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Chapter 5 Fuel - Coolant Heat Tmsfer 

5.1 Introduction 

The interface behveen the fuel and the coolant is centrally important to reactor design since it is here 
that the limit to power output occurs. Nuclear fission can provide a virtually unlimited heat 
generation rate, far more than can be transported away by the coolant. Herein we investigate the heat 
transfer at the fuel site so that this limitation can be factored into the reactor design. 

5.2 General Heat Conduction Equation 

For a solid, the general energy thermal energy balance equation of an arbitrary volume, V, is: 

(1) 

where. p is the material density, e is the internal energy, V is the volume, S is the surface area, q’” is 
the volumetric heat generation, q” is the heat flux and d is the unit vector on the surface. We replace 
the internal energy with temperature, T, times tbe heat capacity, c. Using Gauss’ Law to coavcrt the 
surface integral to a volume integral and dmppisig the Qolume integral everywhere: 

v ,= q/llij) -’ Vq”(;;t) (2). 

We further need a relation to specify the heat flux in terms of temperature. In a solid, Fourier’s law of 
thermal conduction applies: 

q”(Et) = 4 WZt) (3) 

where k is the thermal conductivity. This gives the usable form: 

(4) 

The parameters have the following units: 
P kg/m’ 

F; 
JKh ‘0 
J/(m”K-set) 

q” J/(m’-set) = W/m* 
111 J/(m)-set) = Wlm’ 

: OK 
a defmed as Woe = m21sec. 

__--~. ~-.__--...-_ . 
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5.3 Radial Heat Transfer 

Consider a epical cylindrical fuel pin composed of fuel meat surrounded by a metal clad, as shown in 
figure 5.1. There is usually a small gap between the fuel and the clad which offers substantial 
resistance to heat transfer. The flowing coolant surrounds the pin. We will look at the fuel, gap, clad 
and coolant separately to develop the temperature profile in each material. Then, we will combine the 
equations to give the full fuel to coolant temperature profile. It is su&ient for our purposes to focus 
on the steady state. 

5.3.1 Fuel Meat 

Equation 4 in the steady state is: 

The pins are much longer than their diameter, 
hence, axial heat conduction can be ignored. In 
radial coordinates: 

This can be d&&y integrated to give: 

Figute 5.1 Radial fuel pin geometry [Source: 
DUD76, figure 12-31 

The constant of integration is mro since the temperature gradient at 1=0 is zero. The thermal 
conductivity, kl is a strong function of T in fuel. Hence, the subsequent integration of equation 7 is: 

where the subscript 0 indicates the centre point and the subscript F indicates the fuel meat radius. 
Since T=T, at r=O, the constant of integration is again zero. Finally we have: 
Note that we get thb same AT for a given q’ no matter what the fuel radius. For UOz ceramic, k, is 
typically 0.02 - 0.03 W/cm’K. At a q’ of 500 W/cm, the AT is about 14OO’C. 

5.3.2 Gap 

Equation 4 in the steady state for the gap region is: 



2 
rF AT&, = To - T,, = z q” 

, 
i 4 =__ 

rlzk, 

(9) 

I  

where q’ = nrz q” = linear power density 

This can be directly integrated to give: 

k rg=ccmtant 
G dr 

(11) 

(10) 

Tbe constant of integration is determined by considering the heat flux, q” at the fuel - gap interface: 

-kG II - si_ 
= q - 2xr, 3 

Substituting equation 12 into 11, we get: 

Integrating again we have: 

:.k, 2 = -& 

k, ALP = kG (Tp - T,) = $I 

(12)~ 

(13) 

(14) 

(15) 

where the subscript C indicates the gap-clad interface. The boundary conditions T-T& r=rF+to is 
incorporated into tbo above solution. Finally we have: 
The gap conductivity & is - 0.002 W/cm°K but it varies considerably with the amount of fission 
product gases. For a gap thickness of 0.005 cm, we. get a ATT,, of about 3OO“C for a q’ of 500 
W/cm. Since the fuel will swell to touch the clad (although not perfectly since the surfaces have a 
iiite. roughness), an effective heat transfer coefficient, b is used: 
Thus: 



.:A&,, = & 0 

PO 
“a 

= 2nr, kG 
since In(1 +X)=X 

hAAT,) = qfl 

ATcuIp = -!t!- 
2=I& 

A heat transfer coeffSent of 0.5 - 1.1 W/cm*OK give a ATT,,, less than 300°C. 

5.3.3 Clad 

As per the gap region, the steady state equa’tion for the clad region is: 

This is solved in the same manner as for the gap to give: 

kc AT,-- = kc (T, - T$ = &I 

(16) 

(17) 

(18) 

(20) 

where the subscript S indicates the clad-coolant surface interface. The boundary conditions T=T,at 
r=r,+t,+t, is incorporated into the above solution. Finally we have: 

(21) 

The clad conductivity kc is - 0.11 W/cmOK giving a ATT,, of about 80°C for B q’ of 500 W/cm. 

5.3.4 Coolant 

From the clad to the coolant, the heat flux is determined by: 
where T, is the bulk temper&m of the wolaat fluid. Thus the temper&me drop t?om the clad 
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surface to the bulk fluid temperature is: 

I 
AT- = 

2xhArF+rc+rG) 

A heat transfer coeffkient of -4.5 W/cmzoK give a ATCWL of about 10 - 20°C. 

5.3.5 Overali Temperature Dikkence 

Adding up all the temperatore differences we find: 

rG+tC 1 

k&i&) + hs(r,+tc+t,) 
1 

(24) 

Thus, given a bulk coolant temperature, the centre line fuel temperature floats on top of the coolant 
temper&are by an amount that depends on the heat being generated and the various resistances to heat 
flow. For a given fuel.desiga, most of tlik parameters are f&d under normal operation. The one 
exception is h,. As illustrated in tiguti 5.2, h, (defmed as the slope of the q” - AT curve) can vary 
considerably. If the surface temperature is too high, a vapour blanket forms at the surface and the 
heat cannot flow out of the fuel. In effect, h, drops. This is the dreaded fuel cooling crisis that can 
occur if power regulation is lost, if a loss of coolant flow occurs or if a loss of coolant inventory 
occurs. The result of such a crisis is clad failure and release of fission products to the coolant system, 
and possibly to the turbine cycle and the atmosphere. 

Figwe 5.2 Heat flux vs. AT for pool-boiling heat transfer [Source: DUD76, figure 12-91 



5.4 General lhemal Energy Equation 

To determine the axial temperature distribution in the coolant, we need to consider the axial heat 
transport mechanisms. For this we. need the general form of the thermal energy equation: 

where the last two terms are the viscous heat dissipation (friction heating) and pressure work terms, 
respectively (more on this in chapter 9). The first term on the right hand side of equation 25 
represents the flow of energy through the surfaces, i.e., energy transport. As we shall see, this can be 
rearranged in terms of enthalpy (h = e + P/p): 
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5.5 Axial Temperature Distribution 

1x1 typical power reactors, aP/& << apb/& so that term cao be ignored. For the steady state situation, 
the energy balance on a lump of fluid coolant of length dz su~~ndimg the fuel pin (see figure 53) is, 
thus: 

A&~ = 0 = @p/w)& - (Aphv)l,,, + q”(z)2xr&z (27) 

Since there is no heat generation in the coolant itself (apart from some minor turbulence heating), qw 
= 0. Defining the mass flow as W = Ap Y (kg/set) and conve&~g q” to q’, we have: 

JV (4, - hU = q’odr (28) 

We note that W is constant along the channel length since mass is neither created nor destroyed. Also 
note that the heat flux is a function of axial position since the power generation avial distribution in a 
reactor is not uniform. To a first approximation it is a cosine shape. In single phase, then: 

w c d-r = q’(z)dz = qo ws(x~ (29) 

where H is the channel length, z = 0 at the,channel midpoint ;ind c is the fluid heat capacity. 
Integrating from the channel entry (z = -H/2) to the channel outlet (z = + H/2) gives: 

T,(z) - T,, = J$Sh($) where z E (-H/2,+If/2) (30) 

This is plotted in figure 5.4 

Figure 5.3 Axial energy balance 



Hed Trmsfer 5-8 

ff -- 
2 

Figure 5.4 Axial temperature pmfile [Source: DUD76, figure U-81 



5.6 Axial Quality Distribution 

Equation 28 can be used to calculate the axial quality distribution by noting that: 

h = h,= + % (31) 

where x is the weight fraction of steam in a two-phase mixture, h,, is the saturated liquid enthalpy 
and h, is the latent heat of vaporization. Thus: 

W (h(z) -hd = +7&z)& 
-By2 

If the axial position of the start of bulk boiling (the point where h(z) = h,,) is defined as asp: 

The quality as a function. of axial position is, finally: 

(33) 

(34) 

5.7 Critical Heat Flux 

The local quality is of central importance to the margin to dryout in a reactor chaanei since x is the 
one parameter that was experimentally found to relate to centre line melting and sheath dryout, MO 

phenomena that serve as .indicators of the onset of a heat transfer crisis. Figure 5.5 shows a typical 
plot of heat flux and quality as a function of axial position. We shall discuss the explicit experimental 
correlations used in the indushy in chapter 9 but, in the meantime, figure 5.5 also shows a sketch of 
the Critical Heat Flux (CHF) as a function of local quality. Re-plotting actual heat flux vs. quality on 

the same graph allows an estimation of the margin to dryout or centre line melting. If the channel 
power were to increase, this curve will move up and to the right, approaching the CHF curve. The 
channel power that causes the two curves to touch is the limiting or critical channel power. The 
Critical Power Ratio, or CPR, is defined as the ratio of this critical power or heat tlux and the nominal 
power or heat flux. 
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Figole 525 CHF and CPR 



5.8 Summary 

This chapter has dealt with the heat transfer situation in the fuel channel. Heat flux limitations here 
set the limit for plant power output. In previous chapters wc have covered the basic notions of overall 
plant thmmalhydraulic and thermodynamic phenomena and the simplified governing equations for 
those phenomena. We are ROW in a position to appreciate and investigate the following topics: 

- overall plant control 
- overall plant design optimization 
- thermalhydraulic design evolution 
- detailed systems equations and modelling 
- design verification. 

This topics are. covered in the subsequent chapters. 

_,_ _- .  . - - I  
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