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Summary: 
 
The historical origins of the second shutdown system, as applied to Bruce-A and all subsequent 
CANDU reactors, are discussed in two parts.  The first deals with the evolution of licensing 
requirements for a second shutdown system and the second deals with the origins of the fast 
liquid poison injection system chosen for the second shutdown system. 
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Historical Origins 
 
The historical origins of the second shutdown system, as applied to Bruce-A and all subsequent 
CANDU reactors, are discussed in two parts.  The first deals with the evolution of licensing 
requirements for a second shutdown system and the second deals with the origins of the fast liquid 
poison injection system chosen for the second shutdown system. 
 
1. Evolution of Licensing Requirements 
 
The original CANDU-type reactors, comprising NPD, Douglas Point, and Pickering-A, employed a 
single fast-acting safety shutdown system designed to provide the necessary negative reactivity 
depth and speed of insertion to satisfy all safety requirements for fast emergency reactor shutdown.  
In the cases of NPD and Douglas Point, a relatively simple moderator dump system proved adequate 
for this purpose.  In the case of the Pickering-A reactors, the larger core size reduced the negative 
reactivity provided by moderator level reduction during the early stage of a dump, i.e. with a large 
core the moderator dump was inherently less effective in terms of achievable early negative 
reactivity rate.  Following detailed studies, the Pickering designers concluded that, while a practical 
dump port configuration would result in negative reactivity rates adequate to cater to most potential 
accident situations, it would not be adequate for certain accidents such as large-break LOCA�s.  
They, therefore, decided to add a number of gravity-drop mechanical shutoff rods to augment the 
moderator dump.  A common electronic trip system actuated both the dump valves and the shutoff 
rods. 
 
For the licensing of the Pickering-A reactors, the concept of single and dual failure accident analysis 
was introduced by the AECB as a requirement under the so-called �Siting Guide�.  As a 
consequence, each potential accident had to be analyzed assuming that the safety shutdown system 
was unavailable.  The analysis therefore had to cover cases where there was an accidental insertion 
of positive reactivity terminated only by the physical disassembly of the reactor core resulting from 
the consequential reactor overpower transient.  While the analysis, as carried out, indicated that this 
inherent shutdown mechanism would terminate the overpower transient without a serious threat to 
containment integrity, the analysis was somewhat speculative in nature because of a lack of fully 
relevant experimental information.   
 
In the case of the Bruce-A reactors that followed Pickering-A, the changed containment concept 
resulted in the reactor�s reactivity mechanism deck serving as a part of the containment boundary.  
As a result of this increased proximity between the reactor core and the containment boundary, the 
designers decided that the probability of an accidental physical disassembly of the reactor core 
resulting from an overpower transient should be greatly reduced.  This led the designers to propose 
the introduction of a second, independent, and diverse safety shutdown system.  In a presentation to 
the AECB�s Reactor Safety Advisory Committee (RSAC), the designers proposed that the second 
shutdown system would be actuated only by neutronic signals since its intended purpose was limited 
to the prevention of reactor overpower transients, including localized overpower transients which 
might cause pressure tube failure.  The RSAC did not accept this proposal to limit the trip 
parameters for the second system.  Following the recommendation of the RSAC, the AECB issued a 
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formal �Two Shutdown System Policy� statement which, in essence, stated that if the designers 
wished to incorporate a second shutdown system, it would have to cater to the full spectrum of 
accidents covered by the first shutdown system.  If this were done, the Board would accept that at 
least one of the two shutdown systems could be credited for all accidents, the credited shutdown 
system being the one which was the least effective of the two for any specific accident scenario.   
 
The Board�s Policy statement did not explain the rationale for requiring the second shutdown system 
to be fully comprehensive, i.e. to have a full set of trip parameters.  It is, however, the opinion of the 
author that the Board saw this as a reasonable �trade-off� for not requiring the designers to provide a 
�core dissassembly� analysis.  Faced with this formal Board position, the designers felt they had 
little choice but to proceed on this basis.  Subsequently, the CANDU-6 designers decided to follow 
the same route for sake of uniformity of approach even though the CANDU-6 design utilized a more 
traditional containment arrangement.  It was also judged that avoidance of a �core disassembly� 
scenario for licensing purposes would improve marketability of the design in other countries.  This 
was, indeed, a fortunate decision given the subsequent Chernobyl accident! 
 
2. Origins of the Fast Liquid Poison Injection System 
 
Turning now to the second part of this monograph which covers the design of the second shutdown 
system, the Bruce designers recognized that the design would have to be diverse from the design of 
the first shutdown system in order to preclude the possibility of common-mode failures which could 
disable both systems.  Such diversity would need to extend to all elements of the system including 
choice of specific instruments and hardware and should employ a fundamentally different mode of 
operation and, to the extent practical, be located in different parts of the reactor core, the latter being 
necessarily common to both shutdown systems.  These considerations led to a decision that the in-
core elements of the second system should be arranged horizontally since the first system had these 
elements arranged vertically.  Horizontal mechanical shutoff rods were a possible choice - such rods 
were employed in the Hanford N reactor.  This choice was not pursued because it was recognized 
that such rods could suffer disabling damage from core disruptive accidents in the same way as 
could the vertical shutoff rods.  Liquid horizontal shutoff rods were another possibility but a 
relatively large number would have been required to achieve the necessary reactivity depth.  The in-
core tubing of such rods, even if fabricated from Zircaloy, would have presented a significant 
reactivity load during normal operation. 
 
The alternative finally chosen was an adaptation of a design originally developed for the Gentilly-1 
CANDU-BLW reactor.  This was a fast-acting liquid poison injection system comprising a number 
of small tanks containing gadolinium nitrate solution which were connected to perforated Zircaloy 
in-core injection tubes.  The top of each poison tank was connected to high pressure helium storage 
tanks via an array of valves which were opened on a trip signal, thereby pressurizing the poison 
solution and causing it to flow rapidly into the perforated in-core tubes and, hence, into the bulk 
moderator.  Rapid dispersion of the poison solution within the moderator resulting from the jets of 
poison solution emanating from the perforations provided a very high degree of negative reactivity 
with only a small number of tubes being necessary.  In the case of Gentilly-1, the fast-acting poison 
injection system was added late in the design as a means of providing additional negative reactivity 
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rate to augment that provided by the moderator dump system.  It was actuated by the same electronic 
trip system as actuated the moderator dump and therefore performed a similar function to that 
provided by the shutoff rods in the Pickering-A reactors.  In the case of Gentilly-1, the in-core 
poison injection tubes were vertically oriented whereas for the reasons discussed earlier, in the 
Bruce-A reactors, the tubes were oriented horizontally. 
 
During the development of the fast-acting liquid poison injection system, a number of interesting 
problems arose which will now be discussed.  The first problem involved �water hammer�.  As 
originally conceived, the piping downstream of the poison tanks was to be gas-filled (helium) while 
the system was in a normal poised state.  This gas space in the piping was intended to ensure that 
poison solution did not diffuse into the in-core injection tubes and the bulk moderator during normal 
operation.  Moderator heavy water was, however, unavoidably present in the injection tubes and for 
some distance back into the piping connecting the tubes to the poison tanks.  As a result, when the 
system was �fired� by the rapid helium pressurization of the poison tanks, the poison solution 
flowing out of the tanks rapidly achieved a very high velocity.  This flow of poison solution 
progressively pressurized the helium gas in the interspace leading to the in-core injection tubes.  
While this pressurization would start to push the previously static moderator water out of the 
injection tubes and adjacent piping, a significant time delay was inherently involved because of the 
inertia of this water and the initial relatively show buildup of pressure in the helium gas (a very non-
linear spring, in effect).  The non-linearity of this �spring� resulted in a severe �water hammer� type 
pressure transient in the pipework as confirmed by tests carried out in a mock-up in the Sheridan 
Park Engineering Laboratory (SPEL).  This gave rise to concerns regarding potential high stress, low 
cycle fatigue failures in the pipework.  
 
3. Problems and Solutions  
 
The designers therefore concluded that the gas interspace between the poison tanks and the in-core 
injection tubes would have to be eliminated.  As a result, the designers had to reconsider the problem 
of avoiding possible diffusion of poison into the moderator during normal reactor operation.  One 
possible solution would have been to introduce valves in the connecting piping.  However, to permit 
the on-line periodic testing of such valves - essential to meet safety system reliability requirements 
since the valves would have to open on a trip signal, a multiple series/parallel valve array would 
have been needed in each line, adding cost and presenting maintenance problems.  The designers 
therefore investigated a possible �valveless� arrangement.  With this arrangement, the poison tanks 
would be located at an elevation such that the free surface of poison solution in the tanks would be 
the same as the free surface elevation of the moderator in the reactor assembly.  A helium gas 
connection would be provided between the reactor cover gas system and the top of each poison tank 
such that cover gas pressure transients would not induce significant flow in the liquid-filled 
pipework which was, in effect, a part of a large U-tube, formed by the calandria, the pipework, and 
the poison tanks.  Diffusion calculations indicated that the movement of the gadolinium nitrate 
poison along the pipework would be very slow.   Hence, it was concluded that the design approach 
was practical provided poison solution was periodically drained from the poison tanks thereby 
moving the interface between the poison solution and unpoisoned moderator back towards the 
poison tanks.  This required the periodic replenishment of the poison solution in the poison tanks but 
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this was judged to be acceptable from an operations standpoint.  This overall design approach was 
therefore accepted and implemented. 
 
A second �interesting� problem involved the question of how to handle the high-pressure helium 
remaining in the system once the liquid poison had been injected into the bulk moderator.  If no 
special design provisions were made, the high-pressure helium would simply follow the poison 
solution into the moderator resulting in a large �belch�.  The designers concluded that this would be 
undesirable from several standpoints.  Firstly, it would pressurize the moderator cover gas system 
and while the calandria overpressure protection rupture discs might not fail, they would be subjected 
to a sharp transient load which could shorten their fatigue life.  Secondly, the sudden injection of gas 
bubbles into the moderator would give rise to severe reactivity �noise�, upsetting neutronic 
measurements.  Thirdly, the helium cover gas pressure would have to be returned to normal 
subsequently, by removing the excess helium, giving rise to a potential problem in handling helium 
contaminated with heavy water vapour with a high tritium content.  The designers therefore 
concluded that the high-pressure helium should be isolated from the system downstream of the 
poison tanks once the tanks emptied.  The use of conventional fast-acting valves in the pipework 
leaving the poison tanks was considered but discarded based on judgments of complexity and 
reliability.   
 
A relatively simple solution was suggested.  This involved the use of a buoyant ball in each tank 
which would follow the poison outflow and subsequently seat at the bottom of the tank, thereby 
isolating the high-pressure helium.  Obviously, such a ball would be subjected to high shock loading 
as it seated and must, therefore, be highly rugged.  Furthermore, there must be �absolute� certainty 
that the ball would remain buoyant since, if it lost its buoyancy, it would effectively disable 
subsequent poison injection.  The designers therefore chose balls made from solid polyethylene 
which is inherently buoyant and a very �tough� material.  To prove this �toughness�, an experiment 
was carried out in SPEL which consisted of dropping a prototype ball from the top of the tower onto 
the concrete floor.  The ball survived unscathed! 
  
A third �interesting� problem was the determination of the optimum array and sizing of the nozzle 
holes in the injection tubes in order to maximize achievable negative reactivity rate.  This problem 
was solved experimentally by a calandria mockup in SPEL in which colored water was injected into 
pure water.  High-speed photography showed the pattern and rate of insertion of these colored jets as 
they emerged into the �moderator� water.  These patterns then were input directly to physics codes 
to determine the effectiveness of the injection. 
 
Conclusion 
 
It was found that very fast and effective reactor shutdown could be achieved by this design, even 
with relatively few injection nozzles.  Operating experience at Bruce A and elsewhere quickly 
eliminated residual problems.  This design of shutdown system 2 then was incorporated into all 
designs following Bruce A.   
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