Chapter 11

XENON-135

Build up to Equilibrium
Bulk Transients
Oscillations
Other Fission Products

Why is Xenon a Problem?

-6.6\% of all U-235 fissions produce mass 135 fission products (mainly Iodine 135)

- Xe-135 is one of the mass 135 fission products
- Iodine - 135 decay to make Xenon-135
- Xe-135 has a large absorption cross section for thermal neutrons.
- At a steady power level, the number of fissions per second is constant, so
- there is a steady production of I-135
- Once I-135 has built up to equilibrium, it decays at a steady rate

What Happens on a Power Change?

- The high Σ_{a} for neutrons means xenon burnout changes a lot when flux changes. $\left[\mathrm{R}_{\mathrm{a}}=\Sigma_{\mathrm{a}} \phi\right]$
- When power increases, the rate of burnout of Xe-135 increases faster than the steady I-135 decay can replenish it.
- Xenon concentration drops, core reactivity increases
- When power decreases, steady I-135 decay produces more $\mathrm{Xe}-135$ than can be burned out in the lower flux.
- Xenon concentration increases, core reactivity drops

Won't the I-135 Concentration Change too?

- Yes.
- Higher fission rate increases the production rate of $\mathrm{I}-135$; lower fission rate decreases it.
- But the build-up half time, $\mathrm{T}_{1 / 2}^{135}=6.7 \mathrm{hrs}$ causes it to take many hours to change
- Decay and buildup are both governed by $\mathrm{T}_{1 / 2}$
- Xenon burnout rate changes immediately
- with burnout half time measured in fractions of an hour at high power

A few extra details.

- There are a few extra complications to consider
- there is some direct fission production of Xe
- production is about 5% from direct production 95\% from I-135 decay
- Xe decays in addition to burnout - at high flux, over 90% of Xe removal is by burnout

All of these effects and the equations for production and removal can be summarized on a simple "water tank" flow diagram.

The Tank Diagram

- The tank diagram shows an "analogue computer" for calculating the quantities of xenon-135 and iodine-135
- It can be used to derive differential equations for the Xe and I concentrations
- It can also be used directly as the basis for a numerical computation
- We will use it to derive a variety of quantities that characterize the buildup and transient positive feedback from xenon

Steady Conditions

- Notice that the tank levels remain steady as long as the inflow exactly matches the outflow
- Notice that the two arrows representing decay
- I decay (= Xe production) and Xe decay are not flux dependant
- If the reactor trips, valves shut off flow in all the lines to or from the tanks except the decay lines.

TABLE 1 PARAMETERS

For Reference
$\lambda_{1}=2.9310^{-5} \mathrm{~s}^{-1} \quad$ (G.E. Nuclear Chart 1996)
$\lambda_{x_{n}}=2.11 \quad 10^{-5} \mathrm{~s}^{-1} \quad$ (G.E Nuclear Chart 1996)
$\sigma_{a}^{X_{a}}=3.5 \times 10^{6} \mathrm{~b}=3.510^{\mathrm{ts}} \mathrm{cm} 2 \quad$ (New Transent value is $3.110^{-18} \mathrm{~cm} 2$)
$\gamma_{\mathrm{I}}=6.3 \% \quad$ (New Transent values 6.4% for equilibrium fuel $\& 6.3 \%$ for U-235 fissions.)
$\gamma_{x_{0}}=0.3 \%$ (New Transent value $\approx 0.6 \%$ for equilibrium fuel \& 0.24\% for U-235 fissions.)
$\Sigma_{4} 0.1 \mathrm{~cm}^{-1}$ (fresh CANDU fuel) $\Sigma_{4} \approx 0.089 \mathrm{~cm}^{-1}$ (equilibrium fuelling) is burnup dependent $\phi_{\mathrm{F} . \mathrm{P} .}=9.1 \times 10^{13} \mathrm{n} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ (fuel flux at full power/equilibrium fuelling. BNGSB Xe predictor)
$\phi_{\text {Fr. }}=1.0 \times 10^{14} \mathrm{n} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ is a convenient value for calculation, and close enough time constants for $\phi_{\text {Amen }}=$ full power flux (for equivalent half lives multiply by $\ln 2=0.693$):
$\left(\sigma_{\cdot}^{\mathrm{X}_{0}} \phi_{\text {finat }}+\lambda_{\mathrm{x}}\right)^{-1} \approx 491$ min utes \quad (half time 34 minutes)
$\left[\sigma_{0}^{\mathrm{x}} \phi_{\text {final }}-\left(\lambda_{1}-\lambda_{x_{0}}\right)\right]^{-1} \approx 53.7$ minutes \quad (half time 37 minutes)

- $1 / \lambda_{\mathrm{r}}=569$ minutes $1 / \lambda_{x t}=790$ minutes $1 /\left(\lambda_{r}-\lambda_{r_{c}}\right)=2032 \min =33.9 \mathrm{hrs}$
(half life 6.6 hours)
(half life 9.1 hours)
(half time 23.5 hours)
To convert from number concentration to mk worth of xenon-135, take $1 \mathrm{mk} \approx 6 \times 10^{16}$ atoms

Equilibrium Steady State Conditions for Xenon and Iodine

- Calculate the fraction of mass 135 fission fragments that are xenon and the fraction that are iodine.
- Show that the \% of production of xenon once equilibrium is achieved is almost 95\% from iodine decay and 5\% direct fission production.
- Show that the removal of xenon at normal full power flux conditions is more than 90\% by burnout and almost 10\% by decay.

Build up to Equilibrium

- At start up there is no xenon or iodine.
- Iodine is produced steadily with constant ϕ
- a constant production rate gives a steady increase
- But I decays, $\lambda \mathrm{N}_{\mathrm{I}}$, so the more there is the faster you lose it
- eventually production matches decay, with $\mathrm{N}_{\mathrm{I}}=\mathbf{N}_{\text {eq }}$

The Equation for I Buildup $\frac{d N_{I}}{d t}=\gamma_{\mathrm{I}} \Sigma_{\mathrm{f}} \phi-\lambda_{\mathrm{I}} \mathrm{N}_{\mathrm{I}}$

- Rate = steady production - decay
- equilibrium when production = decay and/or
- rate $=0$
- Solution on the Next Slide

Iodine Buildup to Equilibrium

$$
\begin{gathered}
N_{I}(t)=N_{I(e q)}\left(1-e^{-\lambda_{I} t}\right) \\
N_{I(e q)}=\frac{\gamma_{I} \Sigma_{f} \phi}{\lambda_{I}}
\end{gathered}
$$

$-N_{I}(e q)=-322 P m k$ is the reserve of iodine waiting (with a half life of 6.7 hours) to become xenon (with parameters from Table)

Equilibrium Iodine

- Develop formula for equilibrium iodine concentration and show that equilibrium iodine concentration is proportional to steady state flux.

$$
\mathrm{N}_{\mathrm{I} \mathrm{eq}}=\gamma_{\mathrm{I}} \Sigma_{\mathrm{f}} \phi / \lambda
$$

- Notice that equilibrium iodine is proportional to flux (neutron power level)
- if the reactor operates at 60% F.P. iodine builds to about 0.6 of 322 mk

Xenon Differential Equation

- This one is not so easy: there are 4 terms
- We will save it and calculate equilibrium Xe first.
- Xe cannot build to equilibrium till Iodine does
- The delay in starting to build until there is significant iodine is called HOLDUP
- Once I is in place, the production is (mainly) at the same steady rate as I production
- equilibrium is reached when production (2 terms) = decay (2 terms)

Equilibrium Xenon

- Develop formula for equilibrium xenon concentration and show that the Xenon Load at equilibrium is nearly flux independent for a high flux reactor
- Equate the two inflow terms in the xenon tank to the two outflow terms to get the text equation.

$$
N_{\mathrm{Xe}(\mathrm{cq})}=\frac{\left(\gamma_{\mathrm{I}}+\gamma_{\mathrm{xc}}\right)}{\lambda_{\mathrm{xc}}+\sigma_{\mathrm{a}}^{\mathrm{xc}} \phi} \Sigma_{\mathrm{f}} \phi=\frac{\left(\gamma_{\mathrm{I}}+\gamma_{\mathrm{xc}}\right)}{\sigma_{\mathrm{ac}}^{\mathrm{xc}} \phi\left(1+\frac{\lambda_{\mathrm{e}}}{\sigma_{\mathrm{xc}}^{\mathrm{xc}} \phi}\right)} \Sigma_{\mathrm{f}} \phi=\frac{\left(\gamma_{\mathrm{I}}+\gamma_{\mathrm{xc}}\right)}{\left(1+\frac{\lambda_{\mathrm{xc}}}{\sigma_{\mathrm{a}}^{\mathrm{xc}} \phi}\right)} \frac{\Sigma_{\mathrm{f}}}{\sigma_{\mathrm{ac}}^{\mathrm{xe}}}
$$

Equilibrium Xenon Concentration

- For $P=0.6$ (60% F.P) equilibrium xenon is only a few mk from its full power

$$
\mathrm{N}_{\mathrm{Xe}(\mathrm{eq})}=\frac{\left(\gamma_{\mathrm{I}}+\gamma_{\mathrm{Xe}}\right) \Sigma_{\mathrm{f}}}{\sigma_{\mathrm{a}}^{\mathrm{Xe}}\left(1+\frac{\lambda_{\mathrm{Xe}}}{\sigma_{\mathrm{a}} \mathrm{Xe} \phi}\right)}
$$ equilibrium value

- 28 mk for $\mathrm{N}_{\mathrm{Xe}(\mathrm{eq})}$ and 0.9×10^{14} specify the particular reactor. Other values are physical constants

$$
\mathrm{N}_{\mathrm{Xe}(\mathrm{eq})}=\frac{-28 \mathrm{mk} \times \mathrm{P}}{0.94 \mathrm{P}+0.06}=\frac{-28 \mathrm{mk}}{\left(0.94+\frac{0.06}{\mathrm{P}}\right)}
$$

Determine the relative concentrations of iodine and xenon and use equilibrium xenon $m k$ worth $=28 \mathrm{mk}$ absorption to calculate the reserve of xenon stored as iodine (Iodine Load).

$$
\begin{aligned}
\frac{\mathrm{N}_{\mathrm{I}(\mathrm{eq})}}{\mathrm{N}_{\mathrm{Xe}(\mathrm{eq})}}= & \frac{\gamma_{\mathrm{I}}}{\left(\gamma_{\mathrm{I}}+\gamma_{\mathrm{xe}}\right)} \frac{\left(\lambda_{\mathrm{xe}}+\sigma_{\mathrm{a}}^{\mathrm{xe}} \phi\right)}{\lambda_{\mathrm{I}}} \\
& =0.95 \times(2.11+35) / 2.93)=12
\end{aligned}
$$

- so with equilibrium xenon 28 mk , these values give equilibrium iodine $=336 \mathrm{mk}$
- cf. 320 mk on an earlier slide, and in the tank diagram

HOLDUP -The Complicated Time Dependence of Xenon Buildup.

- The messy second term only changes things a little bit at the beginning of the buildup

$$
\begin{aligned}
& N_{X e}(t)=N_{X e(e q)}\left(1-e-()_{t}\right) \\
& -N_{X e(e q)}\left[\frac{\lambda_{I}}{\sigma_{a}^{X e} \phi-\left(\lambda_{I}-\lambda_{X e}\right)} \cdot \frac{N_{I(e q)}}{N_{X e(e q)}}-1\right] \\
& \times\left(e^{-\lambda_{I} t}\right)\left(1-e^{-\left[\sigma_{a}^{\left.X_{e} \phi-\left(\lambda_{I}-\lambda_{X e}\right)\right] t}\right)}\right.
\end{aligned}
$$

Diagramatically

- Check
- for $t=0$ both terms have a factor $\left(1-e^{-c t}\right)=0$ - so at $t=0$ everything is zero
- as $\mathrm{t} \rightarrow 0$, term 1 has an $\mathrm{e}^{-\mathrm{ct}} \rightarrow 0$ and term $2 \rightarrow 1$
$-\mathrm{N} \rightarrow \mathrm{N}_{\mathrm{eq}}=28 \mathrm{mk}$ (instead of 320 mk for I)
- term 1 builds up like I, with the same $T_{1 / 2}$
term 2 starts at 0 and is 0 again in a few $\mathrm{T}_{1 / 2}$

Trip from Equilibrium Steady State

Large Xenon Transient Increase

Xenon After a Trip from

 Equilibrium Steady State$\mathrm{N}_{\mathrm{Xe}}(\mathrm{t})=\mathrm{N}_{\mathrm{Xe}(\mathrm{eq})} \mathrm{e}^{-\lambda_{\mathrm{Xe}} \mathrm{t}}$

$$
+\frac{\lambda_{I}}{\lambda_{I}-\lambda_{\text {Xe }}} \cdot N_{I(e q)} \cdot\left\{\mathrm{e}^{-\lambda_{\mathrm{xce} t}}-\mathrm{e}^{-\lambda_{\mathrm{I}} \mathrm{t}}\right\}
$$

$\underset{\substack{\text { simple }}}{\text { Its }} \operatorname{Xe}(\mathrm{t})=28 \mathrm{e}^{-\lambda_{\mathrm{Xe}} \mathrm{t}}$
$\underset{\substack{\text { in } \\ \text { numbers }}}{ }+3.6 \times 322 \cdot\left\{\mathrm{e}^{-\lambda_{\mathrm{xec}^{t}}}-\mathrm{e}^{-\lambda_{\mathrm{t}} t}\right\}$

Description

- The first term is just the decay of the 28 mk present at the time of the trip
- The second term accounts for the fact that every Iodine that existed at the moment of the trip (about 322 mk worth) must go through both decays
- when the iodine decays, reactivity drops
- when the xenon decays, reactivity recovers
- The peak develops because the iodine decay rate is bigger than the xenon decay rate
- so the difference leaves a large + transient.

Time to the Peak

- It is straightforward, but not necessarily easy, to take a time derivative of the xenon transient equation and set the result to zero
zero slope implies that at some time after the transient starts, with Xe increasing and I decreasing, the production and decay of Xe will be equal
- This is the peak, and the equation can be solved for time to the peak.

Time to the Peak of the Transient

 (trip from equilibrium steady state)$\mathrm{t}_{\text {peak }}=\frac{1}{\lambda_{\mathrm{I}}-\lambda_{\mathrm{xe}}} \ln \left[\frac{\lambda_{\mathrm{I}}}{\lambda_{\mathrm{xe}}}\right]$
$-\frac{1}{\lambda_{\mathrm{I}}-\lambda_{\mathrm{xe}}} \ln \left[1+\frac{\left(\lambda_{\mathrm{I}}-\lambda_{\mathrm{xe}}\right)}{\lambda_{\mathrm{I}}} \cdot \frac{\mathrm{N}_{\mathrm{Xe}(\mathrm{eq})}}{\mathrm{N}_{\mathrm{I}(\mathrm{eq})}}\right]$
$-t_{\text {peak }}(\mathrm{hrs})=11.1-33.9 \ln [1+0.024 /(0.94 \mathrm{P}+0.06)]$

- = 10.3 hours for $\mathrm{P}=1$ (trip from full power)

Estimating the Size of the Peak

- At the peak, xenon decay = iodine decay, so
- $\lambda_{I}\left(N_{I}^{e q} e^{-\lambda t}\right)=\lambda_{X e} N_{X e}{ }^{\text {peak }}$,
$\mathrm{N}_{\mathrm{Xe}}^{\text {peak }}=\frac{\lambda_{\mathrm{I}}}{\lambda_{\mathrm{Xe}}} \cdot\left(\frac{\gamma_{\mathrm{I}} \sum_{\mathrm{f}} \phi}{\lambda_{\mathrm{I}}}\right) \mathrm{e}^{-\lambda_{\mathrm{I}} \mathrm{t}_{\text {peak }}}$
- $N_{x e}{ }^{\text {peak }}=\left(\lambda_{\gamma} \lambda_{X e}\right) 322 m k 2^{-(10.3 / 6.6)}$ (trip from F.P)
- The estimate of the xenon peak size from this gives $\mathrm{N}_{\mathrm{Xe}}{ }^{\text {peak }}$ near 150 mk .

Some Practical Considerations

- poison override time and
- decision and action time
- Initial rate of xenon production after the trip is $\lambda_{\mathrm{I}} \times(322 \mathrm{mk})-\lambda_{\mathrm{Xe}} \times(28) \mathrm{mk}$ $=8.66 \times 10^{-3} \mathrm{mk} / \mathrm{s}=0.5 \mathrm{mk} / \mathrm{min}$
- Adjusters, pulled out of core to override xenon, add +15 to +18 mk
- in 30 to 36 minutes the xenon level is too high
- it probably takes 10 minutes to remove the rods
- this gives the operator about 20 to 25 minutes to decide

Poison Out Time

- Analysis of the causes of the trip takes more than the decision and action time
- not in the old days though
- The reactor poisons out
- It takes 35 to 40 hours (for a trip from full power) for the transient to pass and xenon to drop into the range where adjuster removal could make the reactor critical again
- This is called the Poison Out Time

Poison Prevent

- If reactor power drops to the 50% to 60% range from full power the size of the transient is much less
- Small enough, in fact, that the reactor can be kept at 60% power throughout the transient.
- As Xe builds, zone levels drop to compensate
- when zones run out of room, RRS drives out a bank of adjusters - zones rise again
- The process repeats until all adjuster banks are out
- now xenon starts dropping and the process reverses

Smaller Transients

- Any power change at high power results in a transient
- The size of transient is smaller the smaller the power change
- the smaller the steady state Iodine difference
- The time to the peak is less for smaller transients.
- On a power rise, xenon decreases transiently

Xenon Oscillations

Requirements:
High Flux
Large Size

High Flux and Large Size

- For a noticeable xenon transient to occur, the removal of xenon by burnout must be significantly higher than the removal by decay
- for CANDU this is somewhere near 25\% F.P.
- spatial control is phased in between 15% \& 25%
- For a physically large core, what happens in one region has little direct affect on another region
- size bigger (by $\times 6$ or so) the distance an average neutron takes to slow down and diffuse ($\approx 40 \mathrm{~cm}$.)
- CANDU fits both criteria

Oscillations

- A small flux increase in one region,
- corrected by bulk power control, giving a small decrease elsewhere
- sets off two xenon transients in opposite directions in two regions of the core
- Even a small flux increase causes increased Xe burnout, less absorption, still higher flux etc.
- a typical positive feedback loop
- Exactly the reverse happens where flux is low
- buildup of Xe drops flux even lower, more Xe etc.

Time Dependence

- in the increasing Xe region flux drops, iodine production drops, and many hours later the high Xe level cannot be sustained and it starts dropping
- once it starts dropping, the feedback effect makes it drop even more, driving it down again
- In the decreasing xenon region flux is rising, fission rate increasing and I production going up.
Eventually the extra I makes enough Xe to reverse the direction
- again, positive feedback forces Xe levels up \& flux down

Cyclic Behaviour

- Flux flattens out again, with equilibrium Xe everywhere, but
- The iodine concentrations in the two regions are, simultaneous with normal xenon, at extremely different concentrations
- The region where flux was falling continues to fall
- The region where flux was rising continues to rise
- Without intervention the cycling will continue,
- with the amplitude likely increasing
- small oscillations may damp out in time (several cycles) but larger ones are self sustaining, an may grow.

Liquid Zone Control to the Rescue

- The cycling itself is hard on equipment, with varying thermal expansions and contractions fighting each other at mechanical joints
- The peak fluxes, and peak channel and bundle powers can be unacceptably high
- Which explains why instruments are distributed in core to measure differences between zones
- and reactivity devices (the liquid zones) are distributed in core to offset these differences before they get out of hand

Oscillations in Practice

- Oscillations can be triggered by power changes, fuelling, moderator T changes etc.
- The liquid zone control system should prevent oscillations, or damp them out fairly quickly when they do happen
- However, the regulating system phases out spatial control on either low or high level
- reserving reactivity for bulk power control
- If a large oscillation develops with the zones near limiting, it may not be possible to the zones to limit it.

Other Fission Products

Promethium-149/Samarium-149

Other Absorbers

- The core contains hundreds of fission products
- produced in various abundances and
- with varying neutron absorbing cross sections
- Xe-135/I-135 are by far the most important
- Next in importance are Pm-149/Sm-149
- Others are:
-Pm-151/Sm-151
- Ruthenium-105/Rhodium-105
- Also important, though not fission products,
- Neptunium-239/Plutonium-239
- On shutdown, Np-239 keeps making fissile Pu-239
- significantly increasing core reactivity

Buildup of Promethium, the Precursor to Samarium

- The equation for promethium is exactly the same as the equation for iodine
- the symbols and numerical values are different

$$
N_{P m(e q)}=\frac{\gamma_{P_{m}} \Sigma_{f} \phi}{\lambda^{P_{m}}}
$$

Samarium Parameters

For Reference

- $\lambda_{1} \rightarrow \lambda_{\mathrm{P}_{\mathrm{m}}}=3.63 \times 10^{-6} \mathrm{~s}^{\mathbf{1}}$
- $\lambda_{x_{\mathrm{e}}} \rightarrow \lambda_{\text {sm }}=0$
- $\sigma_{a}{ }^{\mathrm{Xe}} \rightarrow \sigma_{a}{ }^{\mathrm{Sm}}=4.2 \times 10^{4} \mathrm{~b}=4.2 \times 10^{20} \mathrm{~cm}^{2}$
- $\gamma_{\mathrm{I}} \rightarrow \gamma_{\mathrm{Pm}}=1.13 \%$
- $\gamma_{X_{e}} \rightarrow \gamma_{\mathrm{X}_{\mathrm{sm}}}=0$
- $\Sigma_{f} 0.1 \mathrm{~cm}-1$ (fresh CANDU fuel)
- $\Sigma_{\mathrm{f}} 0.089 \mathrm{~cm}-1$ (equilibrium fuelling) is burnup dependent
- Pr.P. $=9.1 \times 10^{13} \mathrm{n} \mathrm{cm}^{-2} \boldsymbol{s}^{-1} \quad$ (fuel flux at full power/equilibrium fuelling: BNGSB Xe predictor)
- time constants for $\phi_{\text {fred }}=$ full power flux (for equivalent half lives multipty by $\ln 2=0.693$):

- $\left[\sigma_{*}^{*} \phi_{\text {max }}-\lambda_{\text {rac }}\right]^{1} \approx 1375 h o u r s=57.3$ days
- $1 / \lambda_{P_{m}}=76$ hours $=3.2$ days
(half time 2.1 days)
(half time 39.7 days)
(half life 53 hours or 2.2 days)

Samarium Equations

- Its relatively easy to write down the equations by analogy with the I/Xe equations
- Its simpler because Samarium-149 is stable - the decay terms are zero
- The difference in parameters produces some surprising differences.

Samarium Buildup to Equilibrium

$\operatorname{Sm}^{149}(\mathrm{t})=\frac{\gamma_{\mathrm{Pm}} \Sigma_{\mathrm{f}}}{\sigma^{\mathrm{sm}}}\left(1-\mathrm{e}^{-\lambda^{\mathrm{Pm}} \mathrm{t}}\right) \quad \begin{gathered}\text { very high flux } \\ \mathrm{T}_{1 / 2}=3.2 \text { days }\end{gathered}$
$\operatorname{Sm}^{149}(\mathrm{t})=\frac{\gamma_{\mathrm{Pm}} \Sigma_{\mathrm{f}}}{\sigma^{\mathrm{Sm}}}\left\{1-\left(1+\lambda^{\mathrm{Pm}} \mathrm{t}\right) \mathrm{e}^{-\lambda^{\mathrm{Pm}} \mathrm{t}}\right\} \quad \phi=\frac{\lambda_{\mathrm{Pm}}}{\sigma_{\mathrm{a}}^{\mathrm{Sm}}}$

Equilibrium Samarium is Not Flux Dependent (AT ALL)

$$
\begin{aligned}
& \lambda_{\mathrm{Pm}} \mathrm{~N}_{\mathrm{Pm}(\mathrm{eq})}=\gamma_{\mathrm{Pm}} \Sigma_{\mathrm{f}} \phi=\mathrm{N}_{\mathrm{Sm}(\mathrm{eq})} \sigma_{\mathrm{a}}^{\mathrm{Sm}} \phi \\
& \bullet \text { so } \\
& \vdots \quad N_{S m(e q)}=\left(\gamma_{P m}\right) \frac{\Sigma_{f}}{\sigma_{a}^{S m}}
\end{aligned}
$$

Calculating the mk worth of Equilibrium Samarium

$\frac{\mathrm{N}_{\mathrm{Sm}} \sigma_{\mathrm{a}}^{\mathrm{Sm}} \phi}{\mathrm{N}_{\mathrm{Xe}} \sigma_{\mathrm{a}}^{\mathrm{Xe}} \phi}=\frac{\gamma_{\mathrm{Pm}}}{\gamma_{\mathrm{I}}+\gamma_{\mathrm{Xe}}} \times\left[1+\lambda_{\mathrm{Xe}} /\left(\sigma_{\mathrm{a}}^{\mathrm{Xe} \phi}\right)\right]$

- $=(1.13 / 6.6) \times\left[1+2.11 \times 10^{-5} / 3.18510^{-4}\right]$
$=0.171 \times 1.066=0.1825$
- Full Power Xenon is 28 mk so
- Equilibrium Samarium-149 is
$0.1825 \times 28=5.1 \mathrm{mk}$, Independent of Power
- But, Time to build up is sensitive to power level

Samarium Buildup after a Trip

$N_{S m}(t)=N_{S m(e q)}\left[1+\frac{\sigma_{a}^{S m} \phi}{\lambda_{P m}}\left(1-e^{-\lambda_{P_{m}} t}\right)\right]$
$N_{S m}^{\text {peak }}=N_{\text {Sm(eq) }}\left[1+\frac{\sigma_{a}^{\mathrm{Sm}} \phi}{\lambda_{\text {Pm }}}\right]$

- Samarium doesn't decay, so whatever is held up in the precursor bank adds to the total
- For $\phi=\frac{\lambda_{\mathrm{Pm}}}{\sigma_{\mathrm{s}}^{\mathrm{sm}}}$ the peak is double the equilibrium

Samarium is Not a Problem

- The time to build after a trip is about 300 hours
- On a restart immediately after a poison out, the amount of Sm is insignificantly different than equilibrium
- Long after a trip there is lots of extra reactivity because Xenon has decayed
- And if that is not enough, decay of Np-239 to Pu-239 adds, with a similar time constant, nearly double the reactivity that Sm removes.

