analysis 13

©UNENE, all rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016

forced to do otherwise. This is equivalent to a force balance if the inertial force (a momentum
sink of sorts) is recognized. In the integral sense, the rate of change of momentum is equal to
the forces acting on the fluid. Thus:

D
Dt 

V
γk ρk vk dV = 

S
σk n ds + 

V
 γk ρk fk dV + 

V
Mk dV , (18)

where

σ is the stress tensor (i.e., short range or surface effects including pressure, viscosity, etc.),

f is the long range or body force (i.e., gravity),

and M is the momentum interchange function accounting for phase change effects.

Using Reynold’s Transport Theorem, we get:


V


t

 (γk ρk vk) dV + 
S
 (γk ρk vk) (vk n) ds

= 
S
σk n ds + 

V
 γk ρk fk dV + 

V
Mk dV .

(19)

Adding both phases together as per the mass equation, we find:


V


t

 ρ v dV + 
S
 ρ v (vn) ds = 

S
σ n ds + 

V
 ρ f dV . (20)

To get the microscopic form we use Gauss’s theorem and drop the volume integral as before to
leave:


t

 (ρ v) +   ρ v v =  σ + ρ f . (21)

The stress tensor, σ, can be split into the normal and shear components:

σ = -PI + τ, (22)

where P is the pressure, I is the unity tensor and τ is the shear stress tensor. This enables the
explicit use of pressure and helps maintain our tenuous link with reality. Of course, it can
equally be introduced in the integral form, equation 20, or as a separate pressure for each
phase in equation 19. At any rate, equation 21 becomes:


t

 (ρ v) +   ρ v v = -P +   τ + ρ f . (23)

This is the form commonly seen in the literature, useful for distributed modelling as per the

mass conservation equation. The term, τ, is usually replaced by an empirical relation. For
the system codes using the node-link structure, we switch back to the macroscopic form,
Equation 20.

If the surface integral for the advective term is performed over the inlet and outlet areas of the
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pipe (link) in question, then:

S Ain Aout

( )ds ( )ds ( )ds         v v n v v n v v n (24)

where AIN is the flow inlet area and AOUT is the flow outlet area. If we assume the properties
are constant over the areas, then:


       

  
v

v v σ n fIN IN IN IN OUT OUT OUT OUT k

S V

V A v A v ds dV
t

(25)

Alternatively we could perform a cross-sectional average of each term, usually denoted by < >,

where <( )> = 1A 
S

( ) ds.  If we assume the properties, V, ρ and A are constant along 

the length of the pipe, then the second and third terms cancel.

Equation 25 can be rewritten as:

 

 


        



   
          

   

 
v

I n

v v g
P POUT OUT IN IN

c c

V P ds f dV
t

V fL
A A k LA sin

L D 2g g

(26)

where gc is the gravitational constant, g is the acceleration due to gravity and where τ and ρf
evaluated by empirical correlations (the standard friction factor) plus an elevation change term

(θ is the angle w.r.t. the horizontal).  Note that is AOUT  AIN then, even for constant pressure,
there is a net force on the volume causing it to accelerate if it were not restrained. In a
restrained system such as HTS piping, the piping supports exert an equal and opposite force on
the volume. Thus when the area differences are explicitly modelled, the appropriate body
forces must be included. Generally, it is simpler to use an average or representative area for
the IN and OUT surfaces and to add entrance and exit frictional losses explicitly in the (fl/D+k)
term.

Assuming one dimensional flow and defining the mass flow as W  ρVA, and L as the pipe 
length, equation 26 becomes:

 
   

        
   

2

IN OUT 2
c c

W A fL W g
P P k A sin( )

t L D 2g A g
(27)

which is the form typically used in system codes.

If circumstances require, extra terms can be added. For instance, if a pump is present this can
be considered to be an external force acting through head, ΔPpump. Equation 27 would then
become:


    


OUT OUT IN IN PUMP

W
L A P A P A P

t
(28)
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The momentum flux terms (Aρv2) in equation 25 could also be added if large area or property
changes were present or the effect could be included in the friction term.

In the steady state, for a constant area pipe with no pump and no elevation change:

   
          

   

2 2

IN OUT PUMP2
c c

fL V fL W
P P k k P ...

D 2g D 2A g
(29)

As a final note, the assumptions made for the mixture momentum equation are thus similar to
those made for the mixture mass equation and the same comments apply. One cannot hope
to accurately model such phenomena as void propagation and other two phase transient flow
effects using lumped single phase equations unless a large number of nodes and links are used.

2.5 Conservation of Energy

By the early 1800’s, philosophical jumps were made in recognizing that heat was not a
substance and in the emergence of electromagnetic theory. The concept of energy as we now
think of it was formulated and it was found that energy, too, was conserved, as long as we
carefully identify all the different forms of energy (kinetic, chemical, potential, nuclear, internal,
electromagnetic, ...).

The mathematical statement of the conservation of energy is:

D
Dt 

V
γk ρk 








ek +
1
2 v

2

k
dV = - 

S
qk n ds + 

V
Ek dV

+ 
V
 γk ρk fk  vk dV + 

S
(σk n)  vk ds ,

(30)

where

ek = internal energy of phase k,

qk = surface heat flux for phase k, and

Ek = internal heat sources and sinks of phase k.

The left hand side is the substantial derivative of the internal plus kinetic energy. The right
hand side terms are, respectively:

1) surface heat flux,
2) internal sources and sinks,
3) work due to long range body forces (gravity, etc.),
4) work due to short range forces (surface tension, pressure, etc.).

Using Reynold’s Transport Theorem again:
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
V


t 








γk ρk 







ek +
1
2 v

2

k
dV + 

S
 γk ρk 








ek +
1
2 v

2

k
vk n ds

= - 
S

qk n ds + 
V

Ek dV + 
V
 γk ρk fk  vk dV + 

S
(σk n)  vk ds .

(31)

Summing over k, the mixture equation becomes:


V


t 








ρ e + 
1
2 ρv2 dV + 

S 







ρe + 
1
2 ρ v2 v n ds

= - 
S

q n ds + 
V

E dV + 
V
 ρ f  v dV + 

S
(σ  v)  v ds ,

(32)

where

ρe = γ1ρ1e1 + γ2ρ2e2 E = E1+E2, etc.

Using Gauss’ Theorem to change some of the surface integrals to volume integrals:


V


t 








ρ e + 
1
2 ρv2 dV + 

S
 ρe v n ds + 

V
 







1

2 ρ v2 v dV

= - 
S

q n ds + 
V

E dV + 
V
 ρ f  v dV + 

V
  (σ  v) dV .

(33)

Since

σ = -PI + τ ,


V
  (σ  v) dV = 

V
[ ]  (τ  v) -   (P v) dV .

This is the total energy equation, composed of thermal terms and mechanical terms. We can
separate the two by first generating the mechanical terms from the momentum equation
(equation 20). Forming the dot product with velocity we get:


V


t

 (ρ v)  v dV + 
V

v  (  ρ v v) dV = 
V

v  (  τ) dV

- 
V

v   P dV + 
V
 ρ f  v dV .

(34)

Now

v  (  τ) =  (τ  v) - τ : v , (35)

v   P =   (P v) - P  v , (36)

v 

t

 (ρ v) =

t 






1

2 ρ v  v =

t 






1

2 ρ v2 (37)
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and

v  (  ρ v v) =  






1

2 ρ v2 v . (38)

Using these identities and subtracting equation 34 from equation 33, we get:


V


t

 (ρ e) dV + 
s
 ρe v n ds = - 

S
q n ds

+ 
V

E dV + 
V
τ:v dV - 

V
P  v dV .

(39)

This is the thermal form of the energy equation. This form of the energy equation can be used
to generate the thermal conductance equation for solids. By setting fluid velocity to zero and
converting surface integrals to volume integrals we get the distributed form:


t

 (ρe) = - q + E , (40)

where E is the internal energy generation rate term.

From thermodynamics, for solids, we have:


t

 (ρe)  ρ 
e

t
 ρ Cv

T

t
, (41)

and using Fourier’s law for heat conduction:

q = -kT , (42)

we have the classical form of the heat conduction equation:

ρ Cv

T

t
=   k T + E

= k2 T + E space independent k .

(43)

This is useful for determining the temperature distributions in boiler tube walls, piping walls and
reactor fuel pencils. To generate the node-link forms we now turn back to the integral form of
equation 39. If we assume that the density and enthalpy are uniform over the node (the
volume in question), then


V


t

 (ρ e) dV = 
U

t
, (44)

where

U  V ρ e = L A ρ e .        (45) 

The integral of the transport term can be written over the flow surfaces:
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
S

ρ e v n ds = 
A

1

 ρ e v n ds + 
A

2

 ρ e v n ds + .... , (46)

where A1, A2, etc., are the pipe flow cross-sectional areas. For inflow, vn is negative. For

outflow, vn is positive. Assuming uniform velocity, enthalpy and density across the link (pipe)
cross-section gives:

             v n v vi IN IN OUT OUT
INFLOW OUTFLOW

e ds e A e A W e W e (47)

The heat flux and generation terms of the thermal energy equation can be lumped into a
loosely defined heat source for the volume.

- 
S
q n ds + 

V
E dV  Q . (48)

Therefore, the thermal energy equation becomes:


       


   τ v vIN IN OUT OUT

U
W e W e Q : dV P dV

t
(49)

The last two terms are the irreversible and reversible internal energy conversion, respectively.

Some system codes track enthalpy rather than internal energy. Defining:

    


P
h enthalpy e and H V h. (50)

we can rewrite equation 39 as follows:


V

 (ρ h - P)

t
dV + 

s
 (ρ h - P) v n ds = - 

S
q n ds

+ 
V

E dV + 
V
τ:v dV - 

V
P  v dV .

(51)

Collecting the pressure terms and simplifying yields:


V


t

 (ρ h) dV + 
S
 ρ h v n ds = - 

S
q n ds + 

V
E dV

+ 
V
τ:v + 

V

P

t
dV + 

S
P v n ds - 

V
P  v dV .

(52)

The surface integral over P can be transformed into a volume integral using Gauss’ theorem and
combined with the last term to give:
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
S
Pv n ds - 

V
P  v dV = 

V
  (P v) dV - 

V
P  v dV

= 
V

v   PdV .

(53)

The enthalpy flux terms can be evaluated in the same manner that the energy flux terms were
in equations 46-47. Thus,

      v n IN IN OUT OUT

S

ds W h W h . (54)

Finally, using equations 48, 50, 53-54, equation 52 becomes:

  
         

  
   τ v vIN IN OUT OUT

H P
W h W h Q : dV P dV.

t t
(55)

The integral term involving pressure is often neglected since it is usually negligible compared to
the other terms. For instance, the typical CANDU Heat Transport System operates at a

pressure of 10 MPa, a fluid velocity of ~10 ms, and a pressure gradient of less than 70 kPam.

This translates into roughly 10 kJkg while e is approximately 1000 kJkg.

The turbulent heating term is usually approximated by adding pump heat as a specific form of
Q.

equation 55 in the steady state, neglecting turbulent heating and the pressure terms, is the
familiar:

   IN IN OUT OUTQ W h W h . (56)

For a reactor or a boiler (one flow in, one flow out):

      OUT IN p OUT INQ W h h WC T T in single phase. (57)

Another special case of equation 55 is obtained by expanding the term Q as per equation 48:

- 
S
q n ds + 

V
E dV  Q . (48)

Using Newton’s Law of cooling for convection:

q n = hN (T - Ts) , (58)

where

qn = heat flux normal to surface, s,
T = Temperature of fluid
Ts = Temperature of surface (wall), and
hN = heat transfer coefficient,

Equation 55, neglecting the pressure terms, becomes:
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 

    
      

    

    

 

 τ v

v IN IN OUT OUT

N s

h P e T
V V V V C W h W h

t t t t

Ah T T VE : dV

(59)

which is useful for accounting for heat transfer between the fluid and the pipe or tube walls (eg:
boiler heat transfer).

The heat transfer coefficient, hN, is supplied through empirical relations. The turbulent heating

term 
V

τ:  v dV generally can be neglected or added as a pump heat term.

2.6 The Equation of State

From the conservation equations, we have three equations for each phase (mass, momentum
and energy conservation) and four unknowns:

1) density, ρ or mass, Vρ, 
2) velocity, v, or mass flow, W, or momentum, ρv, 

3) energy, e, or enthalpy, h = e + Pρ, or temperature, T = fn(e) or fn(h), and 
4) pressure, P.

The fourth equation required for closure is the equation of state:

P = fn(h,ρ)   ρ = fn(P,T) , etc.    (60) 

Thermodynamic equilibrium is usually assumed. For water, H2O or D2O, tables of properties
give the required functional relationship. Often, a curve fit of the tables is used. This data is
input to the computer codes and utilized in table lookup schemes or directly via the parametric
curve fits.

The equation of state is discussed in detail in Section 4.

2.7 Empirical Correlations

As previously discussed, supporting relations are required to provide the necessary information
for the conservation and state equations. The primary areas where support is needed are:

1) relationship between quality and void fractions, i.e., slip velocities in two phase flow (to
link the mass and enthalpy via the state equation);

2) the stress tensor, τ (effects of wall shear, turbulence, flow regime and fluid properties on
momentum or, in a word: friction);

3) heat transfer coefficients (to give the heat energy transfer for a given temperature
distribution in heat exchangers, including steam generators and reactors);

4) thermodynamic properties for the equation of state;
5) flow regime maps to guide the selection of empirical correlations appropriate to the

flow regime in question;
6) special component data for pumps, valves, steam drums, pressurizers, bleed or degasser

condensers, etc; and
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7) critical heat flux information (this is not needed for the solution of the process equations
but a measure of engineering limits is needed to guide the use of the solutions of the
process equations as applied to process design;

The above list of correlations, large enough in its own right, is but a subset of the full list that
would be required were it not for a number of key simplifying assumptions made in the
derivation of the basic equations. The three major assumptions made for the primary heat
transport system are:

1) one dimensional flow;
2) thermal equilibrium (except for the pressurizer under insurge); and
3) one fluid model (i.e. mixture equations).

These are required because of state of the art limitations (however, two fluid models are being
used increasingly in recent years.). Empirical correlations were discussed in more detail in
Chapter 6.

2.8 Solution Overview

Because of the complexity of solving the mass, momentum and energy equations plus
supporting equations of state and empirical correlations all subject to initial and boundary
conditions, it is quite easy to "not see the forest for the trees". A skeleton overview may help
in this regard. Figure 1 illustrates the equations and the information links between them. In
words, the momentum equation gives the flows or velocities from one node to another, or from
one grid point to another, based on a given pressure, flow, mass and energy distribution. The
updated flows are used by the mass and energy equations to update the mass and energy
contents at each location. The new mass and energy are given to the equation of state to
update the pressure distribution. The new pressure, along with the new densities and
energies are used by the momentum equation, and so on. In this manner, a time history of
the fluid evolution is obtained. Of course, only the main variables are noted. The numerous
Figure 1 The four cournerstone single phase flow equations and the flow of
information between them.
©UNENE, all rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016
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and diverse empirical correlations require updates on the main variables and many secondary
variables. This information also "flows" around the calculation.

A further point to note on the solution overview is that each phase in a multiphase flow has a
main information flow path as shown in figure 2. In the full UVUEUP (unequal velocity, energy
and pressure) model, there are two distinct phases: one for the vapour phase and one for the
liquid phase. If a simplified model was imposed, this essentially means that the planes would
touch at some point. For instance, if equal pressure in both phases was assumed, then figure
3 would result. Here, the equation of state is common to both planes.

The HEM (homogeneous equilibrium model) is the fully collapsed case where both planes
collapse into one (figure 1). You may find these images to be useful in conceptualizing the
basic equations and how they fit together.

The precise solution procedure that you might employ is case dependent. At present, no
general solution scheme exists because the nuances of specific problems are subtle and
because one cannot usually afford to ignore the efficiency and cost savings gained by tuning a
method to a particular case. The economics of using a case specific code are changing,
however, with developments in the microcomputer field and with the realization that total
design and analysis time can often be reduced by using a less efficient but more robust code.
Codes such as SOPHT and CATHENA [HAN95] are a direct result of this realization. The near
term evolution will likely be affected mostly by microcomputer developments.
NENE, all rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016

Figure 2 The four cornerstone equations for the two-fluid model.
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2.9 Pr

1. R

a

b

Figure 3 The four cornerstone equations for the full two-fluid model with
equal pressure of the two phases.
©UNENE, all rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016

oblems

eferring to figure 1:

. Explain the inter-relationship between the mass, momentum and energy equations
and the equation of state.

. For the integral form, devise a simple solution scheme for the transient equations.
Show what equations are being solved and how they are being solved. Flow chart
your scheme.
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3 Nodalization

3.1 Introduction

This section focuses on establishing a rationale for, and the setting up of, the geometric
representation of thermalhydraulic systems. The hydraulic network is represented by a series
of interconnected nodes to form a

The exploration proceeds by first establishing and discussing the governing rationale. Next,
limitations of the approximation are presented and examples are given. Finally, the matrix
approach is used to capture the system geometry in a succinct form.

3.2 The Node-Link Concept

From section 2 we have the integral mass, momentum and energy equations for an arbitrary
volume, i, with material flow through various surfaces, designated by the subs
4):

M

t


 

       
  

W A fL W
P P k A g / g sin( )

t L D 2g A


  


 

H
W h W h Q

t

Figure 4
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ses on establishing a rationale for, and the setting up of, the geometric
representation of thermalhydraulic systems. The hydraulic network is represented by a series

interconnected nodes to form a node-link diagram.

exploration proceeds by first establishing and discussing the governing rationale. Next,
limitations of the approximation are presented and examples are given. Finally, the matrix
approach is used to capture the system geometry in a succinct form.

Link Concept

2 we have the integral mass, momentum and energy equations for an arbitrary
volume, i, with material flow through various surfaces, designated by the subscript j (see figure

Mi

t
= 

j
 ρj vj Aj   Wj ,


  

        
   

2

IN OUT c2
c

W A fL W
P P k A g / g sin( )

t L D 2g A

   IN IN OUT OUTW h W h Q

A general node and connecting links.
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ses on establishing a rationale for, and the setting up of, the geometric
representation of thermalhydraulic systems. The hydraulic network is represented by a series

exploration proceeds by first establishing and discussing the governing rationale. Next,
limitations of the approximation are presented and examples are given. Finally, the matrix

2 we have the integral mass, momentum and energy equations for an arbitrary
cript j (see figure

(61)

(62)

(63)
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These mass and energy equations are averaged over the volume in question, hence they do not
capture any detail within the volume. Know
equation of state gives the pressure. Flow, however, is driven by pressure differences. Hence
it naturally follows that the momentum equation should be applied between the points of
known pressure, ie, between vol
grid method. In the lumped approach, it is called the node
figure 5. Volumes are represented by nodes, flow paths are represented by links.

To assign nodes and links to
best to first focus on the flo
endpoints (ie the node centre
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Figure 6
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Node-link setup for a simple pipe.
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Node-link setup for an area change in a pipe.
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Hydraulic friction can be affected by flow direction. Figure 7 illustrates a simple pipe flow
situation wherein there is a step change in area. Flow from left to right experiences a different
junction resistance than flow going from right to left. Direction dependent resistances are

usually modelled explicitly in the system codes. The momentum flux terms, Aρv2, can either
be modelled explicitly or through the resistance coefficient, k. Note that a simple force
balance around the junction would show that there is a net lateral force on the pipe. This
force imbalance would have to be accounted for by a body force if different inlet and outlet pipe
areas were used. This is another reason that links are chosen to coincide with constant pipe
length sections.

The properties of the fluid within the link are a result of the properties of the upstream node.
As the fluid is transported along a flow path (ie along the link), the link properties will change
over time. Naturally there will be a transport delay but given that the nodal properties are
themselves average values that change relatively slowly over time, system simulation codes
typically assume that the link properties are just the same as the upstream nodal properties.
For most purposes this is an acceptable assumption that can be lessened by using more nodes
and links in the model. One has to be careful, however, of flow reversal situations that involve
two-phase flow since this can lead to rapid and large density changes in the link.

The node volume is usually assigned as the fluid surrounding the node centre as shown in figure
7(a). But this is not a critical assignment; the node “centres” can actually be at the edge of the
volume if that proves convenient. From a numerical point of view, it is beneficial to divide the
hydraulic network up into volumes of roughly equal size since the properties in small volumes
can change very rapidly and thus force the use of correspondingly small time steps. This
rationalization of the volume assignments may force the user to take some liberties with the
notion of a node “centre”.

To recap, the momentum equation is used to solve for Wj in all links, driven by upstream and
downstream pressure differences and retarded / accelerated by friction, elevation change,
pumps, etc. that appear in the links. This flow transports mass and energy to and from the
nodes. Local heat sources and sinks, such as surface heat fluxes, are modelled at the nodes.

3.3 Nodal Diffusion

In the node - link representation of flow in a pipe, no flow detail is considered as the fluid
moves along the pipe. Therefore, no diffusion, dispersion, advection, flow profiles or flow
regimes are explicitly permitted. This is not too crude an approximation for the calculation of
pressure drops and flows but for modelling the propagation of disturbances, this approach is
inadequate as it stands unless a large number of nodes and links are used.

To show this, consider a homogeneous or bubbly flow through a pipe, as in the two-phase
regions of typical heat transport systems in nuclear reactors, modelled in system codes as nodes
connected by links. Perfect mixing at the nodes is assumed. Flow in a pipe, however, has
aspects of plug flow. That is, flow is transmitted along the pipe relatively undisturbed. If no
diffusion or turbulent dispersion existed, a sharp discontinuity in a property would propagate
undisturbed. Figure 8 shows how the discontinuity would move in time and space. The left
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to right movement is due to the velocity, v, while the spreading out is due to diffusion. If a
single mixing tank (node) represented a section of pipe of volume, V m
m3/s, then a step change to zero in a field property, C, (which could be concentration or density)
entering the node would be an exponential by the time it left the node, that is:

where τ = V/f ; τ is also the transmission time for the plug flow model.  If the pipe were 
modelled by two nodes in series,

and in general, for n nodes:
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to right movement is due to the velocity, v, while the spreading out is due to diffusion. If a
, and volumetric flow, f

/s, then a step change to zero in a field property, C, (which could be concentration or density)

(64)

where τ = V/f ; τ is also the transmission time for the plug flow model.  If the pipe were 

(65)

(66)
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Illustration of convection and diffusion.
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Figure 9 Transmission of a step change using the plug flow model
and the mixing tank model (1 to 50 tanks).

Transmission of a step change using the plug flow model
and the mixing tank model (1 to 50 tanks).

Transmission of a step change using the plug flow model
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the flow is turbulent. Very little is know of flow regimes and propagation properties in these
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In short, careful attention should be given to nodalization for meaningful simulation, quite apart
from the normal numerical concerns such as the Courant limit, etc.
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Figure 10 Transmission of a step change using the plug flow mod
a feeder model with skewing due to differences in transit times.

Transmission of a step change using the plug flow mod
a feeder model with skewing due to differences in transit times.

Transmission of a step change using the plug flow model and
a feeder model with skewing due to differences in transit times.
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3.4 Examples

In figures 11 to 13, some common piping situations are depicted. In figure
junction, note that each link has a unique junction resistance associated with th
that link. Note also that a link has a unique upstream node and a unique downstream node.
Links are always terminated by nodes at either end; in effect, the nodes provide boundary
conditions for the links. There are 2 nodes per link, no mo
hand, can have many links connected to it.

The Y junction of figure 12 has a node link structure that is identical to the Tee junction. The
differences in the two types of junctions are captured in the details of the co
friction, flow regimes, etc.

Figure 13 shows a CANDU HTS header and connecting piping. Note that there is no best or
unique node-link representation. The requirements of the problem at hand dictates the
number of nodes and links and the la
place a node centre at the point of a pressure measuring device so that experimental data can
be more readily compared to the simulation results.

Figure 14 shows a typical nod-link diagram
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Figure 11 Simple Tee junction.
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Figure 12 Simple Y junction.
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Figure 14 Sample node
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Sample node-link connection for a header.
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Figure 13
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13 Node-link diagram: ¼ circuit CANDU.
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3.5 Matrix Notation

As we shall see, it is sometimes expedient to cast the governing equations in matrix form. To
illustrate, consider the node-link network of figure 15. Nominal flow directions are assigned to
be positive in the normal flow direction. The mass balance equations for the 4 nodes are:

dM1

dt = -W1+W4

dM2

dt = +W1-W2+W5

dM3

dt = +W2-W3

dM4

dt = +W3-W4-W5

(67)

If we define  i
i

dM
M

dt
then the mass balance equations can be written
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(68)

where AMW is a 4x5 matrix (number of rows = number of nodes N=4, and number of columns =
number of links L=5) and w is the flow vector. Generally, upper case bold will be used to
indicate a matrix and lower case bold will be used to indicate a vector. The superscript MW

denotes that the matrix relates to the mass equation and to the flow vector. It also indicates
the size of the matrix (nodes x links)

There can be up to L entries in a row but only 2 non-zero entries in any column - no more, no
less. The AMW matrix uniquely defines the geometry. The matrix is most easily constructed
on a column by column basis, ie on a link by link basis: for each link (column vector) place a -1 in
the location of the upstream node and a +1 in the location of the downstream node. As we
shall see, all other matrices that arise in the solution to the mass, momentum and energy
equations can be derived from the structure of AMW. This is very handy for computer coding
purposes.
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3.6 Exercises

1. For the 4 node, 5 link
individual equations a
where the superscrip
pressure vector, and
equation and the flow

2. For the case of 2 conn
the node-link diagram

3. What would be differe
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example of section 3.5, write out the flow and enthalpy equations as
nd in matrix form. Compare the structure of AWP and AHW to AMW,
t WP denotes that the matrix relates to the flow equation and the
the superscript HW denotes that the matrix relates to the enthalpy
vector.

ected, open tanks of water with surfaces at different elevations, set up
and the mass, momentum and enthalpy equations.

nt if the tanks in question 2 were closed?

Figure 15 4 Node - 5 link diagram.
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4 Equation of State

4.1 Introduction

As discussed in the previous sections, the momentum equation gives an update on the flows or
velocities from one node to another, or from one grid point to another, based on a given
pressure, flow, mass and enthalpy distribution. The updated flows are used by the mass and
enthalpy equations to update the mass and enthalpy contents at each location. This
information is given to the equation of state to update the pressure distribution which, along
with the new densities and enthalpies is used by the momentum equation, and so on. In this
manner, a time history of the fluid evolution is obtained. Of course, only the main variables
are noted. The numerous and diverse empirical correlations require updates on the main
variables and many secondary variables. This information also "flows" around the calculation.

The exploration of the appropriate forms of the equation of state to use for systems analysis
begins by reflecting on the thermodynamics and the iterative method of finding pressure.
Next a non-iterative method is offered as an improvement. This leads naturally to the water
property evaluation. Fast, accurate curve fits are presented.

4.2 Thermodynamic Properties

From a thermodynamics viewpoint (see, for instance Sears [SEA75], the equation of state of a
substance is a relationship between any four thermodynamic properties of the substance, three
of which are independent. An example of the equation of state involves pressure P, volume V,
temperature T and mass of system:

π (P, V, T, M) = 0       (69) 

If any three of the four properties are fixed, the fourth is determined.

The equation of state can also be written in a form which depends only on the nature of the
system and not on how much of the substance is present, hence all extensive properties are
replaced by their corresponding specific values. Thus

π (P, v, T) = 0        (70) 

is the specific value form of the above equation of state, where v is the specific volume. If any
two of the thermodynamic properties are fixed, the third is determined.

From a thermodynamic point of view, the appropriate way to present water properties is by
tables or formula for each property expressed as a function of the independent parameters P
and T, as per Meyer [MEY67 or Haar [HAR84] (figure 16). Thus given values of pressure and
temperature, the calculation of other thermodynamic properties is usually straightforward.
On the other hand, the determination of pressure from known values of other thermodynamic
properties is not direct since interpolation and iteration is required. Unfortunately, T and P are
rarely the independent parameters in system dynamics since the numerical solution of the
conservation equations yield mass and energy as a function of time. Hence, from the point of
view of the equation of state, it is mass and energy which are the independent parameters.
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Consequently, system codes are hampered by the form of water property data commonly
available.
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Figure 16 P-v-T surface for water .
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solution schemes result. However, the
acknowledgement. Although the system dynamics are captured in Porsching’s Jacobian, the
essence of the system dynamics is not apparent. Nahavandi [NAH70] comes much closer to
recognizing the role of pressure and explicitly casts the equation of state in rate form.
Unfortunately, the system essence is again not apparent because Nahavandi’s form is very case
specific.

Most other popular schemes, for instance, Agee [AGE83], use the algebraic form of the
equation of state. This treatment puts the pressure determination on the same level as heat
transfer coefficients. Thus, although numerical solution of the resulting equation sets give
correct answers (to within the accuracy of the assumption), intuition is
time consuming iterations must be performed to get a pressure consistent with the local state
parameters.

We look first at such an iterative scheme and then consider a more efficient alternative (the rate
method).

4.3 The Iterative Method

Given the density and enthalpy of a volume of water, the task at hand is to find the associated
values of pressure and temperature.
density, ρ, and enthalpy, h, for a given P.  At low enthalpy, the fluid is single phase liquid and 
the density is high. As heat is added and the fluid reaches saturation temperature, vapour is
generated to form a two-phase mixture and the density approaches the vapour density. The
curve is well behaved and continuous making it a suitable candidate for numerical search
routines.
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Figure 17 Numerical search for P given
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Numerical search for P givenρ and h for a two-phase mixture.
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We start the iteration procedure by guessing a pressure. Usually in system t
simulation codes, the value of P at a previous time step is a good choice. Given P we calculate
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and thus calculate the enthalpy based on the guessed P:
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4.3.2 Single-Phase Sub-cooled and Superheated Fluid

For single phase fluid, the density and enthalpy are functions of P and T, ie:

ρ = ρ(P, T)   h = h(P, T)      (75) 

For a guessed P and T, ρ and h can be found directly from the water property tables.  But this is 
just an estimate since P and T are guessed.  The true values of ρ and h lie some distance away 
and, to a first approximation, the true values and the estimated values are related by a Taylor’s
series expansion:

ρ = ρest +


ρ

T PΔT + 


ρ

P TΔP        (76) 

h = hest +


h

T PΔT + 


h

P TΔP       (77) 

Defining Δρ = ρ - ρest and Δh = h - hest, we solve for ΔP and ΔT: 

ΔP = 


h

T P Δρ - 


ρ

T P Δh



ρ

P T 

dh

dT P -


ρ

T P 

h

P T

(78)

ΔT = 


h

P T Δρ - 


ρ

T T Δh



ρ

T P 

dh

dP T -


ρ

P T 

h

T P

(79)

or, more compactly,

ΔP = G1P Δρ + G2P Δh        (80) 

ΔT = G1T Δρ + G2T Δh         (81) 

The derivatives must be evaluated numerically if analytical expressions are not available.

The pressure and temperature are updated via:

P = P + ΔP   T = T + ΔT        (82) 

and the iteration is repeated until the pressure and temperature have converged to some
tolerance.

4.4 The Rate Method

We next consider a scheme (called the Rate Method) that eliminates the need for iteration with
no loss in accuracy. The case of two-phase equilibrium is considered first in order to illustrate
the method. Subsequently, the equations are extended to cover single phase and two-phase
non-equilibrium fluid.
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4.4.1 Two-Phase Equilibrium

For a two-phase homogeneous mixture we have:

v = vf + xvfg (83)

h = hf + xhfg (84)

where vfg  vg-vf and hfg  hg-hf.

We wish to relate rates of change of pressure to rates of change in ρ and h.  Specifically, we 
desire:

dP = G1dρ + G2dh
dP
dt = G1

dρ
dt + G2

dh
dt (85)

since dρdt and dhdt (or equivalently, dMdt and dHdt) are available from the mass and
enthalpy conservation equations.  First concentrating on the case of constant ρ (or v), to
obtain G2, we differentiate equation (16) to gives:

dh
dt =







h

P ρ

dP
dt =







hf

P
+ hfg

x

P
+ x

hfg

P

dP
dt . (86)

Using equation (83), holding v constant (i.e., ρ = constant): 

dx
dP =








v - vf

vfg

P
= -

1
vfg 






vf

P
+ x

vfg

P
. (87)

Substituting this into equation (86) gives:

dh
dt =







hf

P
+ x

hfg

P
-

hfg

vfg 





vf

P
+ x

vfg

P

dP
dt (88)

or equally:

dP
dt =

vfg









vfg 





hf

P
+ x

hfg

P
- hfg 






vf

P
+ x

vfg

P

dh
dt

=
vfg

{ }DENOMINATOR

dh
dt = G2

dh
dt .

(89)

This gives the pressure rate response due to an enthalpy rate change, holding ρ constant. 

If we repeat the above but holding h constant we find:

dP
dt =

-hfg
{ }DENOMINATOR

dv
dt

=
hfg v2

{ }DENOMINATOR

dρ
dt = G1

dρ
dt . (90)
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Note that G1 and G2 are functions that depend only on the local saturation fluid properties and
their slopes at the local pressure.

Combining equations 89 and 90 to get the total pressure rate response when both h and ρ are 
varying:

dP
dt = G1(P, x)

dρ
dt

+ G2 (P, x)
dh
dt . (91)

This is the rate form of the equation of state for two-phase equilibrium fluid in terms of the

intensive rate properties, dρdt and dhdt, which are obtained from the continuity equations.

Equation 91 can be cast in the extensive form by noting that, since ρ = MV and h = HM,

dρ
dt

=
1
V

dM
dt -

M
V2

dV
dt (92)

and

dh
dt =

1
M
dH
dt -

H
M2

dM
dt. (93)

Substituting into equation 91 and collecting terms:

dP
dt =







G1

V -
G2 H

M2

dM
dt +

G2

M
dH
dt -

G1 M

V2

dV
dt . (94)

After some simplification and rearrangement we find:

dP
dt =

F1

dM
dt + F2

dH
dt + F3

dV
dt

Mg F4 + Mf F5
(95)

where:

F1 = hg vf - hf vg

F2 = vg - vf

F3 = hf - hg

F4 =
hg

P
(vg - vf) -

vg

P
(hg - hf)

F5 =
hf

P
(vg - vf) -

vf

P
(hg - hf)

Mg  x M

Mf  (1 x) M .

(96)
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The F functions are smooth, slowly varying functions of pressure provided good curve fits are

used. The latest steam tables [HAA84] were used to fit saturated properties to less than 14%
accuracy using low order polynomials and exponentials [GAR88]. Considerable effort was
spent on obtaining accuracy and continuous derivatives over the full pressure range. The fact
that good fits are available means that the F functions are well behaved which in turn makes the
rate form of the equation of state extremely well behaved, as shown later.

The G functions are also well behaved for the same reasons.

The F and G functions have direct physical interpretations which aid in generating intuition.
The F functions relate changes in the extensive properties, M, H and V, to changes in pressure.
The G functions related changes in the intensive properties, ρ and h, to changes in pressure.  
Often, a simple numerical evaluation of these functions during a simulation aids in developing
an appreciation of the changing roles of the key actors in a dynamic simulation.

For instance, because F1 is negative, we immediately see that adding mass to a fixed volume of
liquid with fixed total enthalpy will cause a depressurization (because the specific enthalpy,

h = HM, is decreased). But, since G1 is positive, an increase in density in a fluid of fixed
specific enthalpy causes a pressurization.

4.4.2 Single-Phase Sub-cooled and Superheated Fluid

For the single-phase sub-cooled or superheated case, we do not have to account for the sorting
out between phases as we did for the two phase case. thus the derivation is more direct and
less complex. We could simply use:

P = π (ρ, h)(97) 

to give:

dP
dt =



P

ρ h

dρ
dt +



P

h ρ

dh
dt (98)

but, since the steam tables are given as a function of P and T, the slopes in equation (98) are not
easily obtained. To cast the pressure rate equation in terms of the independent variables, P
and T, consider:

ρ = ρ (P, T)         (99) 

and

h = h(P, T) (100)

Note that the non-equilibrium case requires the explicit tracking of the temperature in addition
to pressure. Taking derivatives of Equations (99) and (100):

dρ
dt

=


ρ

P T

dP
dt +



ρ

T P

dT
dt (101)

and
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dh
dt =



h

P T

dP
dt +



h

T P

dT
dt . (102)

But we desire:

dP
dt = G1P

dρ
dt

+ G2P

dh
dt (103)

and

dT
dt = G1T

dρ
dt

+ G2T

dh
dt . (104)

This is easily obtained by solving equations (101) and (102) for dPdt and dTdt to yield:

dP
dt =



h

T P

dρ
dt -



ρ

T P

dh
dt



ρ

P T 

dh

dT P -


ρ

T P 

h

P T

(105)

and

dT
dt =



h

P T

dρ
dt -



ρ

T T

dh
dt



ρ

T P 

dh

dP T -


ρ

P T 

h

T P

(106)

which is the intensive form we desire.

The extensive form is obtained as for the two-phase equilibrium case. Equations (92) and (93)
are substituted into equations (105) and (105) and after rearrangement we find:

dP
dt =

F1P

dM
dt + F2P

dH
dt + F3P

dV
dt

Mv F4P + Ml F5P
(107)

and

dT
dt =

F1T

dM
dt + F2T

dH
dt + F3T

dV
dt

Mv F4T + Ml F5T
(108)

where
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(109)

4.4.3 Two-Phase Non-Equilibrium

The rate form for the equation of state for the two-phase non-equilibrium case is a simple
extension of the single-phase non-equilibrium case. The liquid and vapour phases are treated
independently to give:

dPk
dt = G

k

1P

dρk

dt
+ G

k

2P

dhk

dt (110)

dTk
dt = G

k

1T

dρk

dt
+ G

k

2T

dhk

dt (111)

where k represents either l or v for the liquid or vapour phases respectively. In general, the 6
equation model (3 continuity equations for each phase) would be used for the general unequal

temperature, unequal velocity, unequal pressure situation.  Thus dρkdt and dhkdt are
available to the rate form of the equation of state.
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4.5 Water Property Fits

To facilitate the calculation of light water properties, the 1984 standard tables were accurately
curve fitted as discussed in detail at www.nuceng.ca/water/h2ohome.htm. These fitted
functions are supplied in the files H2OPROP.FOR and H2OPROP.C for user convenience. These
FORTRAN and C functions cover a wide range of pressures and temperatures and should be
sufficient for most nuclear reactor simulations,
with the exception of severe accidents that
generate extreme conditions. These functions
are fast and more than accurate enough given the
other errors in system simulation [GAR88, GAR89,
GAR92].

The basic overall approach taken in the curve
fitting task was that, since the more difficult region
to fit was the transition from single to two-phase
and since most power plants operate at or near this region, careful attention would be paid the
phase transition region at the expense of accuracy away from the saturation line, if necessary.
Thus, the first major step was to accurately fit the saturation lines. Then, since density,
enthalpy and other properties vary more strongly with T than with P (as shown in figure 19), the
property in question, say density, would be calculated based on the deviation from the
saturation value at the given T, ie:

ρ(P,T) = ρsat(T) +


ρ

P T( )P - Psat(T) (112)

Figure 20 illustrates the strategy. It should be obvious by now that not only the properties
need to be fitted but the slopes are needed as well. Both the properties and the slopes of the
properties must be free of discontinuities if numerical searches are to converge.

Having derived the desired rate forms for the equation of state, we proceed to section 5 to
illustrate the utility of the approach.

Heavy water properties have of course
been developed in-house at AECL and
Ontario Power Generation for use in
their industry computer tool-set. Some
tools are available in the public domain;
see www.nuceng.ca/d2o/d2ohome.htm.

http://www.nuceng.ca/d2o/d2ohome.htm
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Figure 20 Basis for curve fitting in the subcooled region.
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Basis for curve fitting in the subcooled region.

Thermalhydraulic Analysis – December 2016



48 The Essential CANDU

©UNENE, all rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016

4.6 Problems

4. Using the spread sheet macros for Microsoft Excel supplied by G.R. McGee (as per
http://www.nuceng.ca/water/h2ohome.htm), calculate and plot the density, enthalpy,
quality and void fraction for a range of pressures ( 1 to 100 atmospheres) and
temperatures(50 C to 350 C). Make sure you cover the subcooled, saturated and
superheated ranges.

5. Using the code, WATERA.EXE (see http://www.nuceng.ca/water/h2ohome.htm):

a. Calculate ρ and h for P=10 MPa and T=300 C. Increase the temperature in steps
to see the approach to two-phase.

b. Using ρ and h slightly different than that found in (a), calculate P and T. 

c. Practice calculating ρ given h and P. 
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5 The Rate Form of the Equation of State

5.1 Introduction

In conjunction with the usual rate forms of the conservation equations, the time derivative form
of the Equation of State is investigated from a numerical consideration point of view. By
recasting the equation of state in a form that is on equal footing with the system conservation
equations, several advantages are found. The rate method is found to be more intuitive for
system analysis, more appropriate for eigenvalues extraction, as well as easier to program and
to implement. Numerically, the rate method is found [GAR87a] to be more efficient and as
accurate than the traditional iterative method.

First, the derivation of the rate form of the Equation of State is presented. Systematic
comparison between the new method and the traditional iterative method is made by applying
the methods to a simple flow problem. The comparison is then extended to a practical
engineering problem requiring accurate prediction of pressure.

5.2 The Rate Form

Presently, the conservation equations are all cast as rate equations whereas the equation of
state is typically written as an algebraic equation [AGE83]. This arises from the basic
assumption that, although the properties of mass, momentum and energy must be traced or
solved as a function of time and space, the corresponding local pressure is a pure function of
the local state of the fluid. Hence the equation of state is considered only as a constitutive
equation. This treatment puts the pressure determinations on the same level as heat transfer
coefficients. Although numerical solution of the resulting equation sets give correct answers
(to within the accuracy of the assumption), intuition is not generated and time-consuming
iterations must be performed to get a pressure consistent with the local state parameters.

The time derivative form of the Equation of State is investigated, herein, in conjunction with the
usual rate forms of the conservation equations. This gives an equation set with two distinct
advantages over the use of algebraic form of the Equation of State normally used.

The first advantage is that the equation set used consists of four equations for each node or
point in space, characterizing the four main actors: mass, flow, energy and pressure. This
consistent formulation permits the straight-forward extraction of the system eigenvalues (or
characteristics) without having to solve the equations numerically.

The second advantage is that the rate form of the Equation of State permits the numerical
calculation of the pressure without iteration. The calculation time for the pressure was found
to be reduced by a factor of more than 20 in some cases (where the flow was rapidly varying)
and, at worst, the rate form was no slower than the algebraic form. In addition, because the
pressure can be explicitly expressed in terms of slowly varying system parameters and flow, an
implicit numeric scheme is easily formulated and coded.

This section will concentrate on this numerical aspect of the equation of state.
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The equation of state has been discussed in section 4 where we saw that the determination of
pressure from known values of other thermodynamic properties is not direct. Interpolation and
iteration is required because the independent (known) parameters are temperature, T, and
pressure, P. Unfortunately, T and P are rarely the independent parameters in system dynamics
since the numerical solution of the conservation equations yield mass and energy as a function
of time. Hence, from the point of view of the equation of state, it is mass and energy which
are the independent parameters. Consequently, system codes are hampered by the form of
water property data.

Having derived the desired rate forms for the equation of state in section 4, we proceed to
illustrate the utility of the approach.

5.3 Numerical Investigations: a Simple Case

The simple two-node, one-link system is (Figure 21) chosen to illustrate the effectiveness of the
rate form of the equation of state in eliminating the inner iteration loop in thermalhydraulic
simulations. In general, the task is to solve the matrix equation,

u

t
= Au + b (113)

over the time domain of interest. The key point that we wish to discuss is the difference in the
normal method (where u = {M1, H1, W, M2, H2}) and the rate method (where u = {M1, H1, P1, W,
M2, H2, P2}). For simplicity and clarity, we first summarize work for a fixed time step Euler
integration:

ut+Δt = ut + Δt[Au + b] (114)

As we shall see, this is sufficient to generate some observations on the utility of the rate
method. These observations then guide us in the use of more complicated and efficient
algorithms.

5.3.1 Normal Method

The normal method obtains the value of pressure at time, t+Δt, from an iteration (as discussed 
previously) on the equation of state using the values of mass and enthalpy at time, t+Δt, i.e. the 
new pressure must satisfy:

Pt+Δt = fn(ρt+Δt, ht+Δt) (115)

where both ρ and h are pressure dependent functions.  Any iteration requires a starting guess 
and a feedback mechanism. Here, the starting guess for pressure is the value at time, t: Pt.
Feedback in the Newton-Raphson scheme is generated by using an older value of pressure, Pt-Δt,

to estimate slopes. Since the slope, hP, was readily available from the rate method, we
chose to use this slope to guide feedback. Thus, in the comparison of methods, we have
borrowed from the rate method to enhance the normal method. This provides a stronger test
of the rate method.
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Thus we can now generate our next pressure guess from:

Pnew = Pguess +
h-hest
hP

*ADJ (116)

where h is the known value of h at t+Δt and hest is the estimated h based on the guessed

pressure as discussed in detail in section 4. ADJ is an adjustment factor [0, 1], to allow
experimentation with the amount of feedback. This iteration on pressure continues until a
convergence criteria, Perr, is satisfied. The converged pressure is used in the outer loop in the
momentum equation and the time can be advanced one time step. Figure 22 summarizes the
logic flow.
rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016

Figure 21 Simple 2-node, 1-link system.



52 The Essential CANDU

©U
NENE, all rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016

Figure 22 Program flow diagram for the normal method.
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5.3.2 Rate Method

The rate method obtains the value of pressure at time, t+Δt, directly from the rate equation as
is done for the conservation equations. Equation 95, gives the rate of change of pressure

which can be solved simultaneously with the conservation equations if substitutions for dMdt

and dHdt are made, leading to:

u

t
= Au + b (117)

where u = {M1 H1, P1, W, M2, H2, P2} .

Thus:

P
t+Δt

i
= P

t

i
+ Δt[Au + b]i (118)

No inner iteration is required, as shown in Figure 23.

One problem with this approach is that the pressure may drift away from a value consistent
with the mass and energy. This problem does not arise with the conservation equations
because the equations are conservative in form, by design. It is not possible to cast the rate
form of the equation of state in conservative form since pressure is simply not a conserved
property. We can surmount the drift problem by using the feedback philosophy of the normal
method. Thus the new pressure is given by:

P
t+Δt

i
= P

t

i
+ Δt[Au + b]i +

h-hest

hP
*ADJ (119)

This correction term uses only readily available information in a non-iterative manner.

In essence, the main effective difference between the normal and rate method is that during
the time step between t and t+Δt the normal method employs parameters such as density,
quality etc. derived from the pressure at time, t+Δt, whereas the rate form employs parameters
derived from the pressure and rate of change of pressure at time, t. The normal method is not
necessarily more accurate, it is simply forcibly implicit in its treatment of pressure. The rate
method can be implicit (as we shall see) but it need not be. Without experimentation it is not
evident whether the necessity of iteration in the normal method is outweighed by the possible
advantages of the implicit pressure treatment.

The next sections test these issues with numerical experiments.
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Figure 23 Program flow diagram for the rate method.
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5.3.3 Comparison

The two node, one link numerical case under consideration is summarized in figure 21. Perhaps
the most startling difference between the normal and rate methods is the difference in
programming effort. The rate form was found to be extremely easy to implement since the
equation form is the same as the continuity equations. The normal method took roughly
twice the time to implement since separate control of the pressure logic is required. This
arises directly from the treatment of pressure in the normal method: it is the odd man out.

The second startling difference was ease of execution of the rate form compared to the normal
form. The normal form required experimentation with both the pressure convergence
tolerance, Perr, and the adjustment factor, ADJ, since the solution was sensitive to both
parameters. The rate method contains only the adjustment factor ADJ. The first few runs of

the rate method showed that since the correction term for drift (h-hest)(hp) is always several
orders of magnitude below the primary update term, Δt{A u + b}, the solution was not at all
sensitive to the value of ADJ. Thus the rate method proved easier to program and easier to
run than the normal method.

We look at the number of iterations required for pressure convergence as a function of Perr and
ADJ for the normal method without regard to accuracy. For a Δt of 0.01sec, Pert = 10-3 (fraction
of the full scale pressure of 10 MPa), the effect of ADJ is seen in figure 24. This result is typical:
an adjustment factor of 1 gives rapid convergence (one or two iterations) except where very
large pressure changes occur. For the case of very rapid changes, the full feedback (ADJ = 1)
causes overshoot. Overall, however, the time spent for pressure calculation is about the same,
independent of ADJ.

Allowing a larger pressure error had the expected result of reducing the number of iterations
needed per routine call. But choosing a smaller time step (say .001) did not have a drastic
effect on the peak interations required. The rate method, of course, always used 1 iteration
per routine call and the adjustment factor ADJ was found to be unimportant since the drift
correction factor amounted to no more than 1% of the total pressure update term.

The integrated error for both methods is shown in figure 25. Both methods converge rapidly
to the benchmark. The value of Perr is not overcritical. A value of Perr consistent with
tolerances set for other simulation variables is recommended. The time spent per each
iteration is roughly comparable for both methods. The main difference is that the rate method
requires the evaluation of the F functions over and above the property calls common to both
methods. This minor penalty is insignificant in all cases studied since the number of iterations

 call dominated the calculation time.

In summary, to this point, the rate method is easier to implement, more robust and is equal to
the normal method at worst, more than 20 times faster under certain conditions. We now
look at incorporating a variable time step to see how each method compares.
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Figure 25 Integrated flow error for the rate method and the normal method for
various fixed time steps, convergence tolerances and adjustment factors.
Figure 24 Number of iterations per pressure routine call for the normal method with a
time step of 0.01 seconds and a pressure tolerance of 0.001 of full scale (10 MPa).
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Typical variable time step algorithms require some measure of the rate of change of the main
variables to guide the Δt choice. The matrix equation, equation 113, provides the rates that
we need. Since the rate method incorporated the pressure into the u vector, the rate of
change of pressure is immediately available. For the normal method, the rate of change of
pressure has to be estimated from previous history (which is no good for predicting the onset of
rapid changes) or by trial and error. The trial and error method employed here is to calculate
the Δt as the minimum of the time steps calculated from:

Δti =
(fractional tolerance)x(scale factor for ui)

uit
(120)

This restricts Δt so that no parameter changes more than the prescribed fraction for that
parameter. This can be implemented in a non-iterative manner for the rate method.
However, for the normal method, the above minimum Δt based on u is used as the test Δt for
the pressure routine and the rate of change of pressure is estimated as:

P

t
=

Pt+Δt - Pt

Δt (121)

The Δt is then scaled down if the pressure change is too large for that iteration. Then the new
Δt is tested to ensure that it indeed satisfies the pressure change limit. This iteration loop has
within it the old inner loop.

It is expected then, that the normal method will not perform as well as the rate method
primarily because of the "loop within a loop" inherent in the normal method as applied to
typical system simulation codes.

A number of cases were studied and the results of the normal method were compared to the
rate method. The figure of merit was chosen as

10,000
F.O.M.=

(integrated error)x(total pressure routine time)x(No. of adjustable parameters)
(122)

Thus, an accurate, fast and robust method achieves a high figure of merit. Some results are
listed in table 1. Derating a method with more adjustable parameters is deemed appropriate
because of the figure of merit should reflect the effort involved in using that method. On
average, about 6 runs of the normal method, with various Perr and ADJ were needed to scope
out the solution field compared to 1 run for the rate method. Thus a derating of 2 is not an
inappropriate measure of robustness or effort required.

The results indicate that the rate method is a consistently better method than the normal
method in terms of numerical performance. We see no reason why this improvement would
not exist for any thermal hydraulic system in which pressure field determination is required.
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riefly discuss implicit numerical schemes.

equations are:

dM1
dt = -W

dM2
dt = +W (123)

dH1
dt = -h1W

dH2
dt = +h1W (124)

dPi

dt =

F1

dMi

dt + F2

dHi

dt

MgF4 + MfF5
, i = 1,2 (125)

g just the flow and pressure rate equations, we have (after substituting in for dMdt

):

dW
dt =

A
L(P1-P2) -

A
LK|W|W (126)
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and

dP1
dt = -χ1W

dP2

dt = +χ2W (127)

where χ1 and χ2 are > 0 and are given by:

χ =
F1 + hF2

MgF4 + MfF5
(128)

evaluated at the local property values of nodes 1 and 2.

Employing a scheme that is implicit in flow, the difference equations are cast

Wt+Δt-Wt

Δt
=

A
L(P

t+Δt

1
-P

t+Δt

2
) -

A
LK|Wt|Wt+Δt (129)

P
t+Δt

i
-P
t
i

Δt
= ±χiW

t+Δt impliesP
t+Δt

i
-P

t

i
= ±χiW

t+ΔtΔt (130)

Collecting terms and solving for the new flow:

Wt+Δt =








1+
A
LK|W

t|Δt +
A
L( )χ1+χ2 Δt2 -1









Wt +
A
L( )P

t

1
-P

t

2
Δt (131)

This is the implicit time advancement algorithm employing the rate form of the equation of
state. For the normal method, the pressure rate equation in terms of flow (i.e., equation 130)
is not available to allow an implicit formulation of the pressure. Consequently, the implicit
time advancement algorithm for the normal method is:

Wt+Δt =






1+

A
LK|W

t|Δt -1









Wt +
A
L( )P

t+Δt

1
-P

t+Δt

2
Δt (132)

To appreciate the difference between equations 131 and 132, consider the eigenvalues and
vectors of

u(t)

t
= A(u,t)u(t) (133)

If we assume, over the time step under consideration, that A = constant and has distinct
eigenvalues, then the solution to equation 133 can be written as:

u(t) =
N


l=1

ule
α

l
t (134)

where ul = eigenvectors

αl = eigenvalues.

It can be shown that for the explicit formalism, the numerical solution is equivalent to:
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ut+Δt =
N


l=1

(1+αlΔt)ul (135)

while the implicit form is:

ut+Δt =
N


l=1

ul

(1-αlΔt) (136)

The eigenvalues can often be large and negative. Thus, at some Δt, the factor (1+αlΔt) can go
negative in the explicit solution causing each subsequent evaluation of u to oscillate in sign and
go unstable. For the implicit method, the contributions due to large negative eignevalues

decays away as Δt . Thus the implict formalism tend to be very well behaved at large time
steps. Positive eigenvalues, by a similar argument pose a threat to the implicit form.
However, this is not a practical problem because αlΔt is kept <<1 for accuracy reasons. Thus,
as long as the solution algorithm contains a check on the rate of growth or decay (effectively the
dominant eigenvalues) then the implicit form is well behaved.

With this digression in mind, we see that the implicit rate formalism (equation 131) has more of
the system behaviour represented implicitly than the normal method (equation 132). Thus,
we might expect the rate from to be more stable than the normal form. Indeed, this was
found to be the case as shown in figure 26. For a fixed and large time step (0.1sec.) the
normal method showed the classic numerical instability due to the explicit pressure treatment.
The rate form is well damped and very stable, showing that this method should permit the user
to "calculate through" pressure spikes if they are not of interest.
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l Investigations: a Practical Case

between the normal and rate methods is extended to a practical application
de homogeneous model is used to simulate a transient of a small pressurizer
r-atmospheric pressure. The procedure is briefly described in the following

ates the problem. Steam and stratified liquid water in the pressurizer are
own as two control volumes (nodes). The nodal fluids are assumed to be at
hase conditions corresponding to the pressure at their respective control
verall boundary conditions to the system are the steam bleed flow at the top
r, the flow into and out of the pressurizer through the surge line, heat input
he bottom of the pressurizer and heat loss to pressurizer wall.

e of mass, MS in the steam control volume and ML in the liquid control volume,
by the following:

dMs
dt = -WSTB-WCD-WCI+WEI+WBR (137)

dML
dt = WSRL-WEI-WBR+WCD+WCI (138)

the steam bleed flow, WSRL is the surge line inflow, WCI is the interface
te at the liquid surface separating the steam control volume from the liquid

normal and rate methods.
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control volume, WEI is the interface evaporation rate at the same liquid surface, WCD is the flow
of condensate droplets (liquid phase) from the bulk of the steam control volume toward the
liquid control volume, and WBR is the rising flow of bubbles (gas phase) from the bulk of liquid
volume toward the steam volume.
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Figure 27 Schematic of control volumes in the pressurizer.
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The rate of change of energy in the two control volumes can be expressed by the rate of change
in the total enthalpy, HS and HL, in the steam and liquid control volumes respectively:

dHS
dt = -WSTBhgST-WCDhfST-WCIhgST+WEIhsLQ+WBRhgLQ-QWS+QTR-(1-β)[ ](1-δ)QCOND+QEVPR

(139)

and

dHL
dt = WSRLhSRL-WEIhfLQ-WBRhgLQ+WCIhfST+WCDhfST-QWL+QPWR-QTR-β[ ](1-δ)QCOND+QEVPR

(140)

where hSRL is the specific enthalpy of the fluid in the surge line, hgST and hfST are respectively the
saturated gas phase specific enthalpy and the saturated liquid phase specific enthalpy in the
steam control volume, hgLQ and hfLQ are respectively the saturated gas phase specific enthalpy
and the saturated liquid phase specific enthalpy in the liquid control volume, QWS and QWL are
the rate of heat loss to the wall in the steam control volume and in the liquid control volume
respectively, QTR is the heat transfer rate from the liquid control volume to the steam control
volume due to any temperature gradient, excluding those due to interface evaporation and
condensation; QCOND is the rate of energy released by the condensing steam to both the steam
and liquid control volumes during the interface condensation process and QEVPR is rate of energy
absorbed by the evaporating liquid from both the steam and liquid control volumes during the
interface evaporation process. The constant, β, represents the fraction of these energies
distributed to or contributed by the liquid control volume. The ratio δ represents the portion
of energy released during the interface condensation that is lost to the wall.

The calculation of swelling and shrinking of control volumes is only done for the liquid control
volume and the volume in the steam control volumes will be related to the volume in the liquid
control volume, VL, as:

dVS
dt = -

dVL
dt (141)

The swelling and shrinking of the liquid control volume as well as values of WSTB, WSRL, WCI, WEI,
WCD, WBR, QWS, QWL, QTR, QPWR, β and δ are calculated using analytical or empirical constitutive
equations. The majority of these parameters depend directly or indirectly on pressure. Any
inaccurate prediction of pressure during a numerical simulation will result in severe numerical
instability. Hence the above problem is a good testing ground for comparing the
performances of the two methods.

During the test simulation, the pressurizer is initially at a quasi-steady state. The steam
pressure is at 96.3 kPa. The steam bleed flow, WSTB, heater power QPWR and heat losses QWL

and QWS are at their quasi-steady values, maintaining the saturation condition of the pressurizer.
At time = 11 sec., the steam bleed valve is closed and WSTB drops to zero while QPWR is increased
to a fixed value of 300 Watts. At time = 16 sec., the steam bleed valve is reopened and its set
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point set at 80 kPa.

Since the thermodynamic properties in the steam control volume and the liquid control volume
are functions of PS and PL (pressures of the respective control volumes), there are seven
unknowns, namely: MS, ML, HS, HL, VS (or VL), PS and PL. Adding two equations of state, one
for each control volume, will complete the equation set:

PS = fn(ρS,hS) = fn






MS

VS
,
HS

MS
(142)

PL = fn(ρL,hL) = fn






ML

VL
,
HL

ML
(143)

Both the normal iterative method and the rate method are tested to solve. The following
observations are made:

1. Using the normal method, the choice of adjusting P to converge on h given ρ or
converging on ρ given h is found to be very important in providing a stable numerical
result. At time step = 10 msec, no complete simulation result can be generated when ρ
was the adjusted variable. An explanation of this can be given by referring to G1(P,x),

or Pρ, This factor is proportional to the square of [x vg(P) + (1-x)vf(P)]. However, the
direction of change in the saturated gas phase specific volume with pressure is opposite
to that of saturated liquid phase specific volume:

2. dvfdP > 0

3. dvgdP < 0
4. Therefore, a fluctuation in the value of pressure during an iteration process will amplify

the fluctuation in the value of predicted density when that method is used;
5. Using enthalpy as the adjusted variable to converge on P, simulation results can be

generated if an error tolerance E of less than 0.2% is used. The error tolerance is
defined as:

6. E =
ABS(h-hestimate)

h x100%

7. Figure 28 shows the transient of PL and PS for E = 0.2%. Unstable solutions result for E
higher than 0.2%. The average number of iteration is found to depend on the error
tolerance as shown in figure 30.

8. On the other hand, the performance of the rate method is much more convincing in
both accuracy and efficiency. The transient of PL and PS predicted using the rate
method is shown in Figure 29.
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error tolerance of 0.2%.
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Figure 28 Pressurizer's pressure transient for the rate method.
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iscussion and Conclusion

e form is a cogent expression of the equation of state that is distinct from the normal
ic form. The essential difference is that the rate form expresses the relationship
n the rates of change of the state variables, while the normal form relates the static
of the state variables. Although this is stating the obvious, the change in viewpoint is
g.

ier is perceived to applying the rate form to the multi-nodelink case, to the distributed
the basic equations, and to eigenvalue extraction (numerical or analytical).

h we have not made use of it in this work, the non-equilibrium form (equations 110 and
provocative. It entices one to view the non-equilibrium situation as the essentially

c situation that it is and helps to focus our attention on the thermal relaxation. Given
perature rate equations, the non-equilibrium situation should be easy to incorporate

t a major code rewrite.

clude by restating our major findings. The rate method offers many advantages:

1. It is more intuitive for system work. It permits a proper focus on the two main
actors, flow and pressure.

2. The same form is appropriate for eigenvalue extraction as well as numerical
simulation. This extends the usefulness of coding.

3. Programs are easier to implement.
4. Programs are more robust and require less hand holding.
5. Time step control and detection of rapid changes (like phase changes) is

normal method in simulating the pressurizer problem.
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improved.

Overall the method is usually faster and more accurate. Time savings peaked at a ratio of 26
for the cases considered.

5.6 Problems

6. Consider 2 connected volumes of water with conditions as shown in figure 21. Model this
with 2 nodes and 1 link.

a. Solve for the pressure and flow histories using the normal iterative method for the
equation of state,

b. Solve for the pressure and flow histories using the non-iterative rate method.

c. Compare the two solutions and comment.

7. Vary the initial conditions of question 1 so as to cause void collapse in volume 2 during the
transient. What problems can you anticipate? Solve this case by both methods.
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6 Thermalhydraulic Network Simulation

6.1 Introduction

This section introduces some more advanced numerical algorithms for solving systems of
ordinary differential equations such as found in the modelling of thermalhydraulic networks.
Explicit algorithms are simple to devise and program but they are restricted in time step so as to
ensure stability. The more implicit the formulation, the more stable the solution in most
instances. Larger time steps can be used for implicit algorithms but the accompanying matrix
manipulation is computationally costly. Herein, we explore the tradeoffs.

Porcsching’s method is explored to show the methodology and its limitations. Then the rate
form of the equation of state is used with the conservation equations to develop a generalized
fully implicit (at least in terms of the main variables) formalism. Porsching’s method is a
special case of the general method. The section concludes with some programming notes.

6.2 Porsching’s Method

One of the more successful algorithms for thermalhydraulic simulation is based on the work of
Porsching [POR69, POR71]. This algorithm, involving the Jacobian (derivative of the system state
matrix), is used originally in the computer program FLASH-4 [POR69] and subsequently in the
Ontario Hydro program SOPHT [CHA77] and evolved into forms used in RETRAN [AGE82].

The strength of Porsching's approach lies in its recognition of flow as the most important
dependent parameter and, hence, its fully implicit treatment of flow. This leads to excellent
numerically stability, consistency and convergence. Further, the Jacobian permits a generalized
approach to the linearization of nonlinear systems. This allows the development of a system
state matrix which contains all the system dynamics in terms of the dependent parameters of
mass, energy and flow. Back substitution finally gives a matrix rate equation in terms of the
system flow (the unknown) and the system derivatives. While this approach is certainly a proven
and successful one, it has some disadvantages. The matrix rate equation involving the Jacobian
is as complicated as it is general. The resulting expressions are somewhat obtuse and it is
difficult to obtain an intuitive feel for the system. This complexity also hinders implementation
in a simulation code and makes error tracking a tedious process. The pervasiveness and
obtuseness of the algorithm begs a revisit so as to distil the salient features, leaving them
exposed for pedagogy and further scrutiny.

Section 5 discussed the use of the Rate Form of the equation of state. This work showed that by
casting the equation of state in the form of a rate equation rather than the normal algebraic
form, the system state matrix can be more logically formed from the normal conservation rate
equations for mass, energy and momentum plus the pressure rate equation. These form the
four cornerstone equations in thermalhydraulic systems analysis (figure 1). Numerical
implementation of the rate form proved to be very successful, leading to roughly a factor of 10
improvement over the algebraic form of the equation of state, largely due to the iterative
nature of the algebraic form. Incorporating the implicit pressure dependency in the numerical



Thermalhydraulic Analysis 69

©UNENE, all rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016

method also drastically improved the numerical stability.

Since Porsching's method also carried the pressure dependency implicitly (via the Jacobian), the
question arises as to how the Rate form compares the Porsching's method. This section is
devoted to an explanatory derivation of the fully-implicit back-substituted form (FIBS), which is
a more general than the Rate form. It is shown that the Porsching form is identical to the Rate
form and is a subset of the fully-implicit back-substituted form and is easily derived from it
[GAR87b]. The FIBS form thus offers an alternative to Porsching, is found to be of some
pedagogical usefulness and is far more intuitive and easier to code.

6.3 Derivation of FIBS

Following Porsching [POR71], the general form of system equations can be written

u = f(t,u) (144)

where u is the vector of dependent mass, total enthalpy and flow variables {Mi, Hi, Wj} for all
nodes i=1..N and all links, j=1..L. Equation 1 is linearized, assuming no explicit t dependence to
give:

u = ft + Δt J u (145)

or

Δu = Δt ft + Δt J Δu (146)

to give

[I-Δt J]Δu=Δt ft (147)

where J is the system Jacobian, composed of elements fk /ul.

For typical thermalhydraulic systems using the node-link notation2:

dWj
dt =

Aj
LJ ( )Pu + SWPΔPu - Pd - SWPΔPd + kj ( )Wj + SWWΔWj

2 + bwj

=
ΔWj
Δt

(148)

2 Porsching actually uses U, total energy rather than H, total enthalpy in a hybrid form:

Ui = 
jd

(HjMj) Wj - 
ju

(HjMj) Wj + Qi

There is no advantage to tracking both H and U in a simulation; thus in this course, H is used
throughout.
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Typically bwj = (Aj/Lj) (hjρjg + ΔPpump) where hj = height.

dMi
dt =

jd
(Wj + SMW ΔWj) - 

ju
(Wj + SMW ΔWj) 

ΔMi

Δt (149)

dHi
dt =


jd

(Wj+ SHW ΔWj)
(Hj + SHH ΔHj)

(Mj + SHM ΔMj)
-


ju

(Wj+ SHW ΔWj)
(Hj + SHH ΔHj)

(Mj + SHM ΔMj)
+ Qi

=


jd







WjHj

Mj
+

SHWHj
Mj

 ΔWj +
SHHWj

Mj
 ΔHj -

SHM Wj Hj

M
2

j

 ΔMj

-


ju







WjHj

Mj
+

SHWHj
Mj

 ΔWj +
SHHWj

Mj
 ΔHj -

SHM Wj Hj

M
2

j

 ΔMj + Qi


ΔHi
Δt

(150)

ΔPi =
Pi

Mi
 ΔMi +

Pi

Hi
 ΔHi +

Pi

Vi
 ΔVi

ΔPi
Δt = Cli

ΔMi
Δt + C2i

ΔHi
Δt for constant volume.

(151)

where j indicates a sum over all links for which the node i is a downstream (d) or upstream (u)
node.

Switches, S, are used to provide user control over the degree of implicitness:

0 = explicit
1 = implicit.

The system unknowns to be solved for are ΔW, ΔM, ΔH and ΔP using equations 5, 6, 7 and 8. 
The general strategy is to reduce the number of unknowns so that the size of the matrices to be
inverted in the simultaneous solution of these equations is reduced. The mass equation 6 is
simple and is used to eliminate ΔM in terms of ΔW. Flow is chosen as the prime variable since it 
is the main actor in thermalhydraulic systems. The enthalpy equation poses a problem as it is
too complex to permit a simple substitution. Porsching surmounts this by setting SHH = SHM = 0,
ie making the solution explicit in specific enthalpy. However, we need not make this
assumption; by casting the equations in matrix notation, the full implicitness can be retained
while still allowing the back substitutions to be made.

Proceeding then, using matrix notation:
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ΔM = Δt AMW[Wt+SMW ΔW] (152)

where, for a 4 node - 5 link example (Figure 15):

links

MW

1 0 0 1 0

1 1 0 0 1

0 1 1 0 0

0 0 1 1 1

 
 

 
 
 

  

A

nodes (153)

This matrix contains the total system geometry. It is constructed by the following procedure:

For each column (link), insert -1 for the upstream node and +1 for the downstream node for
that link since the link supplies (adds) flow to the downstream node and takes it away from the
upstream node. Flow reversal is handled automatically since the sign of W will take care of
mass accounting properly.

The form of other matrices in the following are derivable from AMW. This can be used to
advantage in coding. The input data for each link need only contain pointers to the upstream
node and the downstream node for that link. This allows AMW to be created. In short, the
upstream node and downstream node for each link completely defines the geometry and this
can be used to programming advantage.

The flow equation is:

ΔW = Δt{ }AWP[ ]Pt+SWPΔP + AWW[ ]Wt+2SWWΔW +BW (154)

Where:

1 1

2 2

WW
m

5 5

-k |W | 0

-k |W | 0

= 0 0

0 0

0 -k |W |

 
 
 
 
 
 
 
 

A (155)

1 1 1 1

2 2 2 2

WP
m 3 3 3 3

4 4 4 4

5 5 5 5

A /L A /L 0 0

0 -A /L -A /L 0

= 0 0 A /L -A /L

-A /L 0 0 A /L

0 -A /L 0 A /L

 
 
 
 
 
 
 
 

A (156)

note that AWP is formed easily from AMW by the following procedure:
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First multiply AMW by {-A1/L1, -A2/L2, ... -A5/L5}-1

Then transpose the resulting matrix to give AWP.

BW =









A1L1(h1ρ1g + ΔPpump1)

A2L2(h2ρ1g + ΔPpump2)




(157)

Finally:

ΔH = Δt( )AHW[ ]Wt+SHWΔW +SHHAHH*

ΔH* - SHMAHM*

ΔM*+BH (158)

where ΔH* and ΔM* refer to the enthalpy and mass associated with upstream properties of the
links (ie the transported properties). Thus

ΔH* =











ΔH1
ΔH2
ΔH3
ΔH4
ΔH4

     ,     ΔM* =











ΔM1
ΔM2
ΔM3
ΔM4
ΔM4

(159)

1 1 4 4

1 1 2 2 4 4HW
m

2 2 3 3

3 3 4 4 4 4

-H /M 0 0 H /M 0

H /M -H /M 0 0 H /M
=

0 H /M -H /M 0 0

0 0 H /M -H /M -H /M

 
 
 
 
 
 

A (160)

For each link, the elements of the column are formed from the link flow, Wj and the upstream
properties (H and M). Each link has a sink and source node.

Similarly

1 1 4 4

1 1 2 2 5 4HH*
m

2 2 3 3

3 3 4 4 5 4

-W /M 0 0 W /M 0

W /M -W /M 0 0 W /M
=

0 W /M -W /M 0 0

0 0 W /M -W /M -W /M

 
 
 
 
 
 

A (161)

2 2
1 1 1 4 4 4

2 2 2
HM 1 1 1 2 2 2 5 4 4
m 2 2

2 2 2 3 3 3

2 2 2
3 3 3 4 4 4 5 4 4

-W H /M 0 0 W H /M 0

W H /M -W H /M 0 0 W H /M
=

0 W H /M -W H /M 0 0

0 0 W H /M -W H /M -W H /M

 
 
 
 
  
 

A (162)

We wish to write the matrix equations eliminating the * parameters, ie convert ΔH* to ΔH, ΔM*

to ΔM. To do this we introduce a transfer matrix, ILN so that



Thermalhydraulic Analysis 73

©UNENE, all rights reserved. For educational use only, no assumed liability. Thermalhydraulic Analysis – December 2016

ΔH* = ILNΔH (163)

where

nodes

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

LN
mI

 
 
 
 
 
 
 
  links (164)

where ILN is formed by entering 1 for the node that is the upstream or source node for each link.
Now, we can define:

AHH* ΔH* = AHH* ILN ΔH (165)

 AHH ΔH

and AHM* ΔM* = AHM* ILN ΔM (166)

 AHM ΔM.

Thus

  ΔH = Δt  {AHW (Wt + SHW ΔW) + SHH AHH ΔH - SHM AHM ΔM + BH} (167)

Substituting in the mass equation 9:

  ΔH = Δt { AHW (W + SHW ΔW) + SHH AHH ΔH - Δt SHM AHM AMW (Wt + WMW ΔW) + BH } (168)

Solving for ΔH:

  ΔH = Δt[I - Δt SHH AHH]-1 {AHW (Wt + SHW ΔW) - Δt SHM AHM AMW(Wt + SMW ΔW) + BH} (169)

So now we have ΔM and ΔH in terms of ΔW. Recalling equation 8, in matrix notation, we
have:

    ΔP = C1 ΔM + C2 ΔH, (170)

where

11

12

1

13

14

0 0 0

0 0 0

0 0 0

0 0 0

m

C

C
C

C

C

 
 
 
 
 
 

(171)

Similarly for C2.

We can back-substitute ΔM and ΔH into equation 8 and the result into the flow equation to
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leave a matrix equation in ΔW only, which can be solved by traditional numeric means. Hence,

ΔP =  Δt C1 AMW (Wt + SMW ΔW) + Δt C2 [I - Δt SHH AHH]-1 [AHW (Wt + SHW ΔW)

- Δt SHM AHM AMW (Wt + SMW ΔW) + BH]

 Δt APW1 Wt + Δt APW2 ΔW + Δt BP (172)

where : APW1 = C1 AMW + C2 [I - Δt SHH AHH]-1 [AHW - Δt SHM AHM AMW] (173)

APW2 = SMW C1 AMW + C2 [I - Δt SHH AHH]-1 [SHW AHW -Δt SHM SMW AHM AMW] (174)

BP = C2 [I - Δt SHH AHH]-1 BH (175)

Thus:

 ΔW = Δt {AWP [Pt + Δt SWP (APW1 Wt + APW2 ΔW + BP)] + AWW [Wt + 2SWW AWW ΔW] + BW } (176)

Collecting terms in ΔW:

[I - Δt(2 SWW AWW + Δt SWP AWP APW2)] ΔW

= Δt {[AWW + Δt SWP AWP APW1] Wt + BW + AWP [Pt + Δt SWP BP]} (177)

which is of the form

A ΔW = B

which can be solved by conventional means to yield ΔW.  Then we can directly calculate ΔM,
ΔH and ΔP using equations 152, 158 (or 167), and 170. Associated changes in temperature
can be obtained as for pressure, using the appropriate equation of state coefficients.

6.4 Special Cases

To summarize, the general solution is given by the following equations:

APW1 = C1 AMW + C2 [I - Δt SHH AHH]-1 [AHW - Δt SHM AHM AMW] (178)

APW2 = SMW C1 AMW + C2 [I - Δt SHH AHH]-1 [SHW AHW -Δt SHM SMW AHM AMW] (179)

BP = C2 [I - Δt SHH AHH]-1 BH (180)

[I - Δt(2 SWW AWW + Δt SWP AWP APW2)] ΔW

       = Δt { [AWW + Δt SWP AWP APW1] Wt + BW + AWP [Pt + Δt SWP BP] } (181)

ΔM = Δt AMW [Wt + SMW ΔW] (182)

ΔH = Δt { AHW (Wt + SHW ΔW) + SHH AHH ΔH - SHM AHM ΔM + BH } (183)

ΔP = C1 ΔM + C2 ΔH (184)

Special cases of this general algorithm are as follows:

Fully explicit: all S's = 0

APW1 = C1 AMW + C2 AHW (185)

APW2 = 0 (186)
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BP = C2 BH (187)

 ΔW = Δt { AWW Wt + BW + AWP Pt } (188)

ΔM = Δt AMW Wt (189)

ΔH = Δt { AHW Wt + BH } (190)

ΔP = C1 ΔM + C2 ΔH, (191)

as expected.

Porsching's semi-implicit (SHH = 0 and SHM = 0, all other S's = 1)

APW1 = C1 AMW + C2 AHW (192)

APW2 = C1 AMW + C2 AHW (193)

BP = C2 BH (194)

[I - Δt(2 AWW + Δt AWP APW2)] ΔW

= Δt { [AWW + Δt AWP APW1] Wt + BW + AWP [Pt + Δt BP] } (195)

ΔM = Δt AMW [Wt + ΔW] (196)

ΔH = Δt { AHW (Wt + ΔW) + BH } (197)

ΔP = C1 ΔM + C2 ΔH (198)

Fully Implicit: All S’s = 1

APW1 = C1 AMW + C2 [I - Δt AHH]-1 [AHW - Δt AHM AMW] (199)

APW2 = C1 AMW + C2 [I - Δt AHH]-1 [AHW - Δt AHM AMW] (200)

BP = C2 [I - Δt AHH]-1 BH (201)

[I - Δt(2 AWW + Δt AWP APW2)] ΔW

= Δt { [AWW + Δt AWP APW1] Wt + BW + AWP [Pt + Δt BP] } (202)

ΔM = Δt A MW [Wt + ΔW] (203)

ΔH = Δt { AHW (Wt + ΔW) + AHH ΔH - AHMΔM + BH } (204)

ΔP = C1 ΔM + C2 ΔH (205)

6.5 Programming Notes

It should be noted that the full system geometry is contained in AMW. All other matrices are
derived from this matrix and node/link properties. Programming is thus very straightforward.
In addition, the switches, S, can be varied at will to control the degree of implications of the
system variables, W, M, H and P.

The fully-implicit method is more complicated than the semi-implicit method in that it requires
the addition and multiplication of more matrices as well as a matrix inversion. The effect of
these additional operations is quite costly, especially when a large number of nodes is needed.
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In one case study [HOS89], for 9 nodes and links, the cost is a 50% increase in iteration time. But
this becomes a 250% increase as one approaches the 36 node/link case. By handling the matrix
operations as efficiently as possible, some increase in speed should be attainable for both
models. Using efficient assembly routines (rather than FORTRAN) for the matrix operations
yielded a 10 to 20% reduction (increasing from 9 nodes to 36 nodes) in the time per iteration for
the semi-implicit method and a 15 to 25% reduction in the fully-implicit case.

Usually the matrices contain mostly zeros and, in the case of a circular loop, may be diagonally
dominant in nature (i.e. non-zero elements occupy one, two or three stripes through the
matrix). By writing routines specific to the nodal layout for handling the matrix operations,
significant gains in speed may be possible. However, the simulator will no longer be general in
nature and the routines may have to be changed if the nodal layout is altered.

If the multiplication of two large matrices is desired, say NxN in dimension, the time to carry out
the operation (N3 multiplications and N3 additions) can be very significant. However, it is
possible to reduce the number of individual operations without losing the generality of the
method. Take, for example, the multiplication of AWP and APW. The rows in the former term
pertain to links and the columns to nodes. Each row will only contain two terms located in the
columns corresponding to the upstream and downstream nodes of that particular link. Thus,
knowing which are the upstream and downstream nodes for every link, it is only necessary to
do two multiplications and one addition to obtain each element of the product matrix (2N2

multiplications and N2 additions). By taking advantage of having only two elements in each row
of the former term or only two elements in each column of the latter term wherever possible,
significant savings in time may be observed. With this improvement in the code, a cut in time
by a factor of two for 18 nodes and by a factor of three for 36 nodes, regardless of the method
(semi- or fully-implicit) was obtained. The cost of the fully-implicit method is reduced slightly to
a 32% increase in iteration time over the semi-implicit method when 9 nodes and 9 links are
used. This becomes a 214% increase as one approaches the 36 node case.

Since the focus of this section is to provide a less obtuse and more general derivation of
thermalhydraulic system equations than Porsching's method, a full comparison of the
performance of the fully- and semi-implicit methods will not be made. Suffice it to say that, in
general, the semi-implicit method has a Courant limit on the maximum time step that can be
taken in order to ensure stability. The fully-implicit method does not have this limitation. As the
Courant time step limit is determined by the nodal residence time, the time step limit is
dependant on the node sizes and the flows through the nodes. Practical simulations have a
further time step constraints such as: the tracking of movement of valves, the maintenance of
accuracy, synchronizing of report times, etc. Thus, the choice between the semi- or fully-implicit
method depends on the time per iteration multiplied by the number of iterations required to
reach the largest time step permitted by the simulation problem. For example, for a 9 node
case, the semi-implicit method required 0.10 seconds per iteration and required 2 iterations to
meet the report time of 1.0 seconds. The fully-implicit method meet the report time in one
iteration which took 0.14 seconds. At 36 nodes however, the semi-implicit method took 2 x 0.71
seconds while the fully-implicit method took 2.12 seconds. Clearly, one method is not superior
to the other in all cases.
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Pressure determination involves the use of property derivatives. To avoid the numerical
problems associated with discontinuities, smooth functions for properties must be used, such
as those derived by [GAR88, GAR89 and GAR92]. These functions and routines permit the
quick and fast evaluation of ΔP and ΔT given ΔM and ΔH for all water phases.  Automatic 
adjustment is provided to prevent P and T drift from values consistent with current M and H
values. These routines are non-iterative, essential for real-time simulation.

6.6 Conclusion

The FIBS approach for thermalhydraulic system simulation has been compared to the classic
work of Porsching. Porsching's algorithm is derived as a subset of the fully implicit approach.
Focusing on the system Jacobian, as Porsching did, focuses on the perturbation of the system as
a whole. Although general, it tends to obscure the interaction of the main players in typical
thermalhydraulic systems: flow and pressure. The FIBS form is shown to be more general
than Porsching's method, yet less obtuse. The interplay of flow and pressure is clarified and
coding is simplified.

6.7 Problems

1. Rewrite the conservation equations for the 4 node, 5 link case with various explicit /
implicit switches set for the following cases:

a. fully explicit
b. diagonally implicit
c. semi-implicit solution scheme (implicit in flow and pressure, explicit in mass and

enthalpy)
d. fully-implicit solution scheme (implicit in flow and pressure, mass and enthalpy).

2. Build a simulation code that solves the thermalhydraulic equations for a general
node-link network for the explicit case using the supplied skeleton code as a starting
point. Use the node-link diagrams and equations as developed in section 3, the
water property routines as developed in section 4, the rate form of the equation of
state as developed in section 5 and the explicit solution as developed in this section.

3. Improve upon your solution to question 2 by implementing a diagonally implicit
solution procedure. Is the solution more stable? Is there a cost penalty?

4. Implement a semi-implicit solution scheme (implicit in flow and pressure, explicit in
mass and enthalpy). Is the solution more stable? Is there a cost penalty?

5. Implement a fully-implicit solution scheme (implicit in flow and pressure, mass and
enthalpy). Is the solution more stable? Is there a cost penalty?
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7 Case Study: Heat Transport System Stability

As mentioned in section 6.2, Porsching’s Method is one of the more successful algorithms for
thermalhydraulic simulation. This algorithm was used in the Ontario Hydro program SOPHT
to investigate Heat Transport System stability for the CANDU reactors with a figure-of-eight heat
transport loop configuration, such as the CANDU 6 and Darlington, since each loop potentially
has two-phase water at the outlet headers at high power. Since there are 2 outlet headers per
loop (one at each end of the reactor) separated by 2 single phase regions, we have a coupled
spring-mass system that, under the right conditions, could give undesirable flow and pressure
oscillations. To enhance heat transport system stability, a reactor outlet interconnect was
provided in each loop. This is discussed in detail in [GAR84, GAR86] but, of relevance to this
chapter, the code predictions based on the best estimate of the heat transport conditions
compared well to the plant tests, confirming both the mathematical methodology and the
efficacy of the one dimensional homogeneous thermalhydraulic model for overall system
simulation.
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9 Nomenclature

A area
A arbitrary vector
C concentration
Cp heat capacity at constant pressure
Cv heat capacity at constant volume
e specific internal energy
E internal heat source or sink
f friction factor
f long range or body force
gc gravitational constant
g acceleration due to gravity
h specific enthalpy
hN heat transfer coefficient
H total enthalpy in volume, V
I unity tensor
k head loss coefficient
L length
M mass in volume, V
M momentum interchange vector
n unit vector normal to the surface
P pressure
q heat flux
Q lumped heat source or sink
s surface bounding volume, V
S surface sink or source
t time
T temperature
U total internal energy in volume, V
V arbitrary fluid volume
v velocity vector
W mass flow
x quality (weight fraction)

Greek
α void fraction 

γ phase volume fraction 
Γ local sink or source 
ψ field variable 
ρ density 
σ stress tensor
θ angle with respect to horizontal 
τ shear stress tensor

Operators



t
partial time derivative

d
dt total time derivative

D
Dt substantial time derivative

 Del operator


V

( )dV volume integral


S

( )ds surface integral

  
S

1
( ) ( )ds

A
cross sectional average

Subscripts
f liquid (fluid) phase
g vapour (gaseous) phase
i summation index for nodes
j summation index for links
k 1, 2 (1 = liquid, 2 = vapour)
S surface
SAT saturated
IN ingoing
OUT outgoing
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