Path of a Neutron from Birth to Absorption

Variation of k with Pitch of Lattice

Fission Process

Fission Chain Reaction

Log Mean Energy Decrement

Logarithmic mean energy decrement

$$\xi = \overline{\ln E_o - \ln E}$$

$$= \overline{\ln (E_o \mid E)}$$

$$= \overline{-\ln (E \mid E_o)}$$

Value of ξ is given by

$$\xi = 1 + \frac{(A-1)^2}{2A} \text{ Ln } \frac{(A-1)}{(A+1)}$$

Approximate value of ξ are given by

$$\xi = \frac{2}{A + 2/3}$$

ξ is Greek letter Xi

Mean Logarithmic Energy Decrements

Material	. ξ	Collisions to thermalize
H ¹ *	1.000	18
H²*	0.725	25
He ⁴ *	0.425	43
Be ⁹	0:206	83
C ¹²	0.158	115
H ₂ O	0.927	20
D ₂ O	0.510	36
BeO	0.174	105

Slowing Down Powers and Moderating Ratios

	ξ	$\Sigma_{\rm s}({\rm cm}_{-1})({\rm a})$	$\xi\Sigma_{ extsf{S}}$	Σ_{a}	$\xi \Sigma_{a}/\Sigma_{a}$
He ^(b)	0.425	2 x 10 ⁻⁶	9 x 10 ⁻⁶	? very small	? large
Be	0.206	0.74	0:15	1:17 x 10 ⁻³	130
H(c)	0.158	0.38	0.06	0.38 x 10 ⁻³	160
Bed	61174	0.69	0.12	0.68 x 10 ⁻³	180
H ₂ O	0.927	1.47	1.36	22 x 10 ⁻³	60
D ₂ O	0.510	0.35	0:18	0.33 x 10 ^{-4(d)}	5500(8)
D ₂ O	0.510	0.35	0.18	0.88 x 10 ^{-4(e)}	2047 ^(e)
D ₂ O	0.510	0.35	0.18	2:53 x 10 ^{-4(f)}	712 ^(†)

Definitions

Logarithmic mean energy decrement ξ

$$\mathbf{N}\,\xi = \operatorname{Ln}\,\frac{\mathsf{E}_{\mathsf{i}}}{\mathsf{E}_{\mathsf{f}}}$$

N = Number of Collisions

E_i = Initial energy (2 MeV)

 $\mathbf{E_f}$ = Final Energy (0.025 eV)

Macroscopic scattering cross-section Σ_s

$$\Sigma_s$$
 = N σ_s

Nuclei per unit volume

 σ = Microscopic cross-section

Slowing down power

$$=$$
 $\xi \Sigma_s$

Moderating ratio

$$= \frac{\xi \Sigma_{s}}{\Sigma_{a}}$$

Critical Assembly of 18 Bundles in D₂O

Bundles Arranged in Single Line

Interactions of importance

Capture/fission ratio: $\alpha = \sigma_{\gamma} / \sigma_{f}$

Probability of fission: $p = \sigma_f / \sigma_a$

Neutron Multiplication Factor

Neutron multiplication factor

$$\mathbf{k}_{\infty} = \varepsilon p \eta f$$
 (4 Factor)

$$\mathbf{k} = \varepsilon \, \mathbf{p} \, \mathbf{\eta} \, \mathbf{f} \, \Lambda_f \Lambda_t \quad (6 \, \text{Factor})$$

$$\varepsilon$$
 = Fast fission factor

$$\eta$$
 = Reproduction factor

$$= v \sum_{f}^{\mathsf{FUEL}} \sum_{t}^{\mathsf{FUEL}}$$

$$v$$
 = Neutrons per fission

$$f$$
 = Thermal utilization factor

=
$$\Sigma_a^{\text{FUEL}} / \Sigma_a^{\text{REACTOR}}$$

$$\Lambda_f$$
 = Fast neutron non-leakage probability

$$\Lambda_{f}$$
 = Slow neutron non-leakage probability

For reactor of finite size

$$\mathbf{k} = \mathbf{k}_{\infty} \Lambda_f \Lambda_t$$

$$k_{\infty}$$
 = k value for infinitely large reactor

Sphere

Volume:

$$\frac{\pi}{6}$$
 D²

Surface:

$$\pi D^2 \\$$

Surface/ volume ratio: $\pi D^2 / \frac{\pi}{6} D^2$

$$\pi D^2 / \frac{\pi}{6} D^2$$

$$= 6/D$$

if
$$D = 1$$

Ratio
$$= 6$$

if
$$D = 2$$

Ratio
$$= 3$$

if
$$D = 3$$

Ratio
$$= 2$$

if
$$D = 4$$

Ratio
$$= 1.5$$

if
$$D = 5$$

Ratio =
$$1.2$$

if
$$D = 6$$

Ratio
$$= 1$$

Surface-Volume Ratio

Cube of side D volume 100

Surface =
$$6D^2$$

Volume = D^3
 $D^3 = 100 : D = 4.64$
 $S = 6(4.64)^2 = 129$
S:V Ratio = $129/100 = 1.29$

Cylinder of length D, diameter D, volume 100

Surface =
$$2\frac{\pi}{4}D^2 + \pi D(D) = \frac{3}{2}D^2$$

Volume = $\frac{\pi}{4}D^2D = \frac{\pi}{4}D^3$
 $D^3 = 100(\frac{\pi}{4})$ $\therefore D = 5.03$
 $S = \frac{3}{2}\pi(5.03)^2 = 119$
S:V Ratio = 119/100 = 1.19

Sphere of diameter D, volume 100

Surface =
$$\pi D^2$$

Volume = $\frac{\pi}{6} D^3$
 $D^3 = 100(\frac{6}{\pi})$: D = 5.76
S = $\pi (5.76)^2 = 104$
S:V Ratio = $104/100 = 1.04$

Variation of the Thermal Neutron Flux along the Axis of a Cylindrical Reactor

Variation of Thermal Neutron Flux in Axial and Radial Directions in a Cylindrical Reactor

Depression of the Thermal Neutron Flux in the Interior of Fuel Bundle

Comparison of Neutron Leakage for Bare and Reflected Cores

Effect of Reflector on Shape of Radial Flux

Distance along radial direction (cm)

Asymmetry Produced by Uni-Directional Refuelling

Effect of Bi-Directional Refuelling in Flattening Axial Flux Shape

Bundle positions along channels

Flux Flattening Produced by Adjuster Rods

Flux Flattening Produced by Differential Fuelling

Flux Distribution in Reflected Reactor

Flux Flattening

Adjuster rods

Radial and axial

----- Wi

Without flattening

----- With flattening

With flattening and power increase

Neutron Flux in Core

Flux Variation in Fuel

Flux Flattening in CANDU Reactors

	Reflector	Bi-directional fuelling	Adjusters	Differential burnup	φ _{avg} φ _{max}
NPD	axial & radial	X			42%
Douglas Point	radial	Χ		χ	50%
Pickering - A	radial	X	×		57%
Pickering - B	- Kradial	¥.X ®	** X		~60%
Bruce - A	radial	X		X	~59%
Brucel- B	radial	X	X		-60%
Darlington	radial	X	x	X	~60%
Point Lepreau	radial	15 X 2 3 1	X	X	~60%