
Elementary Numerical 

Methodsin ReaktorStatics 

- 
ETTING THE SOLUTICN to the static diffusion equations 

rests necessarily on numerical methods. These methods 

are mostly iterative in nature. In one dimension, it is pos- 

sible to solve in a direct fashion the matrix problems gen- 

erated by finite differences. However, determining the 

K eff is an iterative process. Only the simplest methods will be 

reviewed here. The resulting algorithms constitute the basis used in 

modern computer codes for neutronic analysis of the nuclear core. 

Vector Norms 
- 

Vector norms were first introduced to provide a measure of the length 

of a vector, and also of the distance separating two vectors. Oniy the 

basic properties of vector norms are listed here: 
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I!ull 2 0 

Ilull = 0 eu = 0 

Il4I = I4 ’ II-4 

l/u + vI( 4 llui~ + llvll where (y. is a scalar 

The”p” norms are written (Iu(( p = 

The most often used vector norms are : 

l the 1 norm, (Iu(I, = 

. the 2 norm or eudidean norm, IlUll = 

. the 00 norm, Ilull, = max)ui) ,i=l,n 

Power Method 

Tne linear system that we must solve is given by equation (46which is 

repeated here 

[Al[#l = $[Wl 
eff 

(EQ47) 
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Power Method 81 

whatever discretisation method is chosen. We have seen in the preced- 

ing chapter what are the matrix elements of [A] and [B] for either 

classical or mesh centered finite differences. 

The determination of the eigenvalue Kerr is a relatively simple task. 

Eqttation (47) is a generalized eigenvahre-eigenvector problem. The 

right hand side includes the matrix [B] which is usually absent in the 

standard eigenproblem. However, we can transform problem (47) into 

a standard eigenprob!em, first by multiplying by Kerr, and the by mul- 

tiplying by the inverse of [A] to get 

IN-bI[+l = Keff[+l (EQ48) 

This is altogether identical to the initial problem (47). To simpiify the 

discussion, we introduce a new matrix 

[PA] = [A]-‘[B] (EQW 

and then system (48)be’comes 

[~I[+1 = &[+I (EQ 50) 

which is conventional eigenvalue-eigenvector problem, with Kerr as 

the eigenvalue, and the flux vector [Q] as eigenvector. But K,, is the 

most positive eigenvalue, and to it corresponds to only eigenvector 

with positive elements everywhere. This is a very simple problem to 

solve with the power method. 
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Simple Method 

Let us note by -ye the set of eigenvalues of [Ml, and by i$, the corre- 

sponding eigenvcctors. Furthermore, denote by y, the most positive 

of the -ye. In other words, 

K eff = Yl EQ51) 

Now if we suppose that the eigenvectors G, form a complete set, any 

vector can be written as a linear combination of these eigenvectors. 

We first choose an initial arbitrary flux guess (but different from zero) 

and we app!y tc it the matrix [MI], to obtain a new vector [$I’ , 

We repeat this process a second time, to obtain a new flux [$12, 

- 
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Power Method 

Repeating this k + 1 tiaes, 

Now let us isolate the first eigenvalue f&n the sum, 

But y, is the largest of the eigenvalues. It then follows that the ratio 

-ye/y, issmallerthan1foref1,andequaltolfore = l.Ifkis 

sufficiently large, we will have 

and it follows that 

[*I 
k+l 

= Yk+‘a,GSt + 

[rlrl 
k+i 
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Let us now take a norm of [I)]~ + ’ , 

Il[+lk + ‘II = /jr! + ‘a,~i(l 
Il[+lk + ‘II = I$ + ll~a,~ll~~ll 
IINlk + ‘II = lYljk + ‘lqph1I 

If we take the ratio of the norms of this vector [+,lk + * and of the pre- 

ceding vector ($1’ 

and it follows that 

(EQ 53) 

Thus, K,, is obtained as the ratio of two successive norms of the 

series of vectors generated the application of the matrix IN] . 

It must be remembered that the application of the matrix [M] to a 

vector is identical to the following series of operations, 

Iulk = [W+lk 

[A][r(llk+ ’ = [ulk 
(EQ 54) 

It is thus not necessary to construct the [M!] matrix in the process 

leading to the largest eigenvalue K,, = yt It suffices to solve a linear 
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Power Method 85 

system instead of evaluating the matrix inverse in the definition of 

WI 

We also note that the dominance ratio is defined as 

If this ratio is very close to I, a large number of iterations, or a very 

large k, will be necessary before the contribution of the second eigen- 

vector is effectively removed from the vector [Il,lk ’ ’ . To counteract 

this problem, different acceleration techniques may be app!ied. The 

most popular of these are preconditioning techniques, and conver- 

gence acce!eration based on Tchebychev polynomials. 

Method with Iterative Ejgenvalue Cakulation 

The procedure described in the last section worlls perfectly well in the- 

ory. However, with each iteration, the solution vector may increase or 

decrease in amplitude, according to whether the eigenvalue is greater 

or smaller than 1. If many iterations are required, the components of 

the solution vector may become SC large or so small that their repre- 

sentation in computer memory may become difficult; we may have to 

go to double precision, for example. It is preferable to prevent such an 

amplification process. 

The following algorithm will be used instead of the previous one.We 

first compute 
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[AI[~JI~ + ’ = +Wlk 

followed by the evaluation of 

where the index k or k + 1 on the A indicate the iteration, number, 

not an exponent. We choose an initial guess vector [+]O and an initial 

estimate of K,, , labelled ho . 

Analysis. We must p:ove that the series of Xk converge to K,,, and 
that the [I$]~ converge to the fundamental mode. We reformulate the 

problem as in the preceding section, 

[*I 
kfl 

= ~LhI[~lk 

which becomes 

[$I 
k+l 

= $wk 

*k+ 1 = hkh’k + ‘11 

IIVII 
Therefore, in the sequence of successive iterations for the vectors [+lk, 

we find that, 
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1 

hk...X’AO 
WI k + ‘[lJ]O 

If we perform the expansion of the [+I0 vector in terms of the eigen- 

vectors of the matrix [Ml], 

[$I k+l 

[$I 
k+l 
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When k becomes very large, this becomes 

which shows that the series of solution vectors does converge on the 

fundamental eigenvector. 

The norm of the solutionvector at iteration k + 1 will be 

Let us examine the series of Xk. We have after iteration k + 1, 

Xk + , = Xkll*k + ‘II 
IlVll 
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Solution strategy 89 

Hence, we have the result that the sequence of the Xk does indeed con- 

verge to y , , which is the Keff of the discretised problem. 

The process of evaluating the eigenvalue can be stopped by using a 

very simple convergence criterion, such as 

lxk+ 1 - XkJ 
Xk - 5 ER (EC! 57) 

where l K is chosen arbitrarily according to the requirements of the 

analysis, and is normally given values from 1 x10e4 to 1~10~~ in the 

majority of cases. 

Solution Strategy 

There is still left to solve the complete flux problem, in the spatial vari- 

able 

[AIIJllk + ’ = +iJIlk 

which is followed by 
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(EQ 59) 

The power method being used to determine the X , there is still a linear 

algebraic problem to solve for the [Jr] vectors. 

If the flux [tilk is known, the ri.ght hand side of (58) wil! be known, 

since it is easy to evaluate the product of the nxdtrix by the vector, and 

to divide by the current value of hk. We have seen in chapter 7, Statics, 

page 63, that the matrix [A] is made of tri-diagonal blocks, with other 

contributions which are block diagonal matrices containing scattering 

terms from one energy group to another. 

Since ali mxtrons appear from fission in rhe fast groups, and slow 

down towards the thermal groups, we propose the following method 

to solve the linear system: 

I. Start from the fastest group, and go down in the groups sequentially 

a. For a given group, put with the neutron source the scattering terms comprising 
down scattering and up scattering towards the group of interest 

3. Solve the reduced linear system for the fluxes 

4. Ev&ate the new estimate for the eigenvalue 

5. Go back to step until convergence 

Just as for the eigenvalue, a stopping criterion is used for the fluxes, 

such as 

(EQ 60) 
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Matrix Norms 91 

where E+ is also chosen arbitrarily according to particular needs, and 

is usually taken from 10m4 to 10e6 m the vast majority of calcula- 

tions. It should be noted that the fluxes are usually much slower than 

the eigenvalue to reach convergence, and we often see a factor of 10 

between the instant~aneous errors on the fluxes and on the eigenvalue.1 

The iterative process in determining the flux is known as“interna1 iter- 

ations”, and that of the determinatiou of the eigenvalue,“extercal iter- 

ations”. 

Matrix Norms 

On the most abstract !evel, a vector is simply a member of a vector 

space. Vector norms are then only a mapping of a vector unto a scalar, 

with a set cf rules. 

Matrices can also be considered as an abstract vector space. This space 

may be normed, and matrix norms then appear as a natural extension 

of vector norms. Following are important properties of matrix norms: 

llAl/ = OoA = 0 

llclAl\ = 11~1 . /A(( wherea isascalar 

II-4 + Bli -= IIAII + IIBII 

LA-Bll 5 llAll . IiBll 
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Furthermore if llAu[l 5 llAll . II I! u , we say that the matrix norm is con- 

sistent with the vector norm. 

The most often used matrix norms are 

o the I norm, which is the maximum of the sum of the absolute values 

of the matrix along the columns, 11 All, = m,ax 

* the m norm, the maximlum of the sum of the absolute va!ues of the 

matrix elements along the lines, 11 AlI m = rn,v 

. for the 2 norm or euclidean norm, we must fir-st define the spectral 

radius of A. 

The 2 norm is then llAllz = ix). It can be shown that 

p(A) 5 llA[l foranymatrix A andanynorm II II. 

LIJ Decomposition 

In the algorithm just proposed, there will necessarily be linear systems 

to solve. In the one dimensional case, these linear systems are of tri- 

diagonal form, which makes the solution relatively easy to obtain. The 

LU decomposition permits to solve such problems quite efficiently. We 

ilhtstrate the process with a 4 X 4 c2se. 
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The idea behind LU decomposition is to write the original matrix as a 

product of two triangular matrices, a “lower triangular” matrix, [L] , 

and an “upper triangular” matrix, [U] , in the following 

[Al = [LIKJI 

and the system to be solved becomes 

[AIL+1 = WI 
[LlUJl[rlrl = WI 

which can be solved in two steps, 

iLl[zl = Lb1 
lul[+l = [zl 

(EQ61) 

In the case of triangular matrices, the factorization and solution pro- 

cesses are very simple and efficient. First, the elements of the two 

matrices [L] and [U] are calculated. Then the solution process (61) is 

performed, needing only simple steps. 

Decomposition Example 

Consider a 4 X 4 case, which is 

all a12 O 01 

a21 a22 a23 0 

0 a32 a33 a34 

0 0 a41 a+ 
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we lind 

e 11 = a11 

ellU, = a12*u1 = a,,/e,, 

E,,u, + e22 = az2 2 e2* = az2 - e,,u, 

e22u2 = a23 *u2 = aZ3/%2 

e 32 = a32 

‘32’2 + ‘33 = a33 * e3, = a33 - C,,u, 

e33u3 = a34* u3 = a34/e23 

ed3u3 + eM = a,deM = aM - ed3u3 

Once all elements calculated, it is very simple to solve first for the sys- 

tem [L][z] = [b] , by eliminating the unknowns, proceeding from 

top to bottom, a process known as “forward elimination”; we find all 

elements of [z] , from the first to last one, 

e,,z, = b, 3 Z, = b, let, 

e2,z, + e22z2 = b, 3 z2 = (b2 - e2,z,) ie, 

e3222 + e33z3 = b, -3 z3 = (b3 - e32z2) / e,, 

e43Z3 + euZ4 = bad Z4 = (b4 - ed3Z3)Ie, 
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Iterative Methods 95 

The the system [U][$] = [z] will next be solved, but this time start- 

ing from the last unknown towards the first one, a process known as 

backward substitution, 

$4 = =4 

$3 + u3*4 = =3 - $3 = z3 - u3+4 

‘!J2 + u2q13 = z* =3 ql* = z* - u2(13 

This particular sequence simply takes into account the special struc- 

tures of the [L] and [U] matrices.The generalization to larger size 

matrix is a very straightforward exercise. 

In one dimension, this is very efficient to solve the static equations, but 

it becomes too expensive in three dimensions. This is because of the 

large number of operations required in performing the LU decomposi- 

tion itself, which is equivalent to solving the matrix system by Gauss- 

ian elimination, which takes too many steps, on the order of N3 

operations. iterative methods of solving the linear system will be used 

in this case. 

Iterative Methods 

We wiIl consider here only a very few of the standard iterative meth- 

ods. Many other methods can be found in the iiterature, but most of 

them are more or less complex variations of the basic methods. 
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Iterative methods become necessary in two and three dimensional 

problems, which involve a very large number of mesh points. When 

they are well optimized, they can be very efficient. The matrix notation 

used to describe the methods are only used for numerical analysis pur- 

poses. In practice, their imple.mentation in computer codes does not 

use the iterative matrix formulation, since only the relationships for 

the individEd coefficients are necessary. The extra storage for the iter- 

ative matrix is sufficiently high to preclude their use. 

Stationary Iterations 

Let us consider a linear system of the form 

[Al[+l = PI 

Stationary iterative methods are of the form 

[+I 
k+l 

= tMlI4~1~ + kl 

They are said to be stationary because the matrix [M] does not 

depend on the iteration index k . The same iterative matrix is used 

throughout the iterative process. 

The consisrency condition wants that the true solution of system (62) 

must be a stationary point of the iterative process (63). In other words, 

if the true solution [(J] of the linear system is used in place of [I)]~, 

then [elk+ ’ must return [+I also. 

Convergence 

A matrix [M] is said to be convergent if 
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,‘:” [Mlk = 0 
m 

where this time the index k is an exponent 

l [M] is convergent if and only if p( [M]) < 1 

l [M] isconvergent ifar?d or?lyif \\[M]\\ < 1 

To see :his, let us define the error at iteration k in the following way, 

[elk = t*lk - [+I 

where [+I is the exact solution of e (62). Thus 

and also 

I*lk = [el” + [*I 

[$I 
k+l 

= [elk+ L + [I)] 

Substituting (64) and (65) into (63), 

(EQ 65) 

[JII 
k+l 

= [MI[~JI~ + kl 

[el k+ ’ + [+I = [Ml(telk + [+I) + kl 

[el k+ ’ + [@I = [Ml[elk + Wl[+l + kl 

[el k ’ ’ + 14~1 = [Ml[elk + [+I 

tel 
k+l 

= tMlielk 

Consider now the behavior of the error in the iterative process, 
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[:I0 = [alo - [$I 

[el’ = [Ml[Ilil” 

[e12 = [Ml[$l’ = [Ml[Ml[4~l~ = IM12[+lo 

[elk = [M]k[$]O 

So that finally, 

[elk + 0 c=+ [Mlk < 0 w  p([M]) < I 

The iterative matrix must be convergent if the error on the solution 

vector is to eventually disappear as the number of iterations increases. 

To estimate if an iterative method is convergent, the spectral radius of 

the iterative matrix will have to be determined. This is a non trivial 

task, and the large body of literature on the subject can be consulted 

for details. 

Jacobi Method 

The method of Jacobi only offers a theoretical interest, because the 

spectral radius of the associated iterative matrix is simple to calculate. 

The matrix [A] is split in the following way, 

[Al = &I + PI + Wl 

where [D] is a diagonal matrix, containing only the diagonal elements 

of [A], [L] is a matrix containing on!y those elements of [A] that are 

below the diagonal (lower triangular matrix), and [U] contains those 

elements of [A] that are above the diagonal (upper triangular matrix). 
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In practice, the Jacobi metinod is obtained by sending to the right hand 

side all the terms that are not on the diagonal. The vector [JIJk + ’ 

does not replace the vector [$lk until the end of iteration k The two 

vectors [+Jk and [I+]~ + ’ must therefore be held in memory. This is 

one of the reasons for which the Jacobi method is not used in practice; 

another reason being poor rate of convergence, as compared to other 

methods. 

Iterative matrix. In terms of the decomposition of the [A] matrix, the 

Jacobi method is given by 

[D][JI]” + I = - ([Ll + Wl)[4~]” + [bl 

and consequently, 

k+l 
[Jr1 = - [Dl-‘![Ll + [U])[$lk + [Dl-‘[bl (EQ 66) 

which gives for the iterative process (63), 

[Ml = -[Dl-‘([Ll + WI) 

kl = [Dl-‘[bl 

The matrix[M] can be written in another way, by replacing the sum 

[L] + [U] in terms of [A], 

WI = -[Dl-‘([Ll + WI) 

= +-‘([A] - [D]) 

and then 
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WI = ([II - [Dl-‘[AI) 

it is easy to show that the stationary point of (66) is the actual solution 

of [A] [Jt] = [b] . Suppose that for a given iteration index K we find 

that [QIK+’ = [$lK.Then 

[QIK = - [Dl-‘WI + FJI)[$lK + [Dl-‘[bl 

MQIK = - (IL1 + KJl)[+l” + Lb1 

(PI + CL1 + wI)[~lK = Lb1 

and therefore 

WIIQIK = Lb1 

By virtue of the unique solution of non-singular linear systems, we can 

only conclude that [+lK is the exact solution sought for. 

Gauss-Seidel Method 

The Gauss-Seidel method resembles much to the Jacobi method. How- 

ever, it uses in the calculation sequence the new elements of [elk + ’ 

as soon as they are available. Only one vector has to be kept in mem- 

ory, and it contains both new and old elements. 

In terms of the decomposition of the matrix [A] , we have 

[WJllk + ’ = - LIIJllk+ ’ - [tJ][$lk + b 

As is the case, the elements of the matrix [A] under the diagonal mul- 

tiply the most recent calculated values, those at iteration k + 1 , of the 
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vector [Jrlk + ’ , while the elements of [A] above the diagonal multi- 

ply the components of [Jllk, that have not been evaluated yet. This 

gives 

(WI + [LI)~Jllk + ’ = - Wlt$lk + WI 

t*1 
k+l 

= - ([D] + [LI)-‘tUl[~lk + (K’l + &I)-‘[“I 

and therefore, 

[Ml = -(PI + [W-‘WI 
(EQ 67) 

&I = (PI + [LI)-‘Lb1 

or, in another form, 

[Ml = -([Dl + [LI)-‘[Ul 

= -(Pl([Il + P-l[Ll)h’l 

which gives 

[Ml = -([I] + [D]-‘[LI)-l[D]-l[U] 

while the [g] vector becomes 

(EQW 

&I = (IDl(Dl + [Dl-‘ WIf’IW 

so that 

tgl = (WI + tDl-‘[~I)-b-‘bl (EQ 69) 

Jean Koch, Neutronic Analysis of Reacrors 101 



In practice, the Gauss-Seidel method converges quite well. It is easy to 

program on a computer, and for this reason is quite popular. 

It can be shown that when the Jacobi method converges, then the 

Gauss-Seidel method is also convergent, and that the spectral radius of 

the iterative matrix is smaller than that of the Jacobi method. in the 

case where the Jacobi method diverges, then the Gauss-Seidel method 

will diverge even faster. 

SOR Method 

The Successive Over Relaxation method (SOR), is based on the Gauss- 

Seidel method, but replaces the new component of the solution vector 

by a linear combination of the previous one and the new one, in a two 

step calculation. 

It is given by, 

ILIIJrlk + ’ + [Dl[$lk + “* + Wl[$lk = bl 
k+l 

[$I = (1 - W)[Jllk + W[+]k+“2 
(EQ 70) 

It can be shown that 

[Ml = ([I] + o[Dl-‘[Ll)-l{[IJ(l -0) - w[D]-‘[U]} (EQ71) 

kl = (VI + ~~~l-l~~l~-‘~~~l-‘~bl (EQ 72) 

In practice, the SOR method is probably used more than the Gauss- 

Seidel method (which is a special case with w = 1 ) for most realistic 

situations. It can also be shown that the method is consistent only for 
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0 5 w 5 2. There is also a very strong dependence of the spectral 

radius on the value of w There exists an optimal value mOpt of the 

relaxation parameter, and there is no easy way to calculate it apriori. 

Also, the convergence rate will be much slower if the value of o used 

in a given computation is under-estimated in relation to ~,,~r, than if 

we over-estimate it. If we have on hand a good value of w , the conver- 

gence rate will be much higher than that of the Gauss-Seidel method. 
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