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CHAPTER 2 
,_~~ 

1 SINGLE-PHASE FLUID EQUATIONS 

In this chapter, starting from general property balance equations and using the Reynolds transpcrt 
theorem given in Chapter 1 and the Gauss theorem, the local and volume averaged consetvation 
equation for mass, momentum and energy will be derived for a single-phase flow. 

1. I Local Fluid Equations 

I. I. I General Local Comervatim Equation 

The genera! local conservation is obtained by using the general property balance principle applied 
to a material volume, V(r), bounded by a material surface, A(r), in a flow field as illustrated in 
Fig. 2.1. Obviously the element of volume moves with the local fluid velocity, ;. Indicating by: 
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Figure 2.1 Material volume. 

property per unit volume of material which may be any scalar, vector 
or tensor property; for the present application, it till be assigned as 
mass, momentum, or energy per unit volume, 

flow of property per unit area and time across the surface, A(r), 
bounding the volume,V(r); it may be a vector or a tensor, 

generation of the property per unit volume and time, 

the general balance statement for a given property can be written as: 
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in other words: 
< 

(2.1) 

Using the Reynolds transport theorem given by Eq. 1.33, the above equation can be written as: 

Using the Gauss theorem: 

j, ii.Bd.4=jy G.BdV (2.3) 

and by interpreting B as y 3 and J*p, the surface integrals appearing in Eq. 2.2 can be trans- 
formed into volume integrals: 

Since Eq. 2.4 applies to any volume dV, it car! be deduced that the local instantaneous conserva- 
tion equation will be in the following form: 

The first term of the above equation is the time rate of change of the property, w, per unit volume, 
the second term is the rate of convection per unit volume, the third term is the surface flux and the 
forth term is the volume source. Table 2.1 gives the most frequently used properties. 

1.1.2 Fluid Conservation Equations 

I) Local continuity equation 

The conservation of mass can be expressed in a differential form by setting in Eq. 2.5: 

y = P, c&=0 and sy =o 

This is due to the fact that there is no surface property flux, J, and volume property generation, 
ST, with respect to the fixed volume. Therefore, the mass conservation equation has the following 
form: 
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Table 2.1 

Most frequently used parameters 

PropeW, cp Property per unit mass Property per unit 

. \V=(P/I?l volume, w=(PN 

Mass m 1 P 

Volume V I/P 1 

Momentum mv V PV 

Kinetic energy ‘/2 mS 1% J % ps 

Potential energy mgz g= m= 
Internal energy IWI U PU 

Total energy me e oe 

Enthalpy mh II ph 

Mass concentration mc C DC 

&p+ i+=o. (2.6) 

II) Momentum equation 

The conservation equation is obtained from Eq. 2.5 by interpreting: 

l the property w as the momentum per unit volume, i.e., Y = p ;, 
= 

l the flux of the property, J, , as the surface stress tensor which represents the normal and shear 
stresses acting on the surface (see Appendix II): 

l the source term, & , as the momentum generated by volumetric forces such as gravity, i.e.: 

The momentum equation has the following form: 

III) Conservation of energy 

In this case ‘I”, JY &d 5’~ are interpreted as: 

l ‘I’ : total energy which is the sum of the internal and kinetic energies per unit volume, i.e. 

(2.7) 
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= 
+ J, : heat conduction across the control surface and the work done by surface forces, i.e. 

j= ;” _ ;.; 

where F = -pi + 6. 

+ SY : work done hy the volumetric forces and the energy generation per unit vohnne (due to 
chemical or nuclear reactions, for example), i.e. 

Substituting the above interpretations into Eq. 2.5, the total enera.y equation is obtained as: 

Using the definition of enthalpy: 

h=u+f. 

the total energy equation becomes: 

(2.9) 

The mechanical energy equation is obtained by multiplying sca!arly the momentum equation 
(Eq. 2.7) by the velocity and has the following form: 

(2.11) 

Subtracting the mechanical energy equation from the total energy equation (Eq. 2.8) and taking 
into account that: 

(2.12) 



q;. ;) = ;.(ih)+G:“v; 

the following is obtained for the internal enerzv euuation: 

&(P 1 u + v’.,u~=-~.a,~.;:+~:~t:+~, 

Subtracting the mechanical energy equation from Eq. 2.10 yields @h&v eauation: 
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(2.13) 

(2.14) 

(5.15) 

At tfiis point, the unknown dependent variables are: the specific mass, p, three velocity compo- 
nents u, Y, w, the pressure, p, the specific internal energy and the temperature, for a total of seven. 
The number of availzble equations are: one continuity (Eq. i.6), three momentum (Eq. 2.7: and 
one energy (Eq. 2.8), for a total of five. Thus, the five differential equations must be supple- 
mented by two additional equations which do not introduce any additional unknowns. Tine addi. 
tional equations are equations of state given by: 

and 
0 = P(P> 4 (2.16) 

T = T(p, 4 (2.17) 

where the independent variab!es are taken to be the pressure and specific internal energy. Other 
combinatious of dependent and independent variables are also possible. Finally, we note that other 
properties such as viscosity, conductivity etc., are not constant and they are function of the tem- 
perature and pressure. 

The development of the local equations given above is not intended to be an exhaustive review of 
the subject. Further developments to the local conservation equations can be found in fluid me- 
chanics text books. 

1.2 Macroscopic Fluid Equations 

The conservation equations (Eqs. 2.6, 2.7 and 2.8) in conjunction with the constitutive heat con- 
duction law (Fourier law) and the state equations (Eqs. 2.16 and 2.17) provide sufficient informa- 
tion to calculate the distribution of the dependent variables throughout the flow field. Additional 
information must be supplied for the initial conditions of the fluid and the conditions at the bound- 
ary of the flow field. However, most engineering analysis are conducted with simpliEed one di- 
mensional models obtained by area or volume averaging of the local equations. In the process of 
averaging, information on the detailed distribution of the dependent variables normal to the flow 
direction is lost; the effect of these distributions are accounted for by the use of empirical consti- 
tutive relationships (for example, wall friction and wall heat transfer coefficients for a flow in a 
pipe). In complex flow geometries such as abrupt expansion and contraction, laterally intercon- 
nected parallel subchannels, dividing or converging steams a lot of engineering judgement should 
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be used during the use of the averaged equations. Continued comparison of the predictions of the 
area or vohrme averaged models with experimental data are necessary to determine both the 
soundness of the approximations associated with the model and the techniques employed in the 
application of a one-dimensional model to complex multidimensional systems. 

, 1.2. I Generalised Volume Averaged Conservation Equations 

The generalised volume averaged conservation equation is obtained by integrating the general lc+ 
cal conservation equation (Eq. 2.5) ov,. p- a geometric volume V(z) and combining it with the gen- 
erelised transport theorem given in Chapter 1 (Eq. 1.34). The integration of the local conservation 
equation (Eq. 2.5) over the geometric volume V(r) gives: 

The combination of the abcve equation with generalised transport theorem (Eq. 1.34) yields: 

The first two volume integral on the right hand side of :he above equation can be transformed into 
surface integrals bye the use of Gauss theorem. Therefore Eq. 2.19 becomes: 

This the generalised macroscopic (volume integrated) balance equation. The term on the left hand 
side of the equation is the time rate change of the property w within the volume V($, the first 
term on the right hand side is the rate of convection throughout the surface A(r) bounding the 
volume, the second term is the flow of property through the same surface and finally the last term 
shows the property generated within the volume. 

1.2.2 Volume Integrated Conservation Equations 

I) Macrosco$c mass balance 

By interpreting: 

y=p, .&o and sy=o 

the mass conservation equation in the volume V(t) can be expressed as: 

(2.2 1) 
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In the above equation, if 0’ = $ we have a material volume; if 2 = 0 we have a fix control 
volume. 

II) Macroscopic momentum balance 

Interpreting: 
, Y=p3, j.&==,j-;; and sy=p; 

the macroscopic momentum balance equation is obtained as: 

5 L 
p;dV=-JAoj 5;.p++fA-~~C~, ;.pl=dA 

+ I,,, Z.GdA+ I vcrJ P g’ dV. 

III) Macroscopic total energy balance 

Interpreting: 

the macroscopic energy balance is obtained as. 

(2.22) 

(2.23) 

The volumetric body force, 2, which appears m the forth integral on the right hand side of 
Eq. 2.23 can be derived from a scalar potential hmction in the fo!lowing form: 

&+I. (2.24) 

Therefore, the work term due to the vclumetric force can be written as: 

(2.25) 

Frcm vector analysis we know that: 

~.[~(,;)]=(p;>.~e+o~.(p;) (2.26) 

Substituting Eq. 2.26 into Eq. 2.25 we obtain: 



The first term on the right hand side of Eq. 2.27 can be transformed into a surface integral by use 
of Gauss theorem: 

, (2.28) 

the second tern1 of the same equation can be rewritten by use of the local continuity equation 
(Eq. 2.6) as: 

Substituting Eqs. 2.28 and 2.29 into Eq. 2.27 we obtain: 

(2.29) 

Usi~ng the generzlised transport theorem, interpreting ‘I’ as p$ and assuming that the scalar poten- 
tial I$ is independent of time, the last term on the right hand side of the above equation can be 
written as: 

Combining Eqs. 2.30 and 2.3 1, we obtain: 

Substituting Eq. 2.32 into Eq. 2.23 we get: 

where the heat flux is given by the Fourier law of conduction: 

(2.31) 

(2.32) 

(2.33) 

In order to close the above conservation equations, two state equations as given by Eqs. 2.16 and 
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2.17 must also be supplied. Finally, the fluid transport properties such as viscosity and conductiv- 
ity are also needed. 
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