

Matrix Form of the Equations

I
IN ORDER TO FACILItATE the mathematical formulation of the methods that we will examine in this course, it is very useful to express the space-time kinetics equations in matrix form. This makes them look independent of any particular energy group, and produces a much more compact notation. To do this we have to introduce the following vectors and matrices:

- A diagonal matrix of the velocities

$$
[\mathrm{v}]=\left[\begin{array}{llll}
\mathrm{v}_{1} & & \\
& \mathrm{v}_{2} & \\
& & \\
& & & \\
& & \mathrm{v}_{\mathrm{G}}
\end{array}\right]
$$

- A column vector of the fluxes,

$$
[\phi]=\left[\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\cdot \\
\phi_{\mathrm{G}}
\end{array}\right]
$$

- A column vector of the net currents,

$$
[\overrightarrow{\vec{J}}]=\left[\begin{array}{l}
\vec{J}_{1} \\
\vec{J}_{2} \\
\cdot \\
\vec{J}_{G}
\end{array}\right]
$$

- A square matrix of the cross-sections,

$$
[\Sigma]=\left[\begin{array}{cccc}
\Sigma_{\mathrm{t} 1}-\Sigma_{\mathrm{s} 1 \leftarrow 1} & -\Sigma_{\mathrm{s} 1 \leftarrow 2} & \cdots & -\Sigma_{\mathrm{s} 1 \leftarrow \mathrm{G}} \\
-\Sigma_{\mathrm{s} 2 \leftarrow 1} & \Sigma_{\mathrm{t} 2}-\Sigma_{\mathrm{s} 2 \leftarrow 2} & \cdots & -\Sigma_{\mathrm{s} 2 \leftarrow G} \\
\cdot & \cdot & \cdot & \cdot \\
-\Sigma_{\mathrm{sG} \leftarrow 1} & -\Sigma_{\mathrm{sG} \leftarrow 2} & \ldots & \Sigma_{\mathrm{tG}}-\Sigma_{\mathrm{sG} \leftarrow \mathrm{G}}
\end{array}\right] \text { (EQ19) }
$$

- A column vector of the prompt energy spectrum,

$$
\left[\chi^{\mathrm{p}}\right]=\left[\begin{array}{c}
\chi_{1}^{\mathrm{p}} \\
\chi_{2}^{\mathrm{p}} \\
\cdot \\
\chi_{G}^{p}
\end{array}\right]
$$

- A column vector of v times the fission cross-section,

$$
\left[v \Sigma_{\mathrm{f}}\right]=\left[\begin{array}{c}
v \Sigma_{\mathrm{f} 1} \\
v \Sigma_{\mathrm{f} 2} \\
\cdot \\
v \Sigma_{\mathrm{fG}}
\end{array}\right]
$$

- D column vectors of the delayed neutron spectra,

$$
\left[\chi_{\mathrm{i}}^{\mathrm{d}}\right]=\left[\begin{array}{c}
\chi_{\mathrm{i} 1}^{\mathrm{d}} \\
\chi_{\mathrm{i} 2}^{\mathrm{d}} \\
\cdot \\
\chi_{\mathrm{i}}^{\mathrm{d}}
\end{array}\right]
$$

- A diagonal matrix of the diffusion coefficients,

$$
[\mathrm{D}]=\left[\begin{array}{llll}
\mathrm{D}_{1} & & & \\
& & & \\
& \mathrm{D}_{2} & \\
& & \cdot & \\
& & & \mathrm{D}_{\mathrm{G}}
\end{array}\right]
$$

With these definitions, it is very easy to re-write the space-time kinetics equations of the preceding chaprer in a much more compact form,

$$
\begin{aligned}
{[v]^{-1} \frac{\partial}{\partial \mathrm{t}}[\phi]=} & \nabla \cdot[\mathrm{D}] \vec{\nabla}[\phi]-[\Sigma][\phi]+(1-\beta)\left[\chi^{\mathrm{p}}\right]\left[\nu \Sigma_{\mathrm{f}}\right]^{\mathrm{T}}[\phi] \\
& +\sum_{\mathrm{i}=1}^{\mathrm{D}}\left[\chi_{\mathrm{i}}^{\mathrm{d}}\right] \lambda_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \\
{[\overrightarrow{\mathrm{~J}}]=} & -[\mathrm{D}] \vec{\nabla}[\phi] \\
\frac{\partial}{\partial \mathrm{t}} \mathrm{C}_{\mathrm{i}} & =\beta_{\mathrm{i}}\left[\nu \Sigma_{\mathrm{f}}\right]^{\mathrm{T}}[\phi]-\lambda_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}
\end{aligned}
$$

