
T 
HE POINT KINETICS MODEL can be obtained directly 

from the space and time dependent transport equations. 

However these equations are too complicated to be of 

any practical application. The diffusion approximation, 

obtained by keeping only the P, terms of the spherical harmonics 

expansion in the angular variable of the directional flux is frequently 

used in neutronic analysis. This is the diffusion approximation, which 

we use here. 

Derivation 

Point kinetics is very interesting because of the apparent simpiicity of 

the resulting differential equations. The method is very frequently 

used, but the underlying difficulties in obtaining the parameters are 



hidden. In spite of all this, many inherent characteristics of the dynam- 

ics of nuclear cores can be deduced from these equations. Also, these 

same equations provide a tool for the analysis, the comparison and the 

practical implementation of various numerical schemes that may 

eventually be used in more complex situations. An integration tech- 

nique that does not pass the test of point kinetics will certainly not be 

used in space-time kinetics. Point kinetics can thus play the role of an 

experimental bench before expensive problems are attempted with 

more advanced methods. 

The main idea behind point kinetics is to separate the flux into two fac- 

tors. The first one being a shape function depending both on space and. 

time, and a second factor depending only on time, in the following 

fashion 

[+(i, t)] = [S(i, t)lT(t) (EQ 73) 

Note that this equation for the flux does not involve any approxima- 

tion, and that the equality is maintained.However, the shape function 

[S(i, t)] depends both on space and time in this approach.We now 

introduce a column vector of weight functions 

W,(f) 

[w(;)] = wz(f) 

I.1 W&) 
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whose function will be to give rise to general equations. In effect, equa- 

tion (73) presents a degree of arbitrariness in the choice of 

[S(i, t)] and of T(t) ; only the product of the two variables needs to 

be specified. We will use [W(i)] to introduce normalization con- 

straints which shall be obeyed at all times during a transient. Specifi- 

cally, we define 

T(t) = (WITt~l-‘[+I) 

and it follow that, following (73), [S(i, t)] must obey the following 

constraint, 

([WITtvl-‘tSG, tjl) = 1 

where the symbol ( ) means spatial integration over the whole 

domain of the nuclear core. The factor T(t) is called the amplitude 

function. Note that [S(i, t)] represents in some sense the total num- 

ber of neutrons in the reactor, but that this number depends on the 

weight function. As the constraint on [S(i, t)] does not depend on 

time, the shape function may change in time, but its integral is time 

independent. ‘Thus T(t) itself represents the neutron population 

change in the reactor. 

We can now obtain a differential equation for the time dependent vari- 

able T(t) by replacing [+(i, t)] by the product [S(F, t)]T(t) in the 

space-time kinetics equations, by pre-multiplying the resulting equa- 

tions by [W(i)lT and by integrating over the whole core volume. We 

thus obtain 
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V [Dlh- t~l[sl 

= ([WIT II 

- p)[X’] + c PilXfl 
i=l 

D 

- ([WIT i~,Pi[XPI[~~~lT[‘l)T(t) 

t)T(t) 

I 

where, in order to conform to certain conventions,we have added and 

subtracted the term in 

5 Pi[Xfl tVXflT[sl 
i= I 

Very similar operations are performed on the precursor equations, 

that we pre-multiply by [WIT[xd] b f e ore integrating over space to get 

We now define the following quantities 

ci(t) = 
([WITIXflCi) 

wlTIVl-‘r~l) 
(EQ74) 
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A(t) = 
([WIT[vl-‘rSl) 

D (EQ 75) 

( [WIT (I - f3)[Xpl + iC,Pi[Xfl [VxflTISl) 

Pitt) = Pi 
( [WITixfl[v&ITIS]) 

D (EQ 76) 

( [WIT 
i 

(1 - p)[x’l + ’ PiLxfl [v2flT[sl) 
i=l 

(twl’ 

P=- 

r 

i 

V . [D$[S]-[I;][~Sj 
D 

+ l1 - P)[Xpl + C PiEX~j’[~ZflTfsl 
i=l J 

D 

( [WIT (1 - PNxPl + i-f, Pi[Xpl [VZflT[sl) 

- (EQW 

With these definitions, the space-time kinetics equations become 

D 

$T= ?T + 1 h,C, 
i=l 

gi = ;T - h,C, 

which are the point kinetics equations. 

(EQ 79) 
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Point Kinetics Approximation 

Up to now, there are no approximations in the point kinetics formula- 

tion. However, the parameters p(t), Pi(t) and A(t) depend, by defini- 

tion, on the shape function [S(i, t)] . 

Knowing [S(?, t)] means in turn knowing the neutron flux 

[+(?, t)] which necessitates a complete spatial solution. It then 

becomes very difficult to determine the point kinetics parameters. 

The most common way of resolving this is to replace [S(i, t)] by a 

function depending only on space, denoted by [S(f)]. This function 

usually comes from the static solution of the reactor in the initial state 

brfore perturbations were appiied to it. In this case, the parameters can 

only be approximate. 

In effect, the pi and A lose their time dependence. The reactivity 

depends on the temporal variations of the cross-sections and of the 

diffusion coefficients. But these are now applied to a shape function 

that is not representative of the actual state of the reactor during the 

transient. 

In this case, it can be shown that the choice of the weight function 

[W] , which we have left arbitrary, can influence the precision of the 

solution of the point kinetics equations. In fact, the amplitude T(t) 

depends very strongly on the reactivity p(t). We wont show it here, 

but it can be proven that if the weight function is the adjoint flux of the 

initial static reactor, then the error in the reactivity estimation is much 
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reduced. It follows then that the error on the’solution will be reduced 

too. 

In spite of all these difficulties, point kinetics is still the most widely 

used method in kinetics. This comes from the small number of equa- 

tions to solve, together with only one spat2 (static, initial) calcuiation 

to do. However this apparent simplicity hides many difficulties. 

Analytic Soltition 

Finding analytic solutions to the point kinetics equations can teach 

much about the dynamics of a nuclear core. We examine this problem 

here. 

Define a vector 

T 

[*I = cl I.1 CD 

and the following matrix 
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p-p 
I 
A Al ‘2 . ‘D 

PI 

kl= g 

-4 

-r.2 

so that the point kinetics equations become 

In general, the reactivity varies in a complicated fashion in time. We 

chose a time interval during which reactivity is relatively constant. 

This is a step approximation of the function p(t) . 

Reactivity will thus be constant in the time interval that we consider, 

and this simplifies the sought analytic solution. 

We now introduce a vector [q] related to the vector [JI] by the appli- 

cation of a linear transformation [r] , 

System (80) then becomes, 
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which can be written 

&[+I = [I’-$] [fj [d’j (EQSI) 

where we have used the fact that in the time interval when reactivity is 

constant, so is [r] a constant. 

If the linear cperator [r] . 1s c h osen such that it diagonalizes the matrix 

in system (Sl), we have 

(EQ 82) 

where [B] is a diagonal matrix. The individual elements of [q] are 

easy to calculate in this basis, becoming simply 

Using the inverse of the linear transformation will give 

[$’ [Nt,] = exP(mi(t - to)) [F] -’ [Ntoi] 

which becomes 

[+(t,l = [r]exP(miCt - c$![r]-'[G(h3jl 
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We only have to find the elements of the [r] matrix, as well as the oi 

To get them, we reconsider systems (81) and (82) which give 

A result of linear algebra’ shows that the elements of the diagonal 

matrix [s] are the eigenvalues of the matrix 

umns of the [fl 

[R] , and that the col- 

matrix are then made of the corres 
-7 

onding eigenvec- 

tors. Furthermore, the elements of the matrix [d have as lines the 

eigenvectors of the (properly normalized) adjoint system. Thee prob- 

lem is thus the same as calculating the eigenvalue-eigenvector prob!em 

of the matrix [R] . 

To calculate the eigenvalues, we only have to find the values cf wi that 

will make the determinant of the matrix R - w~f equal to zero, L 11 
which gives rise to the equation 

det([R - c+;l) = 0 

Let us expand this determinant along the first column of the matrix 

[R - wig . We find easily that 

{r+-,)+ ,,Q~,, ,4 - - 0) = 0 , }, ‘( ‘-i 

1, see for exm@r J. H. Wlkinson, The Algebraic lligenvalue Problem, Oxford University 
Press, Oxford, 1%5. 
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Analytic Solution 117 

If we remark that o = -Xi is not a root of this expression, then the 

o must necessarily be the solutions of 

or, after a slight rearrangement of the various terms, 

5 Pia 
p=oA+ - 

i=lXi+tO 
(EQ83) 

This is Nordlleim’s equation, whose zeroes can only be found approxi- 

mately (Newton’s method, etc.) when more tinan three delayed neutron 

families are at play. 

After calculating the eigenvalues, we have to calculate the eigenvectors, 

which we denote by 

where the index i indicates that the eigenvector belongs to the eigen- 

value oi . 
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In this type of calculation, there is always an element of the eigenvector 

that can be chosen arbitrarily, We take as first element of the eigenvec- 

tor a value of 1. With such a choice, we will have 

[di = 

1 

u; 

iii 
2 

Ub 

In order to find the other components, we only have to solve the sys- 

tem 

[R - oiI] [di = 0 

or, in more direct terms, 

---cl+ A, A, . A, 
A 

Pl 

n_ 
-A, -CL+ 

We then get 

0 

0 

= 
0 

0 
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pj uj = A(Xj + Oi) 
and it becomes possible to construct the matrix [y] , 

[rj = 

1 1 . . . 1 

Pl PI PI 
-- 
A(X, + coo) A(& + Co,) .‘. A@, + COD) 

F2 P2 I32 
A(h, + q,) A(A, + q) “’ - MA, f q,) 

PD PO PO 

h(A, + co,,) A(&, i q) ‘.’ A(& + q,) 

The matrix [r] -’ can be obtained by direct inversion of [r] or by 

solving the adjoint prob!em, which is much easier than direct inversion 

[R - Wi;lTIIJ’li = 0 

We then get that 

- 
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1 Al x2 AD 

A, +wo h,+o, ..’ hD+Oo 

1 
Xl A2 AD 

At+ol X,+0, ." AD+q 

1 4 x2 AD 

I 
A, + WE A, + COD ..’ A, + COD 

The proportionality sign is used to emphasize that the lines of the 

matrix has not been normalized with the columns of [r] . This fina! 

step is left to the reader. 

The determinaticn of the a.+ shows that they differ a lot one from the 

other, the Mit’hlm being about 9, whereas the maximum is 

greater than -A, in all cases, and greater than 0 if p > 0. Such a large 

spread in eigenvalues will cause difficulties to the numerical methods 

used for solving the point kinetics equations. The system of equations 

is a stiff system. 

Conclusion 

We can then conclude on the following observations: 

1. With more than one group of delayed neutrons, the analytic solution of the point 
kinetics equations becomes difku!t to get. 

120 Jean Koch, Neutronic Amlysis of Reactors 



2. It is impossible to find a trw analytic solution, because Nordheim’s equation (83) 

is transcendental in the oi, which can then only be obtained through numerical 

methods. 

3. The eigenvectors of the adjoint problem must be calculated, or the matrix [I r 

must be directly inverted. 

4. As the reactivity changes in time, all this work has to be done at each time inter- 
val 

Because of all this, the analytic solution of the point kinetics equations 

constitutes a method which is too costly and difficult to be considered 

practical. 
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