
Mesh Centered Finite 

Difirences 

T IS NOT POSSIBLE TO SOLVE EXACTLY the SpaCMime hetiCS 

equations at each point of space and time. Approximate 

methods must be resorted to. Even simple methods based on 

space and time separation, such as point kinetics method, 

requires the solution of a spatial problem. This spatial solution can only 

be obtained by discretisation techniques like finite differences, such as 

those of chapter 8, Elementary Numerical Methods in Reactor Statics, 

page 79. 

It is necessary to perform such a discretisation for the space-time kinet- 

ics equations. The approach we take is to proceed with spatial discreti- 

sation first, and to keep the time derivatives out of the problem. We get 

the so-called semi-discrete form of the space-time kinetics equations. 

The study of different time integration schemes is then easier, and they 
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will be covered in chapter 16, Time Integration of the Space Time Kinet- 

ics Equations, page 187. 

We choose to derive here the Mesh Centered Finite Differences, 

because it is a widely used method throughout the nuclear industry 

However the approach we take in the derivation is based on modern 

nodal theory; extending the method to the analytic nodal method for 

example could be done quite easily with this derivation. 

Cecmetry and Notation 

The first step is a partition of the reactor core in a number of contigu- 

ous rectangular parallelepipeds in Cartesian geometries, as discussed 

in chapter 6, Spatial Mesh Considerations, page 49. The nuclear prop- 

erties do not vary spatially wittin a node, but they are allowed to vary 

with time. 

A coordinate system origin is chosen, from which the boundaries of 

each region or node can be located. The mesh widths are obtained by 

taking the differences in the coordinates between these boundaries. 

This is shown on Figure 9,“Coordinate System”, page 163. 

The parallelepiped (i,j,k) is thus the one for which: 

. the x coordinates go from xi to xi + t 

. the y coordinates go from yj to yj + r 

l the z coordinates go from zk to zk + t 
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3Datlal olscretlsatim 163 

The widths of the parallelepiped (i,j,k) are thus 

l inx:h:=xi+,-xi 

l iny:h;=yj+I-yj 

l inz:hi=z k+I-Zk 

The volume ofparallelepiped (i,j,k) is then Vijk = h: h; . h; 

FIGURE 9. Coordinate System 

Y 

Spatial Discretisation 

Once the mesh has been chosen, the next step is a spatial integration of 

the space-time kinetics equations on each parallelepipeds, whose 

nuclear properties are spatially constant. 
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We apply the operator 

[:‘,:, /:‘il; /;;A; 1 
to the diffusion eqilations (20), including the delayed precursor equa: 

tions. The average flux in such a region is 

and that of the average delayed neutron prectirsor concentration of 

family d 

%+I 
I Zt dzC,(x, Y! 2, t) 

This is like applying the theorem of Gauss to replace the space integral 

of the divergence of the neutron current by surface integrals. We get for 

the flux equations, 
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iYl{~~[?lijkVijk 

= -(tj(xi + l)l,,jk - [~(xi)l,jk!h~h~ 

-([‘(Yj + t)ly,ik - li(Yj)ly, ik)hkh,k 

-(!j(zk + l)l,ij - Ij(z,)l,,j)h~h~ 

- L~l~j~C$lijkvij~ + C1 - P~~Xpl~uc~l~~~~l~j~v~j~ 
D 

+ c [X~lx,cevij, 
e=l 

(EQ95) 

and for the delayed neutron precursors, 

se, ijrVijk = Pe[VCfIik[$IijkVijk - &ce, ijkVijk (EQ 96) 

We used the following the definitions for the average surface currents 

‘ZIJx(Xi + 19 YY ‘9 ‘)I 

[j(Yj)ly,ik EC , [j(Yj)ly,ik EC , &/:+‘dx/::ildZIJytX, Yj, Z, t)l &/:+‘dX/::ildZIJytX, Yj, Z, t)l 

[j(Yj + *)ly,iCE [j(Yj + *)ly,iCE &f:l+‘dxf;+’ &f:l+‘dxf;+’ , , dz[Jy(x, Yj + 1s G t)I dz[Jy(x, Yj + 1s G t)l 
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The precursor equations (96) do not present any immediate problems, 

given that the average fluxes and ihe nuclear properties of node (i,j,k) 

would be known. 

However, the equations for the average fluxes (95) do present a diffi- 

culty. Sven though these equations represent the exact neutron balance 

in node (i,j,k), they bring up the average currents over the six surfaces 

of the node. But we do not have the re!ationship between these average 

currents and the average fluxes. The discretisation technique will gen- 

erate the sought relationships, which are approximations only, and 

which are a characterization of the method. We could then eliminate 

the surface currents from (95) and get a system which would involve 

only the average fluxes and average delayed precursor concentrations 

of the nodes. 

k One-Dimensional System Within a Node 

In order to eliminate any confusion with regards to the interpretation 

of the various terms appearing in the finite difference formulation, we 

adopt a rather complex approach in the derivation of the coupling 

coefficients. It follows very closely the much more difficult derivation 

of many of the modern nodal methods. 
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Flux Equation 167 

The first step is to integrate the space time kinetics equations over two 

directions at a time. This will generate a system of equations in one 

dimension. The solution to this system wiil then provide surface cur- 

rents in terms of the average fluxes of neighboring nodes. By repeating 

this process for each of the three directions, it will be possible to elimi- 

nate from (95) all the surface currents by average ftuxes. We il!ustrate 

this approach in the x direction. 

Flux Equation 

Let us integrate the space-time kinetics equations over the y and z 

directions inside node (i,j,lc). This means applying the operator 

to these two equations. We get for the fluxes, 
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Mesh Centered Finlfe Differences 168 

and for the precursors, 

(EQ97) 

(EQ 981 
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Flux Equation 169 

In order to simplify these expressions, we have to define the following 

quantities: 

- the transverse integrated flux, 

dG+(x, Y, z, t)l 

l the transverse integrated precursor, 

1 i’j;; I’“’ 
CJX, tjijk - hjhk y. 

YZ ’ 

, LkdC& ~3 =, t) 

. the transverse integrated x directed current 

[J,(x, t)],, - kK,:‘;;y 1 
Ztt, 

yz ’ 
LkWJX(~> Y, z> t!l 

l the transverse x directed leakage along the y direction, 

dz([Jytx, Yj + 1, Z, t)I - [JyCX> Yjy Z, t)I) 

. the transverse x directed leakage along the z direction, 

dyUJ,k Y, $ + 1, t)l - [Jy(x. Y. zk. t)l) 

l the total x directed transverse leakage 

l§& Ol,, = Kfy(x, w,, + w&G Ol,, 
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Let us note that 

[‘(Xi + I)l.,jk = [J,(x, t)lijkl x = xi+, 

which are three of the quantities that appear in the nodal balance equa- 

tion. 

With all these definitions, the transverse flux equation (97)becomes 

simply 

[vI-‘$[~(x, t)Iij, = -&[J,(x: t)Iijk - [‘x(X, t)Iij, 

-[zlij,[+(x> t)lijk + t1 - P)[XpIIv~fl~~[+(x~ t)lijk (EQ 99) 

+5 
e=l 

[X~lx,c,(x, t)ijk 

while the transverse precursor equations (98) becomes 

$,tx, t)ijk = P,[YEfl~k[Q(X2 t)lijk-XeCc(XI t)ijk (EQ 100) 

In order to further simplify the underlying algebra, we eliminate the 

time derivatives by introducing the exponential transform of the flux 
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Flux Equation 171 

and of the precursors, 

This permits the transformation of the precursor equations (loo), 

and the transverse integrated flux equation (99) becomes 

D 

+ 2 [x$, 
P,[vCfI$,[$(X, t)Iijk 

e=l [O,dlijk + A, 

We now use the matrix definitions that we have introduced in chapter 

5, Matrix Z%r:orm of the Equations, page 45, to write this last equation in 

the much simpler form 

The matrix [E’] is defined in the following way 
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tzlijk = Izlij, - C1 - P)tX*ItVXfl~~ 
D 

Pe 
(EQ 102) 

- 

[“zlijk + he 
[v&l& + Diag([vl-‘[o*lijd 

Equation for the Currents- 

We still have in equation (lOI), a mixture of fluxes and currents. We 

need an extra relaticnship between these variables. Fick’s law will pro- 

vide it. 

Let us ictegrate Fic!& law over the two y and z directions in node 

(i,j,i4 

which gives 

tJ,(X, t)lij, = - tDlijk$t+(X, t)lijk 

in terms of the variables defined in the previous section. 

(EQ 103) 
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Final Form of tie I-D System 173 

Final Form of the 1-D System 

We regroup here the one-dimensional equations (101) and (103) 

slightly re-arranged, 

+ iDli~~[J,(~> t)lijk = 0 

+I’,(‘, t)lij, + IZlijk[$(X, t)lijk = -[Sx(X, t)]ij, 
ax 

We can put all this in a single matrix system, by defining the following 

vectors and matrix 

[Lx(x’ tjijk = 
kil 

_ [sx(x, t~ij 

bdijk = 

(EQ 104) 

(EQ 105) 

(EQ 106) 

We can then write in a very compact form the Rux and current equa- 

tions, 
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~[*(X’t;Iijk’ [Nlijk[+(X,t)lijk = [L.(X>fdijk (EQ 107) 

Finite Difference Approximation 

This last equation, together with identical counterparts in the y and z 

directions, constitute the starting point of many modern nodal meth- 

ods. We limit ourselves here to the derivation of mesh centered finite 

differences, which are, in effect, the nodal method of lowest order, 

Transverse Leakages 

First, let us note that (107) is a non-homogeneous linear equation sys- 

tem, because of the transverse leakage term. The formally exact solu- 

tion of (107) will then be made from the general solution of the 

homogeneous system, plus a contribution from a particular solution of 

the heterogeneous system. 

This non-homogeneous part can the be viewed has a perturbation act- 

ing on the homogeneous solution. The first hypothesis leading to finite 

differences is to completely neglect this perturbation. This is the same 

as supposing that the transverse leakages [a.,(~, t,] are essentiaily 

zero. This may seem questionable, but detailed calculations provided 

by nodal methods show that these transverse leakages are quite small 

compared to the fluxes. Their effect are more important in regions 

where the fluxes are highly non-separable, like in corners near the fuel 

reflector areas for example. Furthermore, the zero transverse leakage 

approxittation is compatible with the other hypotheses leading to the 
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Finite Difference Approximation 175 

mesh centered finite differences, particu!arly with the truncation of the 

matrix exponentials, which is the subject of the next section. 

Solution of the Homogeneous System 

The homogeneous version of (107) is 

and the solution of this can be written fcrmally as 

[$(x, t)lijk = exP(-[K]ijkx)[A] 

where the [A] vector is arbi:rary. and depends on the initial values 

that we use for [*cx, f)lijk. 

If we choose for initial value of [+,(x, t,] ijk the value it has at x = xi, 

we will have 

[$(xi, tgijk = ev- [N]ijkXi) [A] 

and then 

so that 

[A] = exP( [N]ijk’i) [@(xi. t,] ijk 

t)jijk = ev(-[hjij,(x - xi))[+(xi3 tjlijk (EQ 108) 
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If, on the other hand, we choose as initial value of the flux on the other 

side of the node, [+(x, td ijk has for value at x = xi + , , we will have 

[‘I’(% + 1, t)lijk = exP(- [N]ijkxi + 1) [A] 

and then 

[*] = eXP([dijkXi+ l;[*(‘i+ Ipt)lijk 

so that 

[+(x, tiijk = exP([dijk(xi + I - ‘))[Jl(xi + 1, tdij, (EQ1~9! 

Exponential Matrix Expansion 

The fundamental hypothesis leading to the mesh centered finite differ- 

ence approximation is that the matrix exponential found (108) and 

(109) can be truncated to low order terms in their expansions. In other 

words, 

and 
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Finite Difference Approximation 177 

Note that these expansions imply a linear variation of the fluxes and 

the currents within each of the (i,j,k) nodes. This is a good indication 

that the finite differences are not a solution of the true diffusion equa- 

tions. Locally, we have linear variations which do not represent the 

true intra-node shapes of the fluxes and the currents. We can only 

hope that the diffusion equations are better approximated when only 

the node averaged quantities are involved. 

Relationship Between Average Fluxes and Currents 

As we have seen previously, the problem that we have to solve is the 

determination of a relationship between the nodal average f,uxes and 

the average currents over the surfaces that bound the node. The finite 

difference approximation gives rise to such a reiationship. 

To get the relationship, we integrate (1 lO)and (111) over the x direc- 

tion, and divide by the width hi of node (i,j,k). 

Integration with Jl(xi) 

We find, after integration, 

But the vector [$(tfl ijk is made from fluxes and currents. Let us write 

the first portion of this vector, the flux portion. We have 
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Thus, 

but by the definition of the matrix [N] , equation (106), 

[q]ijk = [4(x;, t)!ijk - !$[II]~;: [Jx(Xi, tdijk :EQ 112) 

We see that the finite difference approximation does not involve the 

[I z matrix. This makes the method particularly simple, since we do 

not have to take into account the exponential transforms in the cou- 

pling coefficients. The mesh centered finite differences do not take into 

account the kinetic distortion terms. 

Integration with Jl(xi+,) 

We have, after integration, 

[JICt)lijk = { [iI + !$[NjijJ[*(‘i + 1’ tjlijk 

Once again, the vector is made of both fiuxes and currents. Writing the 

first portion of the vector gives 
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Finite Difference Appmxlmation 179 

- 

Thus, 

We rewrite this last expression for node (i-l,j,k), and we have 

Relationship Between Average Fluxes and Clrrrents 

We now take the difference between (112) and (113). We find 

By the continuity cf the flux, the first two terms in this equation anni- 

hilate each other. By the current continuity, the two currents a:e the 

same. Thus, we get 

and finally 
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Mesh Centered Finite Differences 100 

[Jx(Xi, tiJ,,=&];; + q LDIL’ Ijk)‘([$]ijk - [$]i - ljk) 

which at last gives us the sought relationship between the average sur- 

face currents and the average fluxes of the two nodes surrounding the 

interfaces. 

An identical calculation performed on node (i+l,j,kj would give the 

expression 

Coupling Coefficients 

In the preceding section, we have found a relationship between the 

node average fluxes and currents in the x direction. Similar calcula- 

tions could be made in the other two directions, which would give rise 

to the following relationships: 

X Direction 

[Jx(xi, tdijk= 
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Flux Equation 181 

Y Direction 

2 Direction 

and 

?lux Equation 

Finally, we substitute these expressions in the nodal balance equation 

(95), to get 
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I 

(EQ 114) 
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- 
Precursor Equations 

The precursor equations is given by equation (96), 

$.,ijrVijr = p,[VC,I,T,[&Iijkvij, - hCe.ijkVijk (EQ 115) 

Boundary Conditions 
- 

When a node (i,j,k) encompasses a boundary surface, the expression 

for the coupling coefficient will be different from those of centrally 

located nodes. First, we set the coupling to quantities that are outside 

the domain to 0. We then have to End expressions that relate surface 

currents to the node average fluxes. We must go back to equations 

(112) and (115) and to substitute the desired relationship between the 

fluxes and currents, for example by using albedos. The resulting 

expression is the substituted in the nodal balance equation of node 

(i,j,k). The case of zero current is even easier to take care of, since we 

only have to substitute J = 0 on the appropriate surface, which can 

be done directly in the nodal balance equation. 

Matrix Formulation 

Wti can now express the system of equations for the average fluxes 

(114) and for the average precursor concentrations (115) in matrix 

form.We use the following numbering scheme: the fluxes are num- 

bered according to the position index first, and according to group 
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index second. We thus have G blocks of N (=I X J X K) elements 

each. We also include D blocks of N precursor values. Therefore, we 

define a vector containing the following components: 

The semi-discrete system of the space-time kinetics equations is then 

written 

(EQ116) 

where the inverse of the diagonal matrix containing the volumes 

divided by the velocities for the flux part and ones for the precursor 

parts has multiplied the matrix containing the coupling coefh- 
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cients.The resulting matrix has the structure illustrated Figure 10,“H- 

185. Matrix Structure”,page 

FIGURE 10. H-Matrix 51 tructure 



Mesh Centered Finite Differences 166 

186 Jean Koclas, Neutmnic Analysis of Reactors 


	Chapter 15 Mesh Centered Finite Differences
	Geometry and Notation
	Spatial Discretisation
	A One-Dimensional System Within a Node
	Flux Equation
	Equation for the Currents
	Final Form of the 1-D System
	Finite Difference Approximation
	Coupling Coefficients
	Flux Equation
	Precursor Equations
	Boundary Conditions
	Matrix Formulation

	Figures
	9 Coordinate System
	10 H-Matrix Structure

