
Chapter 2 

THE MONTE CARLO 

METHOD 

The Monk Carlo method is a method of appmximakly solving mathematical 
and physical problems by the simulation of random quantities. The krminology 
“Monte Carlo” conws from the city of Monk Carlo in the principality of Monaco, 
famous for ik gambling houses. 

The computational algorithm is relatively simple in Monk Carlo c&uIa- 
tions. The algorithm consists, in general, of a process for producing a random 
event. The process is repeakd N times, each trial being independent of the 
others, and the resulk of all trials are averaged together to provide an cstimafe 
of the quantity of inkrest. The process is similar k performing a scientific 
experiment and is sometime called the method of stochastic, or 8ktistical ex- 
perimenk or trials. The error associakd’with the estimakd quantity is, as a 
rule, inversely proportional k the square mot of the number of trials. that is 

It in clear that, to decrease the error by a fackr of 10 (in order to obtain another 
signiiicant digit in the result), it is neceeary to increase N (and the compu- 
tational d%xt) by a fackr of 104. To attain high precision in Monk Carlo 
calculation8 is clearly impassible. The Monk Carlo method is most &ective in 
solving problems in which the resulk need k be accurate to less than a few per- 
cent. It is important to point out here however that, unlike other dekrministic 
methods, the Monk Carlo method provides an answer with an ermr awxiakd 
with it, eo that a confidence level in the remdt can be established. 

The main advantage of the Monk Carlo method is ik abiity to handle 
complex geometry. Ik main limit&an is that it only providea 8olutiona at 
specified locations, unliie deterministic methoda which provide solutions at alI 
p&k in the space considered. 

Since the Monk Carlo method ia a computational process in wbicb random 
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variablea ace used, we begin by expb&ing what it is meant by a random variable 
and reviewing sane important &atistical concepts. 

2.1 Ftandom Variables 

In ordinary English usage, a random variable is the outcome of any process that 
proceeds without any diicemible aim or direction. Mathematically the word 
random variable means that we do not know the value of a particular quantity 
in any given c&w, but we know what V&IS it can azsune and we know the 
prohabilitics with which it axurnes thw value% Then a random variable: X, 
is defined discretely by the table 

where the zc’s are possible values of X and the ~‘6 are the corresponding pmb- 
abilities. Then one writes P(X = .v)= pi, or p_r(a)= pi. 

For continuous random variables, a function p(z.) in some interval (a,b) is 
assigned and called the prubabiliiy densify function, pdf, or the density diitri- 
bution, such that 

P(a < X < b) = lb p(z’) dz’, such that p+) 2 0 

The zerc+th moment of this function is normalized such that 

1 
=p(z)dz=l 

-co 

(2.3) 

(2.4) 

The first moment of the diitribution provides ihe ~&led expected value or 
mathematical expectation 

E(X) = /* zp(z) dz (3.5) 
a 

The second centml moment defines the variance of the distribution 

u’(X) = 
I 

’ [z - E(X)]‘p(z) dz 
. 

(2.6) 

The cumulative demity function, ddf. ia defined as 

F(zJ = P(X 5 ~0) = /=-p(z) dz 
a 

(2.7) 

Then, 

P(a’ < X < b’) = 
r’ 

p(z) dz = F(b’) - P(a’) (2.8) 
.’ 

The cumulative dewity function representa an area under the pdf. extending 
from a to zo. The ddf. ia particularly useful in Monk Carlo calculations a 
shown lakr. 
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2.2 Abstract Analysis 

5 

An event mean the occurre~~ce of a specified outcome of an experiment. Let Q 
be the event that includes all pcaible events. Then any event A C t-l, that is A 
is contained in a. The probability is a real-valued function of the events of a 
experiment satisfying 

P(0)=0, P(fi)=l; O<P(A)<lforallAct-I (2% 

(2.10) 

where U reads wion and signifies the fact that the event exisk simultaneously 
in the spaces considered, while n reads infersecfion and d&n= events commor~ 
to the concerned space.?. 

The above abstract notion of probability is more general than the frequency 
notion usually used in statistieal analy&.. In the frequency probability analysis, 
in an experiment repeated II times, with an event A occurring II(A) times, one 
expects n(A)/n to cluster about a unique number P(A). The abstract notion 
of probability requires however only that the function P a4gns to every event 
A a number with the ahove probability. 

The probability is a re&valued function in certain sukets of Q, which we 
call the event of fl. Certain real-valued functions of the pods of fi are called 
random wriables. Let a point of 5l denoted by w and let < be a real-valued 
function IX the points of fl. Let 

A(:) = G I+) 5 t1 (2.11) 

Thii defines the set of all points u such that t(u) 5 t, The; A(t) is a subset of 
n which depends on the real number t. 

If for every f, the set A(f) k an event, then < is called a random vmiabIe. 
Then 

P {A(f)] = P {WI c(w) 5 f) = P {{ 5 f} ; defined for every t (2.12) 

The above is the formal definition of random variables. The real-valued function 
of a real variahk defined by 

w)=Ptc<t} (2.13) 

is called the diitribution function or the cumulative demdty function. It haa the 
following charackistics 

1. E is continuous ore the right at every event t 

2. F is a monokme nondecrming function 

3. F(-co)= 0 and F(w)= 1 



6 CEAPTER 2. TEE MONTE CARJiO ME?TEOD 

4. F(a)-F(b)= P(a <c 5 b), for a < b 

5. If te is a point of discontinuity of F with a jump of height p, then 
P {c = to) = p and there is a non-zero probability that the random vari- 
able takes on the value to. 

6. If the derivative of F with respect to t exists at point t, then 

lbnP{t-A/2<c<t+A/2}=$A=f(t)A 
A-0 

(2.14) 

If the derivative, f(t) exists, it is called the probability density function, 
or simply the density function. 

If N independent trials of an experiment are performed, the probability space 
QN consisting of all N-tuples (WI,. .w~) of points of fl is 

(2.15) 
iz1 

Define N random variables .$ on 12N hy 

If c is a diicrete random function of N variables, such that 

is also a random variable on &’ and representa the total number of occurrences 
of the event u in N repetitions of the experiment. 

2.2.1 Tchebycheff Theorem 

Thii theorem k&a mathematicaUy that for any random variable, t, of any dis 
tribution function with a mean, or expected value, m, and a standard deviation 
0 

P{p*l>kc7}+>0 (2.18) 

If we w 1 to define an “error” c = ku, then for the random variable <(“) 

(2.19) 

Thii theorem reiteraks the fact represenkd by equation (2.1) that to reduce 
the error by a factor of two, the number of tri& of the experiment must be 
qIwdrupled. 
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2.2.2 Central Limit Theorem 

1 

This is also called the law of large numbers and states essentially that $“) 
will be approximately normally diitributed even if { ia not. The theorem states 
formally that if (1,. . .( N is a eequenc.e of imfepedenf and identically distributed 
random variab!ea with a common mear~ m and variance u’, then 

_(2.20) 

is asymptotically normal (m,u/i?‘), that is 

The theorem a.smms that both m and o exist, that is they are given by abso- 
lately convergent integrals. Applying the TchebychefT’s theorem, then 

In the above equation leads ta implia that tbey are asymptotically equal: ’ 

The central-limit theorem is the backbone of the Monte Carlo method. The 
average value c is used g an ufimufe of the random variable <. Thii v&e 
approaches the true expected value, m, a~ the number of trials appmach infinity. 
The variability estimated by 

is called the sample variance. It is not directly an estimate of the diitribution 
variance. It can be stated however that 

(2.25) 

The confidence interval in the estimated value of i can be delined by [t + 
UC,< -n<], where 

ce = d (2.26) 

Since d is not known, the following estimate is wed 



8 CEAPTER 2. TEE MONTE CARLO METHOD 

A useful quantity used in Monk Cat10 computations in called the fictiorz 
sfandmi deviofion, fsd. , delined as 

fsd.=2 
e 

(2.28) 

An fsd. of less than 0.05, or 5 %, is usually required in Monte Carlo calculation. 

2.3 Construction of Samples 

and 

P {a < k,l, . . ,t~,~~b}=P{a~ti,~~b}...~{a<f~,~~b}= jbf(z)dz” 
L 1 4 (2.30) 

The above equation implies that the random variables .$,I, . . ., .&, are mutually 
independent, if t;,~, . . ., t+,, are all diRerent. 

The aequenca of random numbers, h, . . . . p,,, such that 0 2 /I; 5 1, rep- 
resents sampks d.r.wvn independently from a uni~ornz pdf. in the interval [OJ]. 
that is 

and 

(2.31) 

P{a<~~,...,~*~b)=(b-a)“, iI,--.,&,, areddikent (2.32) 

Now by setting a ampled random number c equal to the ddf. 
F(z), that is 

1 

z 
F(z) = P{{ 5 z} = f(t) dt = p (2.33) 

one can solve for z, and consequently obtL a value that in sampled from the 
diitribution f(z). 

(2.34) 

where R ia the probability of OCCUIIUI.X of ZJ. The -p&g caf * Zj k then 
achieved as followa 

&+? (2.35) 

where c isa a random number uniformly distributed in the interval (OJ). 
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2.4 Random Number Generation 

Digital random number generators are nowadays a standard feature in almcet alI 
computer systems. The generakd numbem are called pseudo random num6ers as 
they are not purely random. They must satisfy however two important criteria: 

Equi-distribution each number has the SXIIX probability of occurrence as any 
other number in the set. 

Independence the occurrence of any given number should not depend on the 
previous occurrence or any subsequent occurrence of any other number. 

The modulus method is perhaps the most widely used method. Given any 
constant a the random numbers are generated za follows 

~i = a pi-, (mod M) (2.36) 

where M = 2’, and 1 is the number of bita per word in the computer being 
used. Modulus is a number or quantity that produces the same remainder when 
divided into each of two quantities. A = B (mod M) reads A is congruent to 
B module M and means A is the remainder of B/M I. 

2.5 Monte Carlo Simulation of Particle Trans- 
port 

2.5.1 Essential Requirements 
source 
The position, g-m&y, diiectional distribution and energy distribution of the 
source must be speciiied. In transient analysis, the &age of the source with 
time must be also known. FL&m soxmxs and cc&ion scwces are dekrmined by 
the cross section of the material and need not be specified w input parameters. 
The fi&xion diitribution with energy, x (E), must however be specified, in order 
to dekrmine the energy of the emerging neutron. A sours particle in usually 
assigned a statistical weight, W, the significance of which is examined lakx. 

Geometry 

The Monk Carlo method can handle complex geometries. The geometry must 
however be specified in such a vay that enables tracking of the particle through- 
out the ayskm and relating the pcaition of the particle within the sy&m to the 
makrial, or mote specifically material ace3 .section. 

The geometry can be specSed via analytical geometry procedures, which 
define the surfacea of different geometrical objeck. Alkmatively, the geometry 
nmy be specified via a set of &lementary bodies, combiied together using logi+ 

IFor -& 15 (n,.,d 13) z 2 
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operators ta form a zone of a particular makrial. Tbii ia called the combinatorial 
geometry method and is utilized in the MORSE code. 

Material Cross Sections 

The cress sections for the different materials encounkred must be supplied a 
a function of energy. The Legendre expansion coefficients for each material are 
also needed, if an anisotropic scattering is considered. 

The cross sections arc processed prior to the simulation to provide the pmb- 
ability table, which dekrminw the distance to be travelled by the particle until 
the next collision, the outcome of the collision, and the outgoing erngy and 
angle of a scattering event in addition to the number of neutrons per fission for 
fissile materials. 

Scoring 

The scoring pmcesa is determined by a variety of estimators which evaluate the 
lluence, or fluenc4ike quantities, at a point or a region. Statistical estimate& 
including the average and the variance of the average are &imakd at the end 
of the random walk process. 

The body emssing edimafor evaluates the flux crossing a surface, by accu- 
mulating the weight of particlea crossing the surfacea divided by the absoluk 
value of the casine of the angle between the normal to the surface and direction 
of the incident particle. Provisions are made to avoid small angles cc&es. 

The truck lengih esfimaforwaluates the fiuence by summing the track length 
of particlea erasing a given zone, divided by the volume of the zone. Thii is 
uswlly suitable for evaluating the flnence in void or air regions, and regions 
cont~ing a lo& density material. 

The caJli&n densify eafimafor adds up the weight of particlea colliding 
within a zone, divided by the totd cross section of the makriaI and the volume 
of the zone. The estimator provides adequak estimaks for the fluence in regiona 
of high density makri&, where a large number of c&siona are anticipated. 

In all the &we estimators, the particle must visit the region, or surface of 
interest. In situations where the pmbabiity of the particles reaching the region 
of inkrest is low, indirect cstimaks, called statistical estimation are used. These 
estimators evaluak the probability of tbe next collision being at the dekctor 
site. This called the nezl ewnf eafimator and is particularly useful for point 
detectors, where there is only one pcssible position for the “next colliiion”. 
Note that the parti& being tracked does not alkx ik original position, only 
the probability of the next colliiion being at the d&&or sik is exaluakd and 
atored. 

2.5.2 Ekample 

In order to illutrak the above p&k, let us consider the relatively simple 
problem of evaluating the tluence tbrougb c~shieldiig slab, with a neutmn source 
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on one side and a dekcka on the other side. 

source Pammeters 

If we assume a point, mon~energetic and isotropic source, then only th? di- 
rection of the incident particle nesd to be sampled, in a steady state problem. 
Since we are not interested in neutrons direckd away from the target, the an- 
gular probability becomes 

sin0 d6 d# dcos 0 d+4 
p(l-z)&+= 2~ =-- 

2 I 
(2.3) 

where f3 is the polar angle and 4 is the azimuthal angle. Equating the cumulative 
probability for ox 0 to a random number px sampled from a uniform distribution 
in the interval (O,l), then 

The inversion of the above leads to an equation for selecting 0 

e = cc&(2f3 - 1) 

Similarly, the angle 4 is sampled from the relationship 

(2.39) 

+=VZ 

where & is another random number. 

(2.40) 

Distance of Travel 

Next, one needs to dekrmine the distance the neutron will travel until it col- 
lides. The probabiiity of a neutmn experiencing ik tirst inkraction between 
the distances z and z + dz is equal to &e+=, where Y& is the total crca 
section of the material enuxmkred. Aa shown earlier, equation (2.44) provides 
the method for sampling the diitance, z, the neutron wiI1 travel until it collides. 

The type of inkraction which kkcs place at the position delined by the diitance 
z is dekrmined by the so-called activafion cmss se&ma, which are usually 

&,:w, v+,o<on, and &w. In certain circumsknces, the cress eection of 
some particular reactions, such aa the (n,p) reaction, may be speci&d. The 
activation table of probabiiitiea is uxwerkd ink a cumulative probabiity table, 
enabling the se&e&on of the proper inkraction. 

If the inkraction is dekrmined to be an absorption process, the random 
walk of the particle may be krminakd. This ia called an&g Monte Carlo 
and ia not often used M it nny resulta in early krmination of the random 
walk. Alternatively, a non-ana/og p- ia uned in which tLie particle weight 
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is reduced by the non-absorption probability, (&tiaf - &wJ/ I&,, and a 
particle scattering or Kssion is sampled. Thii process allows the particle to fully 
complete ik path within the syskm, until it escapes the syskm or is terminakd 
by a weight cut-off. or an energy cut& car sane other prwpecified pmcesa. 

Energy of Outgoing Particle 

In a non-fissile material, the only interaction possible in a non-analog Monk 
Carlo is particle scattering. One needs then to determine the energy and angle 
of the particle emerging from the collision. Let us assume an elastic isotropic 
neutron scattering pmcess. Then, the energy of the outgoing particle can lie 
any where from the energy of the incident particle Ei to the minimum possible 
energy aE, where cz = [(A - l)/(A + l)]‘, with A being the nx?_w number of 
the element considered. The probability of the particle reaching an energy E is 
given by 

dE 
p(E)dE = ,&(I - 0) (2.41) 

Equating the cumulative probability to some random number m, one obkins 

E=p~Ei(l-a)+aE; (2.42) 

Problem Devise a method for deknnining the outgoing energy for isotropic 
scatkring in a chemical compound such as water. 

The outgoing energy is sampled from the above equation. Siice isotropic SC.& 
tering is asumed, the outgoing direction can be sampled using a pmcedure 
simiiar to that used for the tiurce, except that the whole 4% of the azimuthal 
angle must be considered. 

Once the direction and enera of the scattered particle are determined, the 
diskace of tight until the next collision is evaluated, and no on. Nok, however, 
in thii one-dimensional problem it is sufEcient to deknnine the 1 position of 
the co&ion site, as I = zi + d cm 0 sin 4, where z; ia the initial position of the 
particle and d is the diitance the particle travels between collisions. 

scoring 

A simple scoring process is to employ the boundary cmesing estimator at the 
boundary far away from the source. For a deep penetration problem, e.g. 

thick shield, the probability of the particle emssing the shielding slab is 
very low. Some wcalled biasing or imporknce sampling kxhniquea can be 
employed. These techniques involve splitting which increasea the number of 
particles travelling towards the location of inkrest (forward in the problem 
considered), and n&an rodeffe which killa mod of the particlea travelling in 
the *wrong direction. The r.zponenfia/ fmn&wmation kchnique may also be 
employed. In this technique, the total craw section is artilicially decreased, to 
enable the particle path length between collisiona to strekh, and consequentIy 
be able to crass the slab. In all these biasing techniques, the particle weight ia 
adjusted such that the resulting estimaka are unbiased. 
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2.6 Work Problems 

1. Prove that the 
o’(X) = E [(X -E(X))‘] 

13 

(2.43) 

2. Show that the following procedure represents sampling from the dii$bu- 
tion Xe-‘= , where X is a constant 

(2.44) 
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