
Modal Synthesis 

T 
HE IDEA BEHIND MODAL SYNTHESiS IS to construct the 

neutron flux from predetermined static shapes, depend- 

ing on space only. The coefficients multiplying these 

shapes, the modal amplitudes, will depend on time. 

Thus it is left to find the differential equations which drive the modal 

amplitudes, and also to solve these equations. 

Modal Notation 

In a very general approach, modal synthesis is written as 

K 

[+I = ,;, Wk(311T&)l tEQ91) 
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where [‘Irk(i)] is a G X G diagonal matrix containing the elements of 

the kIhmode, and [Tk(t)] is a column vector, of G elements, the 

modal amplitude vector. 

There is in the expansion (91) K shape functions or modes, which are 

time independent. Ccnsequently, the modai expansion can only be an 

approximate relationship, which cannot be valid at all spatial points at 

all times. We therefore demand that the modal expansion be correct in 

an integral sense rather tan in a local sense. 

To be more precise, equaticn (91) is substituted in the time dependent 

diffusion equations, and equality is required after it has been spatially 

integrated over the entire reactor volume. The equality between the 

modal expansion and the flux will not be attained, and it may very well 

be that there is not a single point in space where it is valid. The approx- 

imate relationship will still be a solution of the spatially integrated 

equations. 

Mathematical Derivation 

In order to determine the differential equations that govern the modal 

amplitudes, we start by introducing, for more generality, the K weight 

functions 

[W,(i)], r=l,..., K 
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which are diagonal G X G matrices. We substitute (91) in the time 

dependent diffusion equations in matrix form, which we pre-multiply 

by [W,(F)] and that we integrate over space to get 

(5 tk = ,(l~,(~)l[~l-l~[~~(~~l[T~(~~li K 

V. [DlVWV,(~)lC,$)l - [~IV’k(f)lDk(t)l 
= 1 (W,(f); 

k=! + (1 - ~)iXPl~~~flT~~k(~)l~~k(t)l 

and 

K 

Let us define the matrix 

tdrkl = (twrjtvl-‘t~kl)-’ (EQ 92) 

We take the [Tk(t)] out of the spatial integrals, and we pre-multiply 

the two equation system by the matrix [sd,,] to get, after having added 

and substracted the terms in pi to the flux equation, 

]ean Koch, Neutmnic Analysis of Reactors 153 



Modal Synthesis 154 
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and 

~~~~~l~~w,l~x~l~~,lc~~ = 
K 

Before proceeding any further, we notice that point kinetics could well 

have been done without the average life of the neutrons, the A term. 

To see this, consider the point kinetics equations 
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A$ = (~-~@,Aici 

.$q = ;T - x,c, 

It is clear that only the rztios i and ; are reqked in the theory, Fur- 

thermore, if we examine these ratios together with the point kinetics 

parameter definitions, we Cain see that these ratios do not involve the 

denominator 

c D 
( C1 - P)[Xpl + iC, Pi[Xfl 

1 
[vCf]T[S]) 

We thus take as example the point kinetics derivation, and we define 

the following quantities: 

. a modal precursor concentration 

tc[l = ~sa~~l([W~ltX~lC~) 

. a modal delayed neutron fraction 

and 

D 

[Ayp] = c [A-‘p:k] 
i=l 

. a modal reactivity matrix 
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[A-‘p’k’ = [d,,‘([w, I ( 
D 

’ + C1 - P)[X’l + i~lPilXfl 

With these definitions, we can rewrite the flux and delayed precursor 

equations in the form 

p=l 
[$,I W,,l~Upl 

K D 
(EQ 93) 

= 2 ([A 
k=l 

-‘prk] - [A-‘Prk])[Tk] + 1 X,[C:] 
i=l 

and 

K D 

&I = 1 [A-l@:kJITkl - i+i[C:] 
k=l 

(EQ 941 

Equation Structure 

We have established in all generality the differential equations for the 

modal amplitudes of any of the modal synthesis methods. Note that no 

hypothesis other than the time independence of the modes has been 

necessary. Linear independence is ~required however, because in cer- 

tain cases the inverses of the matrices that appear in the modal param- 
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eter definitions would becoae singular. Orthogonality of the modes is 

not required for the determination of the modal amplitudes, and of the 

resulting synthesis. 

It is worth noting that the modal amplitudes obey a differential system 

of equations whose structure is very much the same as that of the point 

kinetics equations. This provides an indication that the solution tech- 

niques could be generalized to modal equations withott too much dif- 

ficulties. 

In practice, the solution of these equations with a given mode set is 

done directly from the system of coupled differential equations result- 

ing from the matrix decomposition element by element. The matrix 

formulation is useful because it makes for a compact nctation, and 

because it emphasizes the resemblance with the point kinetics equa- 

tions. 

Also, and therein lies a great advantage for modal methods, all the 

modal parameters can be pre-calculated for a given reactor, once the 

set of modes has been chosen. For example, an absorber rod (liie an 

adjuster rod in a CANDU reactor) moves in a very precise area of the 

core, and it is easy to calculate the integrals that appear in the modal 

reactivity. In an actual simulation, these modal reactivities only have 

to be interpolated in the pre-calculated tables, which saves a great deal 

of calculational effort. 

Jean Koch, Neutronic Analysis of Reactors 157 



Modal Synthesis 158 

Choice of Modes 

Many types of modes can be used in modal analysis. In particular, pre- 

calculated flw shapes corresponding to the reactor perturbed in dif- 

ferent ways could be used. This is known as “temporal synthesis”, 

which is an excel!en: method mostly used in light .water reactor simula- 

tions. It requires a set of modes that are “close” to the perturbations 

being studied, and there is a certain degree of experience required in 

choosing adequate modes. Also, it can be the case that such modes are 

almost linearly dependent, which makes the differential equations dif- 

ficult to solve. A decontamination of the different modes may be 

required to minimize this problem... 

Lambda Modes 

A method very much in use for the analysis of CANDU reactors is syn- 

thesis by the so-called X modes. These are the solutions of the static 

equations for the non perturbed reactor, 

lLolWJ = +folW’J 
” 

for the successive values of A,. These modes are the eigenvectors of the 

static equations, corresponding to eigenvalues of lower value than the 

K,,. These eigenvectors take negative values in certain areas of the 

core. It is quite difficult to calculate more than about twenty of these 

modes, since the eigenvahtes tend to become closer to one another: the 
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dominance ratio is pretty close to one, and convergence becomes very 

slow. 

The adjoint modes are calculated at the same time, to be used as weight 

functions. These are the solutions of the problem 

[L,][ ‘I’:1 = -+I[ ‘u;l 
n 

It is easy to show the orthcgonality relationship, 

(+- :)(I ~~lM,lV”,l) = 0 

This tells us that when m = n , then X,= An, or that the eigenvd- 

ues of the two systems are the same. On the other hand, if m # n , then 

(I ~:m’lolw,l) = 0. 

If we use these adjoint fluxes as weight functions, we will find that 

Ark = O,r#k 

and this simplifies significantly the differential equations for the modal 

amplitudes, particularly on the right hand side, which now only has 

diagonal elements. 
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