Mathematics - Course 421

GRAPHING FUNCTIONS

I Introduction to Functions

Definition:

One variable is a *function* of another variable if a unique value of the first variable corresponds to each value of the other, ie, if the two variables are related by some formula (loosely speaking).

Notation:

The notation f(x), A(r), P(T), etc is used to denote f as a function of x, A as a function of r, P as a function of T, etc.

Example 1:

The area A of a circle is a function of its radius r according to the formula,

$$A(r) = \pi r^2$$
 (read "A at r equals πr^2 ")

ie, a definite value of A corresponds to each value of r

eg,
$$A(1) = \pi(1)^2 = 3.14$$

$$A(5) = \pi(5)^2 = 78.5$$

$$A(0.1) = \pi(0.1)^2 = 0.0314$$

etc.

Example 2:

$$f(x) = x^3 - 5x$$
 (read "f at x equals $x^3 - 5x$ ")

Here f is a function of x since the formula gives a unique value of f for each value of x

eg,
$$f(0) = 0^3 - 5(0) = 0$$

$$f(1) = 1^3 - 5(1) = -4$$

$$f(-2) = (-2)^3 - 5(-2) = 2$$

etc.

Functions of Several Variables:

If G is a function of n variables, x_1 , x_2 , ..., x_n) one writes

$$G(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n)$$

Example 3:

Cylinder volume V is a function of both height h and radius r, according to the formula,

$$V(r, h) = \pi r^2 h$$

ie, each pair of r and h gives a unique volume

eg,
$$V(1, 1) = \pi(1)^2$$
 (1) = 3.14
 $V(2, 5) = \pi(2)^2$ (5) = 62.8
etc.

Dependent and Independent Variables:

The independent variable is the one to which values are assigned arbitrarily, and the dependent variable is the one given by the formula.

eg, dependent variables $\begin{matrix} \downarrow & & \downarrow & & \downarrow \\ A(r); & f(x); & G(x_1, x_2, \dots, x_n) \\ \uparrow & \uparrow & \uparrow & \uparrow \end{matrix}$

independent variables

II Graphing Functions

Usually the independent variable is plotted along the x-axis (horizontally) and the dependent variable along the y-axis (vertically) - cf 421.40-1, part III.

The steps to graphing a function are similar to those outlined in § 221.40-1, part III for data graphs, with the following notable differences:

- (1) The table of values must be calculated, using the function relationship.
- (2) The plotted points are <u>always</u> joined by a smooth curve (except for discontinuous functions, which are beyond the scope of this text).
- (3) The curve is labelled with the equation which it represents.

Example 1:

Plot a graph showing circle area A as a function of radius r in meters, $0 \le r \le 4$.

Solution:

Use $A(r) = \pi r^2$ to generate a table of values.

r meters	0	1	2	3	4
A(r) meters ²	0	3.1	12.6	28.3	50.3

Graph of Circle Area vs Radius

Roots of an Equation:

The *roots* of any equation of the form f(x) = 0 are the x values which satisfy this equation (make it true). Clearly, the x-coordinates of the x-intercepts of the curve y = f(x) are the roots of f(x) = 0, as illustrated below:

 x_1 , x_2 are the roots of f(x) = 0

Example 2:

Graph the function $f(x) = x^3 - 5x$ and find the roots of $x^3 - 5x = 0$ from the graph.

Solution:

Let y = f(x), and use $y = x^3 - 5x$ to generate a table of values

ж	O	±l	±1.5	±2	±2.5	±3	±4
У	0	74	- 4.1	+2	±3.1	± 12	±44

Roots of $x^3 - 5x = 0$ are $x = \pm 2.2$ and x = 0

ASSIGNMENT

- 1. Express each of the following statements in functional notation, and give the exact formula for the notation:
 - (a) The circumference C of a circle is a function of its radius r.
 - (b) The distance d travelled in time t at a uniform speed v is a function of t and v.
 - (c) The total area A of the surface of a right circular cylinder is a function of its height h and radius r of its base.
- 2. Given f(x) = 2x 3, find f(6), f(0), f(-2).

- 3. Given H(x) = x(x a)(x 1) find H(0), H(1), H(a).
- 4. Find the length d of a diagonal of a square as a function of the perimeter p of the square.
- 5. Graph the following functions f(x) and find the roots of f(x) = 0 from the graphs:
 - (a) $4 x^2$
 - (b) $x^2 + 2x + 2$
 - (c) $2 + 9x x^3$
 - (d) $x^2 x 6$
 - (e) $x^3 3x 1$

L. Haacke