
4 - Elementary Solutions to the Kinetics Equations 

l Point Kinetics Eauations 

- amplitude p&I 

- delayed neutron source: s&j 

l Within the limitations of Point Kinetics, these equations are exact and the 
reactivity can vary arbitrarily. We will first seek aMyfjca/ sohtions to 
these equations, starting with the most simple representation, a step- 
change in reactivity (i.e. consfant reactivity) 

l Steadv-State: 

Any transient starts with an initial steady-state. Setting, dp/dt and dgdt 
equal to 0: 

(& -6M0 + z Ak cko + so = o 
k 

-Akcko + pkpo = 0 

sdo = 2 kkcko = PPo 
k 

Note: if reactor is critical, pO=O and so=0 
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Initial Steady State 

source fvkJltiblication Formulas: 

- subcritical 
1 

PO = 
( 1 

- so 
-Po 

The factor (I /-pJ is the suk~fika/ ~?~u/~i,Mca~~of~ factor. Note that sO is 
independant of pO. The flux level in a subcritical reactor is m 
arbitrary, but is proportionnal to the intensity of the etierna/ source. 

- critical 

PO = 

The factor (l/p) acts as a multiplication factor for the delayed source 
in a critical reactor. Note that s&hat is m independent of /3. We can 
interpret this equation by saying that the delayed source in a critical 
reactor at sfeady sMe is proportionnal to the flux level. 

- generally : 

PO = 
So+%0 

P-P0 

The factor 1 I@- pO) is the source mukiphcation factor, which includes 
the delayed source. Again we can say that the flux level in a reactor 
at steady state is proportionnal to the total source, external + 
delayed. 
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Constant Reactivity (step-change) with one delayed group 

l lnitiallv critical reactor -. 

f-m = 
{ 

0 (k0) AZ_ 
0 t 

PO u lz 0) 

l take the Laplace transform of the P.K. euuations, with one delayed group 
(K=l) - 

where 

sP(s) - p(O) = a P(s) + ~xw 
sX(s) - C(O) = p P(s) - A X(s) 

and 
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Cons tan t Reactivity (con t’d) 

l The poles of P(s) are the roots CO, and w20f the characteristic polynomial: 

s* +(A-a)s -- = Qo () 

A 

that is: 

l The solution for constant reactivity in the frequency domain can then be 
written: 

where: 

P(s) = p* -+- ( 4 4 
S-U1 s-q 1 
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Constant Reactivity (cont’dj 

l In the time domain, the general solution will be: 

I PW = p. [Al ewlr + A2 em2t 1 

with 

A2 = 1 

c*1 -u2 

l the (total) precursor concentration will then be: 

Typical values of the one-group parameters 

1 CANDU 1 PWR I FBR 1 

A 6) 0,001 < 0,0001 < 0,00005 
B 0,006 0,0075 0,0035 

a (s-l) OJ 091 OJ 
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Analytical expression for a reactivity echelon 

-12 -10 -8 -6 -4 -2 0 2 

Frequency (s-l ) 

l We observe that the two roots are always widely seperated: 
q 

t-i 
>> 1 si PO =+ 

u2 

l This implies that one of the two exponenti8ls will rapidely dominate the 
solution. 

l An approximate analytical solution, valid within 1% as long as p is not too 
close to /3: 

as long as 
IPo-PI 2 5 



1 

4 - E/ementary Sdutions to the Kinetics Equations 

Response to a positive echelon In CANDU 

4 6 8 10 
Time (s) 

l As expected, power increases when ~9 (supercritical), and it decreases 
when ~0 (subcritical); 

l We note a completely different response of the reactor when p z /I : 

m 

l7 

- 

When p >/3 , the reactor is promot supercritical. The reactor would 
be supercritical even without the delayed source. The prompt 
multiplication of neutrons dominates the response. 

The rate of increase of power is extremely raoid. The solution is 
dominated by the second exponential, which becomes positive 
when p =$. 

When p c/3 , the reactor is prompt subcritical. Power increases or 
decreases depending on the sign of 
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- Prompt Subcritical State (p s#J ) 

l The response is characterized by a prompt jump (or drop), followed by a 
gradual increase (or decrease). 

l The prompt jump is caused the rapid adjustment of the (subcritical) 
prompt multiplication. The second exponential vanishes rapidly. 

l During the first fraction of a second, the delayed neutron source s,, has 
not varied significantly_ The amblitude of the oromot iumo can then be 
estimated by postulating that sd is a constant in the amplitude equation: 

l After the orombt iumo, neutron power in the reactor essentially responds 
to the evolution of the delayed source (precursors). Since the 
concentrations of precursors are governed by relatively large decay time 
constants, power varies much more slowly. 

. 
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Reactor Period vs. Reactivitv 

l Definition of reactor period, 

1 1 dP 
T= 

-m 
NJ dt 

l After the initial transient, there i? a fixed relation between period and 
reactivity: 

l We observe: 

-  when p c 1  mk, the period is larger than 1 minute 

-  when F =$3 (6 mk), the period is of the order of= 1 secund. 

-  This behavior is common to all reactor systems 

l It implies that: 

- there is no problem in controlling nuclear reactors when 
reactivity is maintained well below p = p ;  

- prompt-criticality must be avoided at all costs (Chernobyl) 
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Reactor Period vs. Reactivity 
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Comparison with other reactor types 

- 
l reactivity can be expressed in $, by simply considering : 

al 3 mk excursion 

0 2 4 6 8 

Time (s) 

4 0.5$ excursion 

4 6 

Time (s) 

8 10 



- 
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Reactivitv Insertion in a Subcritical Reactor 

Pb 

t<o 

wt 

with: 
AP 

CJ 
- w- 

7 
SO p. c -- 

PO 

l Proceding as previously, we find:: 
0.q = ES!+ 

4 
{A -a)+ +Q 

2 4 A 

- if Ap = -p. , the reactor becomes just critical after the perturbation. In 
this case, one of the roots is zero: 

,- 
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Subcritical reactor (cont’d) 

l if the reactor is mcritical after the initial perturbation, we find: 

with 

and 

PW = po[Ao + bew4+A2eqr] 

A0 

4 

A2 

Approximate expression (since 0 cc p ): 

l if the reactor iswcritical after the initial perturbation, we find: 
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Subcritical Transients 

l When a subcritical reactor is perturbed abruptly there is a prompt jump 
- in neutron power, followed by a gradual approach to another constant 

power/eve/. 

l This is @, with the same external 
source present. 

l The new power level is simply: 

l The measurement of the power change for a know reactivity insertion Ap 
allows us to determine the initial reactivity pO. 

l In particular, when power exactly doubles, the application of an additional 
Ap will make the reactor critical (power doubling rule): 

proof: 

if &Ak= PC3 2 

PO P PO +AP 

then P = p+Ap = 0 
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Subcritical Transients in CANDU 

-,- 

AP 
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Generalization to manv delayed neutron groups 

-. With more than one delayed group, we find: 

l The solution can be written: 

r K+l 

PM = p. 
1 

A0 + z A,, e*d 
1 

n-l 1 
(if p * 0) 

l The mn are obtained from the /‘VorcYheifn equation (also known as the 
inhour equation): 

l If the reactor becomes critical after the application of the perturbation, 

K+i PM r = PO A0 + Al 1 + 2 4 ewn’ 1 

n=2 
(if p = 0) 

6 





4 - Elementary Solutions to the Kinetics Equations 18 

Influence of core composition (CANDU) 

” 

15 delayed neutron groups 

- 3 mk 

0: , , 

20 0 10 

Time (s) 

Influence of photoneutrons (+I mk) 
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Influence of photoneutrons (shutdown, -30 mk) 
- 

200 300 

Time (s) 

Comparison with 1 delayed group calculations 

l one-group properties : 

B 
k-l 

A avg = 
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al +6 mk, equi 
- 

librium core 

0 1 

Time (s) 

W +3 mk, equilibrium core 

, 

A. m 

0, - - , . . , . . , . . , . 
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-. cl -6 mk, equilibrium core 

w- 

a0 , - 
0,Ol 031 1 

Time (s) 
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