Mathematics - Course 221

THE STRAIGHT LINE

I Slope of a Straight Line

The *slope* of a straight line in the xy-plane is a measure of how steeply the line rises or falls relative to the x-axis.

More precisely, the slope of a line is the increase in y per unit increase in x,

OR the rate of change of y with respect to x.

In Figure 1, for line segment P1P2,

 $\Delta y = y_2 - y_1$ is called the rise

 $\Delta x = x_2 - x_1$ is called the run, and

 θ is called the angle of inclination of the line.

Figure 1

The numerical value of the slope, usually designated "m", is given by

slope
$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

By trigonometry applied to right triangle P1P2Q of Figure 1,

$$\tan \theta = \frac{\Delta y}{\Delta x} = m$$

ie, the slope of a line is numerically equal to the tangent of the line's angle of inclination.

Note that the angle of inclination is defined as the smallest angle measured counterclockwise from the positive x-axis to the line, and therefore is always less than 180°.

The following table summarizes the correlation between the slope and orientation of a line in the plane:

Line Orientation	Typical Sketch	Slope Value
Rising to the right	y θ<90°	m > 0
Falling to the right	φ>90°	m < 0
Parallel to x-axis	$ \begin{array}{ccc} Y \\ \hline \theta &= 0 \\ \hline \end{array} $	$m = 0$ $(\Delta y = 0)$
Perpendicular to x-axis	y θ ×	m undefined $(\Delta x = 0)$

Example 1

Find the (a) slope (b) angle of inclination of the line which passes through (-2,4) and (3,-5)

Solution

(a) Slope
$$=\frac{y_2 - y_1}{x_2 - x_1}$$

 $=\frac{-5 - 4}{3 - (-2)}$
 $=\frac{-9}{5}$ or -1.8

NOTE: In the previous solution, $P_1(x_1, y_1) = (-2, 4)$ and $P_2(x_2, y_2) = (3, -5)$. However, the choice for P_1 and P_2 could have been reversed without affecting the answer. (Check this.)

- (b) $\tan \theta = -1.8$
 - \Rightarrow associated acute angle = tan⁻¹1.8 (cf lesson 321.20-3) = 60.9°
- ... angle of inclination, = $180-60.9^{\circ}$ = 119.1°

Example 2

Given that the slope of a line is 1.5, find the change in

- (a) x corresponding to an increase of 3 in y.
- (b) y corresponding to a decrease of 4 in x.

Solution

Let P(x,y) and $Q(x + \Delta x, y + \Delta y)$ be any two points on the line (see Figure 2).

Then slope of PQ = $\frac{\Delta y}{\Delta x}$ = 1.5

ie,
$$\Delta x = \frac{3}{1.5}$$

= 2

increases by 2 if y increases by 3 (between any two points on the line.)

(b)
$$\Delta x = -4$$
 (x increases by -4 if x decreases by 4).

Then
$$\frac{\Delta y}{-4} = 1.5$$

...
$$\Delta y = (-4)(1.5)$$

= -6

. . y decreases by 6 if x decreases by 4.

II Parallel and Perpendicular Lines

- (a) Parallel lines have equal slopes, ie, line $L_1 \mid \mid$ line $L_2 \Leftrightarrow m_1 = m_2$
- (b) The slopes of perpendicular lines are negative reciprocals, ie, line L_1 line $L_2 \iff m_1 = -\frac{1}{m_2}$

Example 3

Find the slope of the family of lines (a) parallel (b) perpendicular to a line L with slope $m = \frac{2}{5}$.

Solution

- (a) Slope of family of lines parallel to L=m = $\frac{2}{5}$
- (b) Slope of family of lines perpendicular to $L = -\frac{1}{m}$ $= -\frac{1}{\frac{2}{5}}$ $= -\frac{5}{2}$

III Equation of a Line

The equation of a line is the relationship which is satisfied by the mordinates of all points on the line, and by no others.

(a) Two-Point Form

Required: to find the equation of the line which passes through points $P_1(x_1,y_1)$ and $P_2(x_2,y_2)$.

Solution: Let P(x,y) be any point (other than P_1 or P_2) on the line (see Figure 3).

Figure 3

Then slope $P_1P = \text{slope } P_1P_2$ (all line segments have same slope)

ie,
$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$$

...
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$
 Two-point form.

Example 4

Find the equation of the line passing through points (-2,4) and (3,-5).

Solution: Using two-point form,

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

ie,
$$y - 4 = \frac{-5 - 4}{3 - (-2)} (x - (-2))$$

$$=\frac{-9}{5}(x+2)$$

ie,
$$5y - 20 = -9x - 18$$

ie,
$$9x + 5y - 2 = 0$$

Note:

- (i) The answer has been expressed in the so-called general form of the straight line equation, Ax + By + C = 0.
- (ii) Points $P_1(x_1,y_1)$ and $P_2(x_2,y_2)$ can be interchanged in the above solution without affecting the answer. (Check this.)

(b) Slope-Point Form

Required: to find the equation of the line having slope m and passing through $P_1(x_1, y_1)$.

Solution: Let P(x,y) be any point on the line (see Figure 4).

Figure 4

Then slope $P_1P = m$

ie,
$$\frac{y - y_1}{x - x_1} = m$$

...
$$y - y_1 = m(x - x_1)$$
 Slope-Point Form.

Example 5

Find the equation of a line with slope -2 and passing through (-3,5).

Solution: Using slope-point form,

$$y - y_1 = m(x - x_1)$$

ie,
$$y - 5 = -2(x - (-3))$$
 (substitute (-3,5) for (x_1, y_1))

ie,
$$y - 5 = -2x - 6$$

ie,
$$2x + y + 1 = 0$$

(c) Slope-Intercept Form

Required: to find the equation of the line with slope m
and y-intercept b.

Solution: Let P(x,y) be any point on the line (see Figure 5).

Figure 5

Then slope BP = m

ie,
$$\frac{y - b}{x - o} = m$$

ie,
$$y - b = xm$$

ie,
$$y = mx + b$$

Slope-Intercept Form

Example 6

Find the equation of the line having slope $\frac{2}{3}$ and y-intercept -3.

Solution: Using slope-intercept form,

$$y = mx + b$$

ie,
$$y = \frac{2}{3}x + (-3)$$

ie,
$$3y = 2x - 9$$
 (mult. both sides by 3)

ie,
$$2x - 3y - 9 = 0$$

Example 7

Find the (a) slope (b) y-intercept (c) x-intercept of the line 5x - 2y + 10 = 0.

Solution: The simplest way to find the slope and y-intercept is to express the equation in slope-intercept form by solving for y:

$$5x - 2y + 10 = 0$$

$$-2y = -5x - 10$$

$$y = \frac{5}{2}x + 5$$

$$\uparrow \qquad \uparrow$$

$$m \qquad b$$

$$(y = mx + b)$$

(a) slope
$$m = \frac{5}{2}$$
, and

(b)
$$y$$
-intercept $b = 5$

(c) At the x-intercept, y = o. Thus the x-coordinate is found by substituting y = o in the equation, and solving for x:

$$5x - 2(0) + 10 = 0$$

$$\cdot \cdot \cdot x = -2$$

$$\cdot$$
 x-intercept = -2

Example 8

Find the equation of the line L_2 passing through the point (-4,1), and perpendicular to line L_1 3x - y - 2 = 0.

Solution: Equation of L_1 in "y = mx + b" form is y = 3x - 2

.*.
$$m_1 = 3$$

$$m_2 = -\frac{1}{m_1}$$
$$= -\frac{1}{3}$$

. Equation of L_2 is $y - y_1 = m(x - x_1)$ (slope-point form)

$$y - 1 = -\frac{1}{3} (x - (-4))$$
 $((x_1, y_1) = (-4, 1))$

ie,
$$3y - 3 = -(x + 4)$$

$$= -x - 4$$

$$x + 3y + 1 = 0$$

IV Graphing Lines

Recall that all equations of the form

$$Ax + By + C = 0$$
 (general form) or

$$y = mx + b$$
 (slope-intercept form),

represent straight lines in the xy-plane. The (x,y) co-ordinates of every point on a line (and no others) satisfy the equation of the line.

Steps to Graphing a Line

- 1. Solve the equation for y (or x).
- 2. Make a table of values containing at least three points. (The third point serves as an internal check: if all three points do not line up on graph, at least one point is in error.)
- 3. Plot points.
- 4. Draw and label line.

Example 9

Graph the line 2x - 5y + 6 = 0

Step 1:
$$y = \frac{2x + 6}{5}$$

Step 2:

x	-8	0	2
У	-2	6 <u>5</u>	2

Step 3, 4:

ASSIGNMENT

- Find (i) the slope, (ii) the angle of inclination, and (iii) the equation the line passing through the points,
 - (a) (0,0) and (3,4)
 - (b) (0,2) and (3,0)
 - (c) (2,-2) and (-2,2)
 - (d) (5,2) and (0,2)
 - (e) (-3,1) and (-3,4)
- 2. Show that the following three points lie on the same straight line:

$$P(-5,-3)$$
,

$$Q(-1,-1)$$
,

R(5,2)

- 3. Graph the following lines and find their slopes and intercepts:
 - (a) x + y = 4
 - (b) 5x 4y 20 = 0
 - (c) 5y 6 = 0
 - (d) 15x + 4 = 0
- 4. State the slope of the family of lines (a) parallel (b) perpendicular to each of the lines in question 3.
- 5. Find the equation of the line passing through the given point with the given slope.
 - (a) (4,3), m = 1/3
 - (b) (-4,-1), m = -5
 - (c) (-7,-5), m = 0

- 6. Find the equation of the line passing through the given point with the given angle of inclination.
 - (a) (3,3), $\theta = 45^{\circ}$
 - (b) $(-1,4), \theta = 30^{\circ}$
 - (c) $(2,-5), \theta = 135^{\circ}$
- 7. Find the slope and y-intercept of each of the following lines:
 - (a) 2x 5y + 6 = 0
 - (b) 8x + 3y 7 = 0
- 8. For each line in question #7, state the change in
 - (a) x corresponding to an increase of 3 in y.
 - (b) y corresponding to a decrease of 5 in x.
- 9. Find the equations of the following lines:
 - (a) passing through (-1,4) and (-1,-2)
 - (b) passing through (-2,-5) with slope $\frac{5}{3}$
 - (c) with y-intercept $-4\frac{1}{2}$ and slope $-\frac{2}{3}$
 - (d) passing through (0,0) and parallel to 4x + y 2 = 0
 - (e) with y-intercept 6 and perpendicular to x 5y + 3 = 0
 - (f) passing through (6,0) with angle of inclination 45°.

L.C. Haacke