Basic Process Control

Basic Control Principles

Open vs Closed Loop

- Closed loop
 - Automatic control
- Open Loop
 - Manual control
 - Person takes the place of the controller

Feedback Control

Feedback vs. Feedforward

- Feedback
 - Control action after an error exists
- Feedforward
 - Reacting to the disturbance before the error occurs

Typical ON/OFF Control System

Typical ON/OFF Response

Proportional Control

Level Control of Open Tank

Simple Proportional System

Open Tank Control

Controller Action

4

Proportional Control

$$m = k(SP-M) + bias$$

Proportional Band and Gain

Proportional Band – the input change required to change the output 100%

$$gain = \frac{\Delta output}{\Delta input}$$

$$gain = \frac{100\%}{PB}$$

Narrow, Wide, High & Low

Wide PB - Low Gain

In Out

Narrow PB – High Gain

Proportional Control Response Curve

Proportional Response with Narrower PB

Response Versus PB, Proportional Control Only

1

1/4 Decay Response Curve

•

For You To Do

- Read pp. 89-105
- Answer Questions pp. 121-122, #1-19

Reset or Integral

Response Curve: Proportional Control Only

Additional Control Signal Restores Process to Setpoint

Integral Action

$$m = ke\left(+\frac{1}{TR}\int edt\right) + bias$$

Units

- Minutes per repeat
 - MPR
 - The length of time that it will take the integrator to add an amount equal to the proportional response
- Repeats per minute
 - RPM
 - The number of times the proportional response is repeated in one minute

Proportional Plus Reset, Open Loop Response

A problem

- Output initially 50%, Gain = 2, reset = 2 minutes per repeat
- A direct acting controller control is subjected to a sustained error of 5%
- What is the output after 4 minutes?
- Proportional Response = ke = 2x5=10%
- Integral Action- in 4 minutes the control will go through 2 repeats.
- Integral action $= 2 \times 10 = 20\%$
- Total output change is proportional + integral = 30%

A Couple More Things

- Reset Windup
- Instability because of lag

-

For You to Do

- Read over text pp. 89 −110
- Answer questions pp. 121-122, 1-24

Rate or Derivative

Proportional and Derivative – Open Loop Pressure

-

Derivative Control

Simple Flow Control System

The open Loop Response of Proportional Plus Derivative (PD) Action to Rapidly Changing Error Signals

Large System Under Proportional and Proportional Plus Derivative Control

Multiple Control Modes

- Virtually all controls have a proportional response
- Integral and derivative are added to improve performance
- Majority have proportional and integral
- Some, typically heat exchangers have derivative added

Open Tank Level Control With Valve In Inflow

Typical Flow Control Loop

4

Pressure Control – Constant Bleed

Split Ranged Feed and Bleed Pressure Control

Representative Hot Bleed/Cold Service Water Heat Exchanger

For You To Do

- Read pp. 106-120
- Answer Questions pp. 122-123, #20-38