
Derivation of the Space- 

Time Kinetics Equations 

q 

FT~R THIS VERY BRIEF REVIEW of the mair, concepts 

necessary to the understanding of the physical phenom- 

w 
ena we derkle here the equations of space-time kinetics. 
They are made of two parti~al differential equations, one 

for the neutron flux, and another for the dekyed neutron precursor 

concentrations. The basic principle that we follow is simply that of the 

conservation of the number of neutrons and the number of precursor 
atoms in each hyper volume element of the space and energy domain. 

The change in the number of neutrons in a hyper volume element 

dYdE will be given by the difference between the number of neutrons 

produced in this hype; volume element, and the number of neutrons 
disappearing from this same hyper volume element. This is simply 

expressed as 
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AN = Productions - Losses 

In this same volume element, the atoms of delayed neutron precnrsor 
are also produced and destroyed, which gives 

AC = Productions - Losses 

In the next sections, we will expand all the production and loss terms, 
which will establish the space-time kinetics equations. 

Neutron Conservation 
- 

First, let us consider the equations for the neutron flux. We will take 

into,accoont a!1 interactions that affect the neutron balance in a volume 

element of the multiplying medium; we look first at neutron produc- 

tion, and then at neutron losses. 

Production by Prompt Fission 

The total number of neutrons appearing due to fission is given by 

m 

i, &(i, E’)+(i, E’, t)dE’ 

Each of these fissions gives rise to Y neutrons on the average, including 

delayed neutrons whish wiil appear much later. Thus a total of 

/on&(?, E’)@(i, E’, tjdE’dVdt 
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neutrons due to fission will appear in the volume ekment dV , and 

(1 - p)multiplied by this number will give the total number of 
prompt neutrons produced. By multiplying this total number of 

prompt neutrons by the probability xP(E)dE that a prompt neutron 

appears in the energy interval from E to E + dE , where x’(E) is the 
prompt neutron spectrum, we find that the average number of prompt 

neutrons to appear wi!l be 

x’(E)dE(l - p) o v&(i, I?)+(?, E’, t)dE’dVdt I 

Production by Precursor Ckintegration 

Each delayed neutron precursor disintegration wi!l give rise to one 
neutron. But C,dV is the number of precursor ato,ns belonging to 

family i in the volume element dV .By the definition of the disintegra- 

tion constant, these precursor atoms will give rise to X,C,dVdt neu- 

trons in the time interval dt 

By multiplying this number by the delayed neutron spectrum for the 

family i , xf(E)dE, and by summing over all precursor families, we 

obtain the average number of delayed neutrons that appear in the 
energy interval Deb in the volume dV and during the time interval dt , 

D 

i&j:‘(E)dEAiCi(i, t)dVdt 
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Production by Scattering 

Neutrons can also appear in the hyper volume element dVdE by 

changing energy through collisions with the atoms in the volume ele- 
ment dV . 

The number of neutrons in the hyper volume element dVdE’ which 
undergo a scattering reaction in the time interval dt is given by 

&(i, F)I$J(?, F:, t)dSdVdt 

Let P(J? + E)dE be the probability that a neutron of energy E 
undergoes a collision that brings it in the energy interval between E 

and E + dE. The quantity P(E’ + E) will be given by the scattering 

law, and may take more or less complicated expressions according tc 

circumstances. Thus 

&(i, E’)+(i, F, t)dE’dVdtP(E’ + E)dE 

represents the number of neutrons in the hyper volume element 

dE’dV which will appear in the hyper volume element dEdV in the 

time interval dt . Let us sum over all hyper volume elements dE’dV so 
as to take into account all neutrons that scatter, which gives 

l,s,(?, E’)P(E’ -+ E)+(i, E, t)dFd”dtdE 

The general energy scattering cross-section is denoted by 

Z,(i; E --f E) = Z,(i, E’)P(E + E) 
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and we find 

,;x,(?, E’ --f E)+(i; E’, t)dE’d”dtdE 

Losses Ttwxgh Interactions 

The total cross-section gives the average number of neutrons that dis- 

appear from the hyper volume element dVdE in the time interval dt 

This term takes into account losses from absorption and scattering 
(absorption includes fission). This term is thus 

Z&i, E)+(i, E, t)dVdEdt 

Lasses by Leakage 

We consider here the net number of neutrons that leave the vohume 

element dV in the time interval dt To do this, we use the physical 

interpretation of the net neutron current. we choose a coordinate sys- 

tem to calculate the leakages through each of the faces of the volume 

element dV . 

In the x direction, WC have that the net number of neutrons that leave 

dVdE through the surface element dydz at position (x, y, z) during 

the time interval dt is simply 

-J,jx, y, z, E, t)dydzdEdt 

For the neutrons crossing the surface element dydz at position 

(x + dx; y, z) , we will also have 
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J,(x + dx, y, z, E, t)dydzdEdt 

Thr net number of neutrons leaving the volume element by the two 
surfaces dydz in the time interval dt will be the sum of these two con- 

tributions, namely 

J,(x + dx, y, z, E, t)dydzdEdt - J,(x, y, z, E, t)dydzdEdt 

which becomes 

&J&C, y, z, E, t)dydzdEdt 

Identical calcu!atisns can be performed in the y and z directions, 

which gives, after superposing a11 contributions, 

E, t) + &J,,(i, E) + -&J,(F, E, t)’ 
P 

xdydzdEdt 

We rewrite this in terms of vectors, independent of the coordinate sys- 

tem, 

v . s’(i, E, t)dVdEdt 

Neutron Density Change 

Finally, the variation of neutron density in the hyper volume element 
dVdE in the time interval dt will be given by 

AN(i, E, t) = N(i, E, t + dt)dVdE - N(i, E, t)dVdE 
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Neutron Flux Equation 33 

which simply becomes 

$N(i, E, t)dVdt 

III terms of the neutron flux. this can also be written 

$$,(i, E, r)dVdEdt 

Neutron Flux Equation 

By grouping the appropriate terms of the preceding discussion, we 

obtain the Enal form of the equation for the neutron flux: 

-&$(f, E, t) = -V . ?(i, E, t) - x&F, E)+(i, E, t) 

+ ,,X$, E’ --f Ej$(F, E’, tjdE 

Irn + x’(E)dE(l - p)J, v&(?, E’)+(i, E’, t)dE 

D 

+ c $(EjXiCi(i. t) 
i=l 

Precursor Conservation 

We now examine the delayed neutron behavior. The approach will be 
the same as the one we have taken in the previous section for the flux. 
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precursor Production 

The number of delayed precursor atoms of family i produced in the 

volume element dV in time interval dt is the fraction pi of all neu- 

trons produced by fission in this volume element in this time interval. 
It will be 

pi J ” u&(:, E’)+(i, E’, t)dE’dVdt 

The atoms of delayed precursors are lost through beta disintegration. 
The total number of atoms of delayed precursor i lost in the volume 

element dV and during the time interval dt is thcs 

hiCi(i, t)dVdt 

Precursor Population Change 

Finally, the total change in delayed neutron precursor concentration of 

family i in the volume element is 

AC&i, t) = C,(i, t -!- dt) - C,(?, t) 

which becomes 

ACi(i. t) = $(i, t)dVdt 
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Final Result 35 

Precursor Equation 

The final form of the delayed neutron precursor concentration is 
obtained by grouping together the different terms of the previous sec- 

tion, which gives 

$ci(f, t) = 

Final Result 

m 

pii,, VI&(?, E’)+(i, E’, t)dE’ - h,Ci(i, t) 

We regroup here for reference the continuous energy form of the 

space-time kinetics equations 

-&+(f, E, t) = -V . ?(i, E, t) - C,(F, E)+(i, E, t) 

+ ,,X$, E’ + E)+(i, E’, t)dE. 

i 

(EQ 1) 
+ x’(E)(l - f3) o vXf(i, E’)+(i, E’, t)dE 

D 

+ 2 xI”(E)X,C,(?, t) 
i=l 

+ 
J (i, E, t) = -D(?, E)34(?, E, t) EQ 2) 

I Pi 0 v&(i, E’)4(i, E’, t)dE’ - XiCi(i, t) (EQ 3) 
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