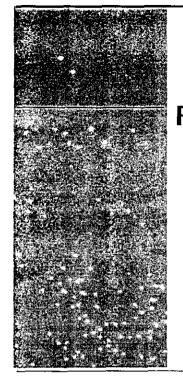

NEUTRONIC ANALYSIS OF REACTORS

Jean Koclas

About the Author


HE AUTHOR is currently professor of nuclear engineering at Ecole Polytechnique de Montréal. He is a graduate of McGill University, of Ecole Polytechnique de Montréal, and of the Massachusetts Institute of Technology (Ph.D., 1980). He worked at the Chalk River Laboratories (AECL) as a research scientist, and at the Gentilly-2 NGS of Hydro-Québec before he joined the Nuclear Engineering Institute of the Mechanical Engineering Department in 1992. Most of his research interests are in the areas of

nuclear reactor simulation and space-time kinetics.

About the Author

iv

~

Foreword

HE MATERIAL PRESENTED here are the notes prepared by the author for a series of advanced lectures given both at Chulalongkorn University, Bangkok, Thailand, and at Ecole Polytechnique de Montréal, Montréal, Canada, in the winter months of 1998.

The subject matter covers a broad spectrum of the methods used to solve reactor physics problems in both the steady state and the non-stationary cases. Most of the emphasis is put on the methods of spacetime kinetics, although very specific aspects of reactor statics are discussed.

Using the contents of these notes as a starting point, much of the current scientific literature on reactor physics should be within grasp of the reader. Also, the structure, and much of the technical contents, of many

Neutronic Analysis

of the modern computer codes used for complex reactor physics simulations become much clearer.

The background material required includes basic knowledge of reactor physics, linear algebra, and numerical analysis. The mathematics are derived with much of the intermediate steps included, so that it is easier for the reader to go through them.

Jean Koclas

February, 1998

About the Author iii Foreword v Introduction 17 CHAPTER 1 Steady State Calculations 18 Space-Time Kinetics 19 Parameter Definitions 21 CHAPTER 2 Introduction 21 Neutron Flux and Neutron Density 22 Neutron Current 22 Cross-sections 23 Delayed Neutrons and Precursors 24

	Prompt and Delayed Neutron Spectra 25
CHAPTER 3	Derivation of the Space-Time Kinetics Equations 27
	Neutron Conservation 28
	Neutron Flux Equation 33
	Precursor Conservation 33
	Final Result 35
CHAPTER 4	Energy Condensation 37
	Energy Partitioning 37
	Multigroup Reduction 39
	Diffusion Equations in Terms of Energy Groups 42
CHAPTER 5	Matrix Form of the Equations 45
CHAPTER 6	Spatial Mesh Considerations 49
	Reactor Core 49
	Cell 50
	Raw Core 52
	Boundary Conditions 60
	Basic Model 60
CHAPTER 7	Statics 63
	Static Diffusion Equations 64
	One Dimensional Formulation and Coordinate System 65
	Classical Finite Differences 66
	Mesh Centered Finite Differences 70
	Matrix Structure 74

Jean Koclas, Neutronic Analysis of Reactors

viii

•

	Adiabatic Reactivity 143
CHAPTER 13	Quasistatic Method 145
	Flux Factorization 145 Time Intervals 146
	Mathematical Formulation 147
	Application Domain 149
CHAPTER 14	Modal Synthesis 151
	Modal Notation 151
	Mathematical Derivation 152
	Equation Structure 156
	Choice of Modes 158
	Lambda Modes 158
CHAPTER 15	Mesh Centered Finite Differences 161
	Geometry and Notation 162
	Spatial Discretisation 163
	A One-Dimensional System Within a Node 166
	Flux Equation 167
	Equation for the Currents 172
	Final Form of the 1-D System 173
	Finite Difference Approximation 174
	Coupling Coefficients 180
	Flux Equation 181 Precursor Equations 183
	Boundary Conditions 183
	Matrix Formulation 183

CHAPTER 16	Time Integration of the Space Time Kinetics Equations	187
	Theta Method 187	
	Exponential Transforms 193	
CHAPTER 17	Comparisons of Spatial Approximations 197	
	Analytic Nodal Method 197	
	Reactor Model 198	
	Comparisons 199	
	Effective Multiplication Factors 199	
	Errors on the Fluxes 200	

List of Figures

FIGURE 1.	Energy Domain Partition 39
FIGURE 2.	Typical Cell of a CANDU-6 with 37 Elements 52
FIGURE 3.	Raw Geometry of a CANDU-6 53
FIGURE 4.	Mesh Lines for a CANDU-6 55
FIGURE 5.	Reflector and Fuel Positions 58
FIGURE 6.	Material Index 59
FIGURE 7.	1D Coordinate System 66
FIGURE 8.	Micro and Macro Intervals for the IQS Method 147
FIGURE 9.	Coordinate System 163
FIGURE 10.	H-Matrix Structure 185
FIGURE 11.	Coarse Regions for Flux Averages 202
FIGURE 12.	Flux Distribution 203
FIGURE 13.	Errors on the Fluxes 204
FIGURE 14.	Error Histogram for ANM-Flat Transverse Leakages 205
FIGURE 15.	Error Histogram for ANM-Zero Transverse Leakages 206
FIGURE 16.	Error Histogram for CMFD-Quadratic Transverse Leakages
FIGURE 17.	Error Histogram for CMFD-Flat Transverse Leakages 208
FIGURE 18.	Error Histogram for CMFD-0 Transverse Leakages 209

207

List of Figures

List of Tables

TABLE 1.	Cell Coordinates of the CANDU-6	56
TABLE 1.	Cell Coordinates of the CANDU-6	56

- TABLE 2.Nuclear Properties59
- TABLE 3.
 Effective Multiplication Factor Comparisons
 199

.

•

List of Tables

.

•