Elastic Collison

Inelastic Scattering

Transmutation

This reaction may be written as

$$^{1}n_{0} + ^{16}0_{8} \longrightarrow ^{16}N_{7} + ^{1}p_{1}$$

Radiative Capture

Fission Yield of U-235 and Pu-239

Fission Product Decay Chain

Energy Distribution of Prompt Fission Neutrons

Ů.

Production of Delayed Neutron From Br-87

(normal beta-gamma decay mode also shown)

Elastic Collisions

(for equal masses)

Maximum transfer of energy (head-on collision)

Elastic Collision

 $(m_2 >> m_1)$

If
$$m_2 \gg m_1$$
, $V_1 \sim V_2$ and $V_3 \sim 0$

Average Number of Elastic Collisions to Thermalize Fission Neutrons in Various Materials

Н	18
D (Deuterium)	25
H ₂ 0 (Light water)	20
D ₂ 0 (Heavy water)	36
C-12 (Graphite)	115
U-238	2172

Inelastic Scattering (internal reaction)

1. Neutron enters stable nucleus

2. Nucleus is excited

3. Neutron and γ - photon are emitted

4. Nucleus is stable again

Inelastic Scattering (above threshold energy)

Nuclear Transmutation

1. Neutron enters stable nucleus

2. Another particle leaves excited nucleus

This may be written as

$$^{1}n_{0} + ^{16}O_{8} \xrightarrow{}^{16}N_{7} + ^{1}p_{1}$$
 $^{16}O(n,p)^{16}N$

(¹⁶N nucleus subsequently emits gamma rays)

Radiative Capture

1. Neutron enters stable nucleus

2. Gamma ray leaves excited nucleus

This may be written as

$$^{1}n_{0} + ^{A}X_{Z} \longrightarrow ^{A+1}X_{Z} + \gamma$$
 $^{238}u (n,\gamma)^{239}u$

 $^{239}\mathrm{u}_{92}$ subsequently transmutes to $^{239}\mathrm{Pu}_{94}$. How?

Radiative Capture (below threshold energy)

Radiative Capture

Time spent in sphere of influence

$$t \propto \frac{1}{v}$$

If probability of capture ∝ time

Spontaneous Fission and Alpha Decay Rates of Uranium

	$t_{1/2}(\alpha)$	t _{1/2} (s.f.)	α decay rate	s.f. decay rate
	(years)	(years)	(atoms /s/kg)	(atoms /s/kg)
211 Hz - 1912 12	erik jedija i secije ka		**************************************	 32.200 (32.200)
U-235	7.1 x 10 ⁸	1.2 x 10 ¹⁷	79 x 10 ⁶	0.3
U-238	4.5 x 10 ⁹	5.5 x 10 ¹⁵	12 x 10 ⁶	6.9

Fissile Materials

Fuel	Neutrons per fission,v	Neutrons per absorption,η
Uranium-233	2.51	2.28
Uranium-235	2.43	2.07
Natural uranium	2.43	1.34
Plutonium-239	2,90	2.10
Plutonium-241	3.06	2.24

Formation of Plutonium

$$238_{092} + n$$

$$t_{1/2} = 24m$$

$$239_{092} + \gamma$$

$$239_{092} + \gamma$$

$$t_{1/2} = 2.4d$$

$$239 Pu_{94} + \beta$$

Reason for Instability of Fission Fragments

Energy Distribution Sample of 100 Prompt Neutrons

Delayed Neutrons

Delayed neutrons come from certain nuclei formed by beta decay of fission products

Fission:

Decay:

Delayed Neutron Precursor Groups for U-235 Fission

Precursor group	Half-life (seconds)	Relative yield (%)
1	55	4
2.	22 6	21 19
	2.2	40
5 6	0.5 0.18	13 3

Secondary Neutron Emission in Thermal Fission of U-235

Number of neutrons emitted	Number of cases per 1000 fissions
0	27
	158
2	339
State of the second sec	302
4	130
All Section 125 and 1	34.

Fissile nucleus

U

U-235

2.43

Pu-239

2.89

Pu-241

2.93

Approximate Distribution of Fission Energy Release in U-235

Kinetic energy of lighter fission fragment	100 MeV
Kinetic energy of heavier fission fragment	69 MeV
Kinetic energy of secondary neutrons	5 MeV
Energy of promptγrays	6 MeV
Beta particle energy gradually released from fission products	8 MeV
Gamma ray energy gradually released from fission products	6 MeV
Neutrinos (energy escapes from reactor)	11 MeV
Total 2	05 MeV

Location of Fission Heating

Source	Location of heating
Fission fragments	Fuel pellets (fragments slow down in a distance of about 1µm)
Kinetic energy of secondary neutrons	Mostly transferred to moderator by collisions with moderator atoms
Beta particles from fission product decay	Fuel pellets and cladding
Prompt gammas and gammas from fission product decay	Throughout reactor and its shielding (about one third deposited in moderator)

Fission

Spontaneous Fission

Rare but possible

Induced Fission

- Excited energy level must be above critical
- Adding a neutron adds energy to the nucleus (kinetic & binding energy)

Fissile Nuclei

Fission with zero energy neutrons

Fissionable Nuclei

• Fission with energetic (fast) neutrons only

Fission Process Summary

- * Critical energy of compound nucleus must be less than binding energy of added neutron
- * Low energy neutrons interact more readily with U-235 to cause fission than do high energy neutrons. U-238, on the other hand, will only undergo fission with high-energy neutrons.
- * Neutron/proton ratio curve results in additional neutrons being produced in fission $(\upsilon > 1)$
- * Neutrons produced in fission have range of energies. $\bar{E} \approx 2 \text{MeV}$.
 - * Neutrons must be slowed down to lower energies (thermalised or moderated) to start new cycle.

Interactions of importance

$$\sigma_s = \text{Scattering}$$

$$\sigma_\gamma = \text{Radiative capture}$$

$$\sigma_f = \text{Fission}$$

$$\sigma_a = \text{Absorption}$$

Capture/fission ratio: $\alpha = \sigma_{\gamma} / \sigma_{f}$

Probability of fission: $p = \sigma_f / \sigma_a$

Avogadro's Number

$$N_A = 6.022 \times 10^{23}$$

Number of atoms or nuclei in a given sample

$$N = \frac{N_A}{A} \times MASS(g)$$

Example: Atoms in 1kg of U-235

$$N = \frac{6.022 \times 10^{23}}{235} \times 1000$$
$$= 25.62 \times 10^{23} \text{ atoms}$$

Example: 1kg of U-235 consumed in one day

$$N = \frac{6.022 \times 10^{23}}{235} \times 1000 \text{ fission/day}$$

$$= 25.62 \times 10^{23} \text{ atoms / (24 x 3600) Fissions/s}$$

$$= 0.0002965 \times 10^{23} \times 200 \text{ MeV/s}$$

$$= 0.05932 \times 10^{23} \times 1.6022 \times 10^{-13} \text{ J/s}$$

$$= 0.09504 \times 10^{10} \text{ W}$$

$$= 950 \times 10^{6} \text{ W}$$

$$= 950 \text{ MW}$$

Cross-Sections for U-238

Radiative capture Cross-section of U-238

Elastic scattering Cross-section of U-238

Pie Diagram for Cross-Sections of U-235 and Nat-U

Variation of Absorption Cross-Section of U-235 with Neutron Energy

Concept of Cross-Section

Target Areas

Target area may be smaller or larger than projected (physical) area of nucleus

Target areas are different for different nuclear reactions

Interaction Models

Time to react with nucleus = distance/velocity

Time Model

Low velocity gives greater chance of capture

Energy Model

Comparison of Cross-Sections for Thermal Neutrons

Element	Nucleus radius $r = 1.2 \times 10^{-15} A^{1/3}$ (m)	Nucleus radius (cm)	Nucleus area A =πr ² (cm ²)	Cross section ^σ a (cm ²)	Cross section σ_s (cm ²)
Н	0.0012 x 10 ⁻¹²	0.12 x 10 ⁻¹²	0.045 x 10 ⁻²⁴	0.332 x 10 ⁻²⁴	38 x 10 ⁻²⁴
A CORP.	40,0026 x 10 K	0.26 x 10 ⁻¹²	0.212 x 10 ⁻²⁴	759 x 10 ⁻²⁴	316 x 10 ⁻¹²
С	0.0027 x 10 ⁻¹²	0.27 x 10 ⁻¹²	0.229 x 10 ⁻²⁴	0.0034 x 10 ⁻²⁴	4.75 x 10 ⁻²⁴
Section 1	12 1 (01 × 080) (01	080×10 ⁻¹²	0.283 x 10. ²⁴	0.00027.x 10 ⁻²⁴	3.76 x 10 ⁻²⁴
Pb	0.0071 x 10 ⁻¹²	0.71 x 10 ⁻¹²	1.584 x 10 ⁻²⁴	0.17 x 10 ⁻²⁴	11.4 x 10 ⁻²⁴
Ü	0.0074 x 10 12	0.74 x 10 ⁻¹²	1.720 x 10 ⁻²⁴	7,53 x 10 ⁻²⁴	8.9 x 10 ⁻²⁴
U-235	0.0074 x 10 ⁻¹²	0.74 x 10 ⁻¹²	1.720 x 10 ⁻²⁴	99 x 10 ⁻²⁴ (n,γ)	
				582 x 10 ⁻²⁴ (n,f)	

Note that projected area of nucleus is about 1×10^{-24} cm = 1 Barn

Cross-Section Nomenclature

 σ_{f} = Fission cross section

 σ_a = Absorption cross section

 $\sigma_{n, \nu} = Radiative capture cross section$

 σ_i = Inelastic scattering cross section

 σ_s = Elastic scattering cross section

Thermal Neutron Cross-Sections of Fuel Atoms (in Barns)

Taken from Atomic Energy Review (IAEA), 1969, Vol 7, No 4, p.3

	σ _f	σ _{.n,γ}	σ _a	σs	υ	σ_f/σ_a (%)
U-233	530.6	47.0	577.6	10.7	2.487	92
U-235	580.2	98.3	678.5	17:6	2.430	86
U-238	0.	2.71	2.71	~ 10	0	
Nat. U	4.18	3.40	7:58	· ~10		- 55
Pu-239	741.6	271.3	1012.9	8.5	2.890	73 :
Pu-241	1007.3	-368:1	1375.4	12.0	2.934	25.73 25.73

Neutron Reaction Rates

Neutron Flux

Neutron flux ϕ is defined as the number of neutrons n multiplied by their velocity v

$$\phi = \mathbf{nv} \qquad \frac{\text{number}}{\text{cm}^3} \qquad \mathbf{x} \qquad \frac{\text{cm}}{\text{s}} = \frac{\text{number}}{\text{cm}^2 \text{ s}}$$

Since neutron flux ϕ has units of cm⁻²s⁻¹ it can be considered as the number of neutrons passing through a particular cross sectional area per unit time

Definitions

(Cross-section density in material)

$$\Sigma = N\sigma$$
 $\left(\frac{1}{cm}\right)$ or $\left(cm^{-1}\right)$
 $N = \text{Nuclei per unit volume}$ $\left(\frac{\text{nuclei}}{cm^3}\right)$
 $\sigma = \text{Microscopic cross-section}$ $\left(cm^2\right)$

Neutron flux

(Neutrons passing through given area per second)

$$\phi = nv \cdot \left(\frac{\text{neutrons}}{\text{cm}^2 \text{ s}}\right)$$

$$n = \text{Neutrons per unit volume} \quad \left(\frac{\text{neutrons}}{\text{cm}^3}\right)$$

$$v = \text{Neutron velocity} \quad \left(\frac{\text{cm}}{\text{s}}\right)$$

Reaction rate

(Reaction rate of neutrons with material)

$$R = \phi \Sigma$$

$$\phi = \text{Neutron flux}$$

$$\phi = \text{Macroscopic cross-section}$$

$$\left(\frac{\text{reactions}}{\text{cm}^3 \text{ s}}\right)$$

$$\left(\frac{\text{neutrons}}{\text{cm}^2 \text{ s}}\right)$$

$$\left(\frac{1}{\text{cm}}\right)$$

Neutron Mean Free Path

Macroscopic cross-section gives density of microscopic cross-sections of atoms in material

Microscopic cross-section (when seen as projected area)

$$R = \Sigma \phi = \Sigma nv - - - - - 1$$

But R = Number of neutrons

$$R = \frac{nv}{\lambda} - - - - - - 2$$

From 1 And 2

$$\lambda = \frac{1}{\Sigma}$$
 cm

Total Cross-Section of U-238

Cross-Sections of U-235

Carrie

The Fraction of the Neutron's Energy that is Lost Per Collision is Small on the Left and Large on the Right

dec.

Moderator 1

Moderator 2

Change of Multiplication Factor with Moderator Isotopic (PLNGS)

