
Time Integration of the 

SpaceTime Kinetics 

Equations 

N THIS CHAPTER, we will explore some of the techniques 

used in practice to integrate in time the equations of space- 

time kinetics. We have seen in the previous chapter how the 

spatial integration leads to the semi-discrete formulation of 

these equations. Also, even though we have used mesh centered finite 

differences, the techniques described here could be applied without 

change to other discretisations, such as nodal methods for example. 

Theta Method 

The semi-discrete form of the space-time kinetics equations (116) are 
the starting point of this analysis. The structure of the [H] is also 

detailed on Figure 10, page 185. In this section, in order to simplify 
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matters, we will only deal with the case where a single family of delayed 

precursors is modeled. Generalization to more families is straightfor- 

ward. 

We can write the matrix form in the following fashion, 

We apply the 0 method to this equation. using a different value of 0 

for the fluxes and for the precursors. We chose a formulation in which 

the 0’ and the BD are independent of space, but can be different 

from each other. Recall from chapter 11, NnmericaI Integration Tech- 
niques, page 123, that we can include the implicit, the explicit and the 

Crank-Nicholson schemes just by changing the value of the 0. We 

thus have 
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I HI Ldn+’ _ bl” = [cl “+I [cl” 

Solving this last equation might seem difficult on first hand, because of 

the very large number of unknowns in the problem. It is however pos- 

sible to eliminate the C ” + ’ from the flux equations. 

To do this, we rewrite the preceding system in two parts, one for the 
fluxes and one for the precursor concentrations, noting that the HI, 

and the H,, do not depend on time, since they only involve the hi, the 

group velocities and the volumes. We get 

4 “+I-4” = [~tH~,+‘@P]4n+‘++12][@d]C”+’ 

+ [AtHp’[I _ gpjl@ + At[II’;i [I - &” Ed”” 
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C n+‘-c” = [AtH;,+,gP]+n+’ +At[H22][0d]C”+’ 

+ [AtH&[I-GP]]+n+Af[H&-OjCn 

We isolate C” + ’ from this last equation to get 

(+I+1 -I 
= 

[ 
I - AtH,,Od 1 c I + AtH,,(I - Od) c” 1 

(EQ 118) 

+ [ I - AtH,Od]-‘[AtH& [I _ t&j@ 

We then substitltte this result in the flux equation (1171, 

4 “+I-&” = [At~~,+l@j+~+’ + 

[ 

-1 

I - AtH,Od 1 L I + AtH,(I - Od) c” 1 
+ At[H12] [0$ + [I - AtH,Oj -’ [AtH;,+ t0j 4” + t 

+ [ I - AtH,Oj-t [AtHZ”, [I _ g#‘n 

+[AtH;I[I-0P!i93+At[H,~[I-0d]Cn 
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and, regrouping terms together, 

We define the matrix 

-AtH 12 od(I - AtH Od)-‘AtH 22 q 
;; I@] 

and the vector 

[s]” = [I + AtHy*+ tOd(I - AtH2,0d)-‘AtH;JI - 0’) 

+ AtHy,(I - Op)][+,l” 

+ (AtH,,Od(I - AtH2,0d)-‘(I + AtH,,(I - od)) 

+ AtH;,(I - &))[C]” 

Finally, the flux equations can be put in the fcrm 

[A@+ I)[-#+ 1) = [Sl(n) 

Note that evaluating the vector [s] (“) d oes not present any particular 

difficulties, since the matrix inversions appearing in it involve only 
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diagonal matrices. Furthermore, this vector depends only on the flux 

vectors d”) and on the precursor vector C” , evaluated at the previ- 

ous time interval, and are therefore available for the computation, 

Constructing the matrix [A]‘” + ‘) does not present any difficulty 

either, since the inverses that appear in its expression involve only 
diagonal matrices. The matrix [A] (n+I) 

~11 have the sam.e structure 
as H,, . It will be u&diagonal for 1-D problems, penta-diagonal for 2. 

D problems, and hepta-diagonal for 3-D problems. 

Consequently, the evaluation of the fluxes only need solvin,g a problem 

involving these matrix structures . XJ decomposition could be used in 
l-D, whereas iterative methods such as Gauss-Seidel, SOR; CCSI, etc. 

wou!d be used in 3-D. Methods such as ADI decomposition could also 

be used in such cases. 

Once the fluxes I$” + ’ have been calculated, the precursors C” + t 

could be determined by slightly rearranging equation (118), 

C II+1 
= ‘eP d’” + ’ 1 

-1 [ 
I + AtK,,(I - Od) c” 1 
+ [AWIII _ o'l]'+n 
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Exponential Transforms 

The fluxes vary quite fast during a transientMany times, the time 

intervals must be of the order of 10e4 and even 10m5 seconds). There 

is thus much interest for any approaches that would lead to significant 
reduction of the ti.mr step. The qttasistatic method is one of them, per- 

mitting longer intervals between the computation of the spatial solu- 

tions. 

Another method is that of the exponential transform. This supposes 

that the fluxes and the precursors undergo quasi-exponentiai varia- 
tious in time. The idea is to remove this exponential behavior, and to 

deal with variables that will vary much more slowly than the original 

ones. By way of consequence, a much longer time step could be used. 

To show this, we introduce new variables, q and 5, related to the 
fluxes and to the precursor concentrations by the transformations 

[id = exp([oP]t)LJ 
[cj = =xp( [%jt;[LJ 

(EQ 119) 

These should vary more slowly than the initial variables. Note that the 

K Ll P and fld are diagonal matrices, and that the exponential of 

these matrices are also diagoual matrices. We only have to fmd the dif- 

ferential equations governing [d and [{A . To do so, we start from 

the system 
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in which we substitute (119), 

The left hand side of this last equation can be written 
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rMultiplying by the inverse of the matrix exponential 

(EQ 170, 

We can rewrite this lzst system in the form 

The e!rments of matrix bj are obtzined from the expressions found 

in equation (120). Since we have a system having the same structure as 

the initial system, the methods introduced in the previous section can 

be used to perform the temporal integration. 

Frequency Determination 

There is a problem to be addressed, that of the way to determine the 

frequencies [a4 [ ] and n,d . The temporal behavior of the fluxes and 

the precursors is not exactly an exponential during most of complex 

transients. There is therefore no frequencies that will permit following 

the fluxes exactly during a given time interval. 

Approximate methods to determine the frequencies thus have to be 
sought. A simple and often used technique is to calculate the frequen- 

cies for the time interval t, < t < t, + t in the following way, 
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and 

This is to suppose that the frequencies used in a given time interval are 

those that were present in the preceding time interval. This approti- 

mation works relatively well, except when reactivity devices move in 

discontinuous fashion, for example when they start or stop moving. In 

such circumstan~ces, the cakxlated frequencies will sot be very good, 
and smaller time steps will be necessary. 
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