
l When a perturbation is made to the reactor properties, the steady 
state no longer holds, and the evolution ,of the neutron flux must be 

. 
obtained from the time-deoendent diffusion equation. 

a The effect of local perturbations on @(r,E,fl will quickly propagate. In 
many cases, there is a slight re-adjustment of the flux shape in a few 
milliseconds, after which the global flux level wiil increase or decrease, 
depending on whether the perturbation has increased or decreased 
k efF* - 

l When the flux shape varies little or slowly, one can predict accurately 
the evolution of the tofa/ reacfot power as a function of the changes 
brought by the perturbation to the average reactor properties, 
neglecting completely the shape changes. This is the point-kinetics 
apprwimation. : 

with: 

S = arbitrary independent source 

with: 

(k= I, 2.. 
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Flux Factorization 
2 

l In order to take advantage of the fact that the flux shape can vary 
more slowly than the amplitude, we introduce the following 
facfotiza5a3: . . 

l Substitution of this factorized form in the diffusion equation leads to a 
new equation for the shape function !K After dividing by p(f), we find 

l This equation will be coupled to a second equation for the amplitude 

PW* 

l This formulation is quite general. The advantage is that the shapeY 
varies much more slowly with 2 than the amplitude p(f). This permits 

an integration- step for Y much larger than that used to calculate the 
amplitude p. The separate solution of the shape and amplitude 
equations can lead to substantial machine-time savings. 

. 

l The equation for the amnlitude is obtained by inteQrating the diffusion 
equation over the domain (r,E). Since every point in the domain may 
not have the same importance, we first multiply the diffusi& equation 
by an arbitraw time-independenf weighting fun&on w&E), defined 
over the same domain as 4. 
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l In analogy with the steady-state production operator, we define the 
following operator F in the time-dependent case: 

e The operator FP represents the hstantaneous sowce of prompt 
neutrons (at time f). With the previous factorization, we get 

l The operator FU does not represent the instantaneous source of 
delayed neutrons. lt is the source of delayed neutrons which would be 
found at equilibrium at (r,E) g the reactor were in steady-state with the 

instantaneous flux #,E,Q. 
Spatial distriioution of the 

precursor creation rate 
I -i 

&jq+,W) = PW z mm va+(r,P ,t) p(r,i?,f) 

k 

l Substituting in the diffusion.equation, we find: 

l Introducing the factorization #=pty, multiplying by an arbitrary wieght 
functionw(f,E) and integrating over the domain, we find the following 
equation for the amplitude p(t): ., 
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Amplitude Equation (cont’d) a 

4 

l Delayed-neutron source term contains a weighted sum of precursors: ’ 

l pre-multiplying the precursor equation by x&E), muMplying the result 
by M@,FJ, and integrating over the domain, we find: 

l We now define the following scalar quantities to simplify the notation: 
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Amplitude Equation (cont’d) 

l The following kinefics pammefea have been introduced: 

and 

l We n&e that no approximafion has haen made fo fhis poinf. 

l in place of the time-dependent diffusion equation, coupled to the 
precursor equations, we have after factorization a system of coupled 
equations consisting of an equation for the shape function and the 
amplitude equations. These two svstems are entirelv equivalent. 

l In the quasi’-sfafic mefhod, the shape equation is solved over macro- 
intervals, within which the amplitude equations are separately 
integrated, using a known shape. The factorization thus introduces an 
additional degree of .freedom, which can be used to simplify the 
numerical solution of the time-dependant diffusion equation. 
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The Normalization Constraint 
6 

l We note also that the re/afive nonnalizafion of p and w is arbitrary, 
since both these quantities are functions of, time. In the absence of a 

solutions of the following form must be normalization constraint, all 
ailowed: 

@LO = 

C 

l In order to make the relative normalization unique and to transfer as 
much as possible of the time variation from 4 to the amplitude, we will 
impose: 

where KO is an arbitrary constant. As a consequence, we note: 

l The amolitude equations then become: 

and 
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The P&t Kinetics Approximation 

l The normalization constraint does ti constitute an approximation: 

The simultaneous solution of amplitude equations together with the above 
normalization constraint on I,Y, affects the vaiue of p but m of the product 4 =. 

pty, which is conserved. 

6 The solution of 4 is independent of the choice for the weighting 
.function M 

The use of at-i arbitrary weight function gives an additionnai degree of freedom. 
We may then select a particular function W to best serve our purpose. 

OBSERVATIONS: 

- The amplitude equation for p(fj is a set of ordinaw differential 
equations, much easier to solve that the shape equation (for’ &o 
) or the original diffusion equation (for @to ), which are second 
order partial differential equations. 

- The amplitude equation yielding p(f), a quantity proportional to 
the total neutron power, is controlled by onlv two kinetics 

parameters, namely ~(0 and c@], which depend on the n&ear- 
properties of materials within the.domain. 

OBJECTIVE: 

Our objective is to decouple the amplitude equation from the shape 
equation, so that we can estimate simply the reacfor response fo 
localized perb-bafions. 
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The Point Kinetics Approximation (cont’d) 

A P P R O X M A T I O N :  

T h e  c e n t r a l  a p p r o x i m a t i o n  i n  p o i n t  k i n e t i c s  i s  t o  a s s u m e  t h a t  t h e  
s h a p e  f u n c t i o n  v  u s e d  t o  c a l c u l a t e  t h e  k i n e t i c s  p a r a m e t e r s  i s  
c o n s t a n t .  i t  i s  u s u a l l y  e q u a l  t h e  i n i t i a l  s t e a d y - s t a t e  f l u x  d i s t r i b u t i o n .  

l T h e  i n i t i a l  s t e a d y - s t a t e  f l u x  d i s t r i b u t i o n ,  &,(cE), i s  n o r m a l l y  o b t a i n e d  b y  
s o l v i n g  ( o n c e )  t h e  s M c  d i f f u s i o n  e q u a t i o n  w i t h  a  d e t a i l l e d  m o d e l  o f  t h e  
r e a c t o r .  

l I f ,  i n  r e a l i t y ,  t h e  l o c a l i z e d  p e r t u r b a t i o n  d o e s  n o t  a f f e c t  s i g n i f i c a n t l y  t h e  
f l u x  s h a p e ,  w e  c a n  t h e  e x p e c t  t h a t  t h e  s o l u t i o n  t o  t h e  p o i n t  k i n e t i c s  
a p p r o x i m a t i o n ,  ~ ( 0 ,  w i l l  p r o v i d e  a  r e a s o n a b l y  a c c u r a t e  p r e d i c t i o n  o f  t h e  
t o t a l  r e a c t o r  p o w e r  t r a n s i e n t .  

l W i t h  t h e  i n t r o d u c t i o n ’  o f  t h i s  a p p r o x i m a t i o n ,  w e  n o w  a l l o w  a  d i f f e r e n c e  
b e t w e e n  t h e  a p p r o x i m a t e  f l u x  s h a p e ,  & , ,  u s e d  t o  c a l c u l a t e  t h e  
a m p l i t u d e ,  a n d  t h e  r e a l  t i m e  d e p e n d a n t  f l u x  s h a p e ,  v .  I t  w i l l  t h u s  b e  
a d v a n t a g e o u s  t o  c h o o s e  a  w e i g h t i n g  f u n c t i o n  w h i c h  m i n i m i z e s  t h e  
e r r o r  i n  ~ ( 0  d u e  t o  t h e  u n c e r t a i n t y  i n  t h e  s h a p e ,  6 ~ =  & ,  -  I , V .  
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Conventional Form of the Point-Kinetics Equations 

(initially Critical Reactor) 

l At initial steady state, we have: 

where, in principle, & =I since the reactor is assumed critical. 

m /-- We shall choose the initial adjointflux2 4;, for the weighting function: 

Reason: the error committed as a resulf of us/lJg H)e hiHal shape to calculate 
the kinetics parameter is of second order in the shape error, as long as the 
initial adjoint flux is used as weighting function. 

l While the amplitude equation contains in reality only & kinetics 
parameters, the conventional form of the point-kinetics equations 
shows three parameters, by explicitly including the dynamk reactivity 
as one parameter in the equation. 

l Dvnami.c reactivitv is defined, by analogy to the static reactivity 
introduced earlier: 

.~I ‘:. 
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The Point Kinetics Parameters 

l Multiplying and dividing the first kinetics parameter yields: 

l We have in this way separated the parameter into two components 
the dynamic reactivity At) and a new parameter, A(& which we shall 
call the mean prompt-neutron lifetime: 

l Treating second the parameter in a similar fashion, we find 

l We have in this way introduced the new parameter Af), which we shall 
call the effective delaved-neutron fraction: 



c. 
3  -  m e  P o i ! ? t - m ? e t i c s  Eqmtio??s II 

T h e  P o i n t  K i n e t i c s  P a r a m e t e r s  ( c o n t ’ d )  

l Dynamic reactivity &J has’no units. It is generally a small number, so 
that it is conventional 4o use the (non-physical) units .rnk, which are 
simply fractions of 0.001 

l &j varies rar3dlv and sionificantlv when the reactor is perturbed 
(control rod movements, refueliings, temperature and density 
changes,.,.) 

* On the other hand, over the short time horizon of the transients 
considered in reactor kinetics, we can often nealect the time variation 

--. of /?(o and A& 

l A has units of time (s). It measures the length of time it takes for an 
average neutron to reproduce itself via the fission chain reaction (i.e. 
the neutron generation) 

l p is the elective delayed neutron fraction. It is a weighted average and 
accounts for the ‘non-uniform distribution of fissile material in the 
reactor and the different delayed neutron emission spectra. 

l Typical values: 

1 B 1 Ao.0059 1 kiO.0075 1 biO.0082 1 
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The Point Kin&x Equations 

0  I n  t h e  a b s e n c e  o f  a n  e x t i r n a i  s o u r c e ,  t h e  c o n v e n t i o n a l  . f o r m  o f  t h e  
k i n e t i c s  e q u a t i o n s  i s  t h e r e f o r e  t h e . f o l o w i n g :  

, -  

l A n  a l t e r n a t e  f o r m  o f  t h e  P . K .  e q u a t i o n s  c a n  b e  w r i t t e n ,  i f  w e  c h o o s e  t h e  
f o l l o w i n g  v a r i a b l e  f o r  t h e  d e l a y e d  p r e c u r s o r  c o n c e n t r a t i o n ,  i n s t e a d  o f  

T h e n  w e  h a v e :  

(k = I, 2..:K) 
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Puint Kinetics (conclusions) 

The Point Kinetics equations are simple; 

They can be solved analytically in the case of constant reactivity; 

The PK parameters correctly characterize the reactor and can be 
obtained in a straight-foward manner: 

- rough estimate (survey calculations), * 

- detailled estimate starting from a complete description of a reactor 
and a steady-state solution of the diffusion equation (enoineering 
calcuiations); 

If reactivity varies (as it generally does during a transient), the PK 
equations are eas2y solved flWnefjca/Iy (on personnal computers); 

Point Kinetics calculation are very useful in control andi safety 
stuchs, because feedback effects can easily be modeled; 

Because the z?pproacI? kz app-uximate (tissumption of constant flux 
shape), caution must be used. Validation with detailed space-time 
kinetics methods (time-dependent diffusion equation in 3D). 
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