
Energy Condensation 
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that we have obtained have been formulated with a con- 
tinuous energy variable. However, it is not practical to 

solve these equations. In order to further simplify the 

equations, it is useful to perform a discretisation of the energy variab!e. 

This process is examined in this chapter. 

Energy Partitioning 

We start the partitioning process by separating the energy domain into 

a number G widths, which we call energy groups, as illustrated on 

Figure I, page 39. The choice of the energy group boundaries is left to 

the analysts, and are usually chosen by taking into account the varia- 
tions of the cross-sections of the important isotopes that are included 
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in the reactor mcdei. The presence of tissile isotope resonances will 

play a determinant role in this process. We also note that the micro- 

scopic cross-section are measured by many of the nuclear physics lab- 
oratories in the world, and are listed in the ENDF-B VI data files. These 

microscopic cross-sections are continuous in energy. A preliminary 

treatment with hyperfine group widths is done with the computer code 
NJOY to generate specia!ized cross-section libraries for lattice cell cal- 

culations, which will have about one hundred energy groups. 

Lattice codes such as DRAGON, WIMS, APOLLO, CASMO, use these 

specialized libraries to perform transport theory calculations, and will 

also perform another energy condensation to generate two grouP 
cross-sections and diffusion coefficients that are routinely used in 

reactor calculations. 

The process that we will describe here is relatively simplified by com- 

parison to methods currently used in these codes. For example, the use 

of flux shapes within the energy groups is not covered here. Further- 

more, the energy condensation done at the cell code level uses static 
fluxes in the process, while we could believe that time dependent fluxes 

should be used to calculate the parameters. This turns out to be a very 

smal! correction that we will entirely neglect. 

Note also the convention that high group numbers correspond to 

smaller energies. The rational behind this convention is that neutrons 

are born at high energies and are subsequently slowed down toward 

the lower energies. 
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FIGURE I. Energy Domain Partition 
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Multigroup Reduction 

The multigroup reduction process is to appiy the operator 

f 
Es-1 
E dE 

I 

to the space-time kinetics equations. 

We also introduce the following definitions: 

l The group flux 

I 
E,- I 

$,(i, t) = E, +(i, E, t)dE 

(EQ4 

(EQS) 

Let us note that the group flux is not an energy density anymore; it’s 
dimensions are not the same as that of I$(?‘, E, t) , the continuous 
energy flux. 

l The net current of group g 
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+ 
J&t) = [;-‘;(i,E,t)dE (EQ 6) 

This group current is also not a density anymore, just like the group 
flux, and it’s dimensions are not the same as the continuous energy 
current. 

l The total cross-section of group g : 

l The tission cross-section of group g : 

JE$ d? (i, E, t)dE 

l The prompt neutron spectrum of group g : 

xW)dE (EQ 9) 

The group spectrum is such that the sum over all energy groups 
gives 1, since the sum retxns th,e complete integra!. 

. The delayed neutron spectrum of family i and of group g : 

d jE.-$(E)dE Xgi = E, I (EQ 10) 
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The same comment applies to group delayed neutron spectra as for 
the prompt neutron spectrum. 

l The diffusion coefficient of group g 

Et-1 E, - I 

i l ---$I(?, E, t)dE I l -+(i, E, t)dE 
1 E WE) E JXEj 

u,o= E, - I % 
(EQll) 

I E, cP(i, E, t)dE 

The inverse of the coefficient is used because this inverse is propor- 
tionai to the transport cross-section. 

l The scattering cross-section from group g’ to group g . We start by 
defining the scattering cross-secticn for neutrons in group g’ 
towards an energy beiween E and E + dE , 

i 

tql 

E, &(E’ + E)+(i, E’)dE 
&,,C~, EVE = ’ rE,,-, dE 

1,. +(i> E’)dE 

We the integrate this over the energy group g of neutron arrival 

Z&E’ + E)+(E’)dE’dE 
(EQ 12) 
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Diffusion Equations in Terms of Energy Groups 

Space-time Kinetics Equations 

Applying the integral operator (4) together with the definitions of the 
group parameters given by equations (55) to (12), the space-time 

kinetics equations become: 

l for the fluxes 

G G 

(EQ 13) 

D 

+ c xgxici(f, t) 
i=l 

l for the delayed neutron precursor concentrations, 

G 

$(i, t) = pi c Yzfg’$g’ - XiCi(i, t) (EQ 14) 
g’ = 1 

for the currents, 

j’,(i, t) = -D,$+, (EQ 15) 
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Static Equation 

Starting from the space-time kinetics equations (13) and (14), it is 

possible to get the static equations, by setting to zero the time deriva- 

tives. The precursor equations become 

G 

which we substitute in the flux equations 

which becomes 
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If we realize that the neutron spectrum for the static case must take 

into account the spectrum of all neutrons, whether prompt or delayed, 

we can write 

xg = 

and the static equations then become 

!EQ 16) 

(EQ 17) 

(EC) 18) 
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