
PRINCIPLES OF HEAT TRANSFER 

This chapter is intended to discuss different energy transport mechanisms which are usually classi- 
‘ fied as conduction, convection and radiation. From the second law cf’thermodynamics we know 

that the heat flows whenever there is a temperature difference, i.e., temperature gradient. The 
knowledge of the temperature distribution is essential to evaluate the heat flow. The temperature 
distribution and the heat flow constitute two basic elements in the design of thermal equipments 
such as boilers, heat exchangers, nuclear reactor cores, etc. Since in nuclear reactors, under nor- 
mal opemting conditions, radiation heat transfer has limited application, the present discussion 
will be mainly focused on conduction and convection heat transfers. 

1.1 Mechanisms of Heat Transfer 

; Conduction 

The conduction is defined as the transfer of energy from one point of a medium to an other under 
the influence of temperature differences. On the elementary particle level, the conduction is visual- 
ized as the exchange of kinetic energy between the particles In high and low temperature regions. 
Therefore, the conduction is attributed to the elastic collisions of molecules ifi gases and liquids, 
to the motion of free electrons in metals, and to the longitudinal oscillation of atoms in solid insu- 
lators of electricity. A distinguishing characteristic of conduction is that it takes place within the 
boundary of a medicm, or across the boundary of a medium into an other medium in contact with 
the first, without an appreciable displacement of the matter. 

On the microscopic level, the physical mechanisms of conduction are complex. Fortunately, we 
will consider the conduction heat transfer at a macroscopic Icve! and use a phenomznological law 
based on experiments made Biot and formulated J.B. Fourier in 1882. This law can be illustrated 
by considering a simple case, a wal! of thickness L, surface area A and whose faces are kept at 
temperatures t, and t, as shown in Fig. 3.1. t, is greater than t,. Under these conditions, heat flows 
from the face of high temperature to the face of low temperature. According to Fourier’s law of 
heat conduction, the rate of heat transfer in the x-direction through the wall element, tlr, located 
at x is proportional to: 

+ the gradient of temperature in that direction, dfkir, and 
l to the surface area normal to the direction of heat transfer, A 

Therefore, the heat transfer rate is given by: 

where k is the constant of proportion3lity and it is called the “thermal conductivity”; it is a prop- 
erty of the materisl. The minus sign appearing in Eq. 3.1 is due to the convention that the heat is 
taken to be positive ‘in the direction of increasing x and also ensures that heat flows in the direc- 
tion of decreasing temperature, thus satisfies the second law of thermodynamics. As sketched in 
Fig. 3 2, if the temperature decreases with increasing x, then the gradient is a negative quantity 
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Figure 3.1 Heat flow across a 
plane wall. 
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Figure 3.2 Sign convention for the direction of heat in the Fourier law. 

and the minus sign of Eq. 3.1 ensures that q, is positive. Conversely, if the temperature increases 
with increasing x (Fig. 3.2b) the gradient is positive and qx is negative. In either case heat flows in 
the direction of decreasing temperature. 

Dividing both sides df Eq. 3.1 we obtain: 

(3.2) 
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where the quantity q: is called the hearflux. The dimension of heat flow rate is energy per unit 
time, i.e., J/s whereas the dimension of df and dr are Kelvin (K) or degree Celsius (“C) and meter 
(m), respectively. Consequently, the unit of thermal conductivity is: 

I 

and the unit of heat flux is: 

J 
q: : - 

smz 
or w. 

mz 

Assuming a linear temperature variation in the wall illustrated in Fig. 3.1, Eq. 3.1 cao be easily in- 
tegrated: 

(3.3) 
to obtain: 

or 
q:.L - -k(t, - I ,) 

q;=+!z. 

(3.4) 

(3.5) 

. . . Since t* > tZ , (;I: is a positive quantity. Therefore, it is in the positive direction. If fz > t,, then 
q: would be negative and heat flow would be in the negative x direction. 

Eq. 3.1 or 3.2 give one dimensional form of Fourier’s law of heat conduction. In general, the tem- 
perature in a body may vary in all three coordinate directions, i.e., 

I = f(X,Y, z, 7) (3.6) 

where 7 is the time. Therefore, the general form of Fourier’s law is 

where 2’ is the conduction heat flux vector and ? 
-a 

is the gradient of the scalar temperature field. 

According to Fig. 3.3, qU can be written zs: 

(3.8) 

(3.9) 
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Comparing equations 3.8 and 3.9 we conclude that: 

q: = -&. ax, q; =-kg; q: = 4% (3.10) 

; g=-kv‘3r -,, -I 4. 4 
-I, q, 

//!!ffl~ - 
-,I 4. Y 

Figure 3.3 Three components of 
the heat flux. 

-P-b -9 
i , j and k arc unit vectcrs in the X, y and z directions. In the above discussion, the medium is 

assumed to be isotropic. 

’ .’ The thermal conductivity defined with Eq. 3.1 is a property of a material and is determined experi- 
mentally. From gases to highly conducting metals, k varies by a factor cjf about 1.5x IC4. The nu- 
merical value of the thermal conductivity is an indication of how fast heat is conducted through 
the material. Thermal conductivity varies with temperature. Only for limited number of materials, 
the thermal conductivity depends weakly on temperature. In many oihers, rhis dependence is 
rather strong. Table 3.1 gives the thermal conductivity of selected materials. 

Table 3.1 Thermal conductivity of selecred materials 
(at 25 “C if not specified) 

Material k in W/mK Material k in WlmK 

Copper 286 Uranium dioxide at 1200 “C 2.6 

Ahminum 204 Uranium dioxide at 1800 “C 2.2 

Steel 64 Water (light and heavy) 0.611 
Stainless steel, 18-8 15 Air 0.027 

Zirconium 13 

Uranium metal at 5?0 “C 30 

Uranium dioxide at 600 “C 4 



3.5 

II. Conveciion 

Convection is the term used for heat transfer mechanism which takes place in a fluid because of a 
combination of conduction due 10 the molecular interactions and energy transport due to the mac- 

. roscopic (bulk) motion of the fluid itself. In the above definition the motion of the fluid is essential 
otherwise the heat transfer mechanism becomes a static conduction situation as illustrated in Fig. 
3.1. When the term of convection is used, usually a solid surface is present next to the fluid. There 
are also cases of convection where only lluids are present, such as a hot jet entering into a cold 
reservoir. However, the most of the industrial applications involve a hot or cold surface transfer- 
ring heat to the fluid or receiving heat from the fluid. 

If the fluid motion ir, sustained by a difference of pressure created by an external device such as a 
pump or fan, the term of “forced convection” is used. On the other hand, if the fluid motion is 
predominantly sustained by the presence of a thermally induced density gradient, then the term of 
“natural convection” is used. 

To understand better the heat exchange between a solid and fluid, consider a heated wall over 
which a fluid flows as sketched in Fig. 3.4. The temperature of the wall is t.,, The velocity and the 
tempereture of' the tiuid far from the wall (free stream) are U, and t, , respectively. For a given 

TEMPERATuPE 

HEATED WALL 

Figure 3.4 Convection heat transfer to a flow over a heated wall 
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stream velocity, the velocity of the fluid decreases as we get cIoser to the wall. This is due to the 
viscous effects of the flowing fluid. On the wall, because of the adherence (nonslip) condition the 
velocity of the fluid is zero. The region in which the */elocity of the fluid varies from the free 
stream valce to zero is called “velocity boundary layer.” Similarly the region in which the fluid 
temperature varies from its free-stream value to that on the wall is called the “thermal boundary 

c layer.” Since the velocity of the fluid at the wall is zero, the heat must be transferred by conduc- 
tion at that point. Thus, we calculate the heat transfer by using the Fourier’s heat conduction law 
(Eq. 3.1 or 3.2), with thermal conductivity of the fluid corresponding to the wall temperature and 
the fluid temperature gradient at the wall. The question at this point is that: since the heat flows 
by conduction in this layer, why do we speak of convection heat transfer and need to consider the 
velocity of the fluid. The short answer to this qtiestion is that the temperature gradient of the fluid 
on the wall is highly dependent on the flow velocity of the free-stream. P.s this velocity increases, 
the distance from the wall we travel to reach fret stream temperature decreases. In other words, 
the thickness of velocity and thermal boundary layers on the wall decreases. The consequence of 
this decrease is to increase the temperature gradient of the fluid at the wall, i.e., an mcrease in the 
rate of heat transferred from the wail to the fluid, The effect of increasing fret stream velocity on 
the fluid velocity and temperature profiles close to the wall is illustrated in Fig. 3.4. Note also that 
the temperature gradient of the fluid on the wall increases with increasing free stream velocity. 

Sir Isaac Newton experimentally focnd that the heat Bux on the w&l! is proportional to (t- -- 1,) : 

~-(fy-L) (3.11) 

Introducing a proportionality constant h, he proposed a law known as Newton’s law of cooling: 

qc = k‘l(r, - t,) (3.12) 

where h is the convection heat transfer ccetticient or the film conductance and A heat exchange 
surface. The unit of h is W!m’K or J/sm’ K. Table 3.2 gives the crders of magnitude of convec- 
tive heat transfer coefficients. 

Table 3.2 Order of magnitude of convective heat transfer coefficients 

Fluid and flow conditions h W/m2 K 

Air, free convection 5-25 

Water, free convection 15-100 

Air or superncated steam, forced convection 30-300 

Oil, forced convection 60-1,800 ” 

Water, forced convection 300-lS,OOO 

Liquid sodium, forced convection 10,000-100,000 

Boiling water 3,000-60,000 

Condensing steam 3,0@0-100,000 
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_-. 

From the above discussion, we conclude that the basic laws of heat conduction must be coupled 
with those of fluid motion to describe, mathematically, the process of convection. The mathemati- 
cal treatment of the resulting system of differential equations is very complex. Therefore, for engi- 
neering applications, the convection will be treated by an ingenuous combination of mathematical 
techniques, empiricism and experimentation. 

’ 111. Radiaiion 

It has been experimentally observed that a body may loose or gain thermal energy in the absence 
of a physical transporting medium. For example, a hot object placed in a vacuum chamber with 
cooier walls is observed to loose thermal energy. This loss of energy is due to the electromagnetic 
waves emissions (or photons) known as thermal radiation. Regardless of the form of the matter 
(solid, liquid or gas) this emission is caused by the changes in the electrons configuration of the 
constituent atoms or molecules. In the above example, radiation heat transfer could aiso occur be- 
tween the hot object and cold chamber walls even if the chamber was filled with a sufficiently 
transparent continuous medium such as air. The wavelength of the electromagnetic radiation is 
comprised between 10-r urn and 10.’ pm. The ma&urn flux at which radiation may be emitted 
from a surface is given by the Stefan-Boltzmann law: 

(3.13) 

where r, is the absolute temperature (in Kj cf the surface and cr is the St~efan-Boltzman constant 
((T = 5.57 x 10-s W/m2K4) Eq. 3.13 applies on!y :o an ideal radiator or “Black body,” In prac- 
tice, the radiant surfaces do not emit thermai energy ideally~. To take into account the “gray” na- 
ture of the real surfaces, a dimensionless factor, E, called emissivity is introduced. Therefore heat 
flux emitted by the surface is written as: 

q: = EST: W/m’ (3.14) 

with 0 < a I 1. If &=I, we obtain an ideal radiator. 

If heat is transferred by radiation between two gray surfaces of finite size, as illustrated in Fig. 3.5, 
the rate of heat flow will depend on temperatures r, and TZr on emittances E, and e2 , and on the 
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geometry of the system. From Fig. 3.5 it is obvious that some radiation originating from object 1 
will not be intercepted by object 2, and vice versa. In such a case, the determination of the heat 
flow rate is rather complicated. Usually we write that: 

, 
qr =A,F,,o(T,“ - 7’;) (3.15) 

where 4, is the net radiant energy interchange from object 1 to object 2 and F,, is a transfer factor 
which depends on emittances and geometry. For an annular space between two infinite cylinders 
or between two spheres F,, is given by: 

1 
F,? =-A- 

&+2($ - lj 
(3.16) 

where E, and E* are the emissivities of objects i and 2, respectively. IfA, ; AZ, the radiant net 
energy exchange between concentric cylinders is given by: 

q,=A 1 
$+A-1 

qr: - T-24) 

and corresponding heat flux: 

In many engineering applications, it is convenient to express the net energy exchange as: 

qr = hrA(TI - Tz) (3.19) 

Comparing Eqs. 3.17 and 3.19, we conclude thar the “radiation heat transfer coeficient,” h, for 
concentric cylinders when A 1 5 A2 is given by: 

h, = -=--(I-: + 7y)(T, + T,) 
$+&-I 

(3.20) 

With this approach, we have modeled the radiation heat transfer in a manner similar to convection 
heat transfer. It should be noted that h, depends strongly on temperature, while the temperature 
dependence of the convection heat transfer coefficient is generally weak. 

In many ergineering problems we may consider simultaneously convection and radiation heat 
transfer. In such a case the total heat transfer from the surface is written as: 

q=qc+q, (3.21) 
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1.2 Conduction Heat Transfer 

In this chapter, using the Fourier’s heat conduction law, we will establish a general equation for 
the conduction of heat in solids. This equation will be presented in rectangular coordinates as well 
as in polar cylindrical and in spherical coordinates. We will also discuss t~he most frequently en- 

, countered boundary conditions. Given the introductory nature of this section, the application of 
the general conduction equation will only be limited to one dimensional steady state and transient 
problems. 

1.2.1 General Conduction Equation 

In studying heat conduction problems, the main objective is to determine the temperature distribu- 
tion in a solid as a function of space and time, ~~,Jv. 7), for a given set of initial and boundary 
conditions. Once this distribution is known, the heat flux at any point of the sclid or on its surface 
can easily be determined. In the following, using the energy conservation principle and the 
Fourier’s heat conduction law we will establish the general heat conduction equation. The solution 
of this equation for a given set of initial md bcundary conditions will allow us to determine the re- 
quired temperature distribution. To derive the conduction. equation, consider the solid medium 
shown in Fig. 3.6 and select within this solid a differential control volume in the shape of a 

Figure 3.6 Control volume for conduction analysis in rectangular coordinate 
system. 
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parallelepiped of dimensions dx, 4, da in the r, y, I directions as illustrated in the same figure. In- 
dicating by: 
qx and qr+m heat entering and leaving the control volume in the x-direction, 
qu and q,.+ heat entering and leaving the control volume in they-direction, 
qZ and q,+m heat entering and leaving the control volume in the z-direction, 

* Qs heat generation in the control volume, and 
u internal energy of the control volume 
the energy conservation principle applied to the control volume can be written as: 

(3.22) 

Using the Fourier’s heat conduction law, we can write that: 

qr = -(kg) dydzdT 
x 

drdzds 

(3.23) 

(3.24) 

(3.25) 

qs+cix = -(kg) tidydzdx (3.26) 

&dzdT (3.27) 

qzk=- kfi 
( > az &dydT 

z+& 
(3.28) 

we can also write that: 

Q, = ql(x, y, z, z)&dydzdT (3.29) 

v, 

where q (x, y, z, z) is the heat generation rate per unit volume, and c and p are the specific heat 
and specific mass, respectively. Eqs. 3.26, 3.27, 3.28 , after using Taylor series expansion and ne- 
glecting the terms of second and higher orders, can be written as: 
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(3.31) 

(3.32) 

(3.33) 

Substituting Eqs. 3.23-3.25 and Zqs. 3.29-3.33 into Eq. 3.22 we obtain the general conduction 
equation: 

$(kg) +s(kz) +$(kg) +qM =c&. (3.34) 

The conductivity, k, can be a function of space and temperature. However, we will assume that 
the conducting medium is homogeneous and isotropic, Under this condition, the thermal conduc- 
tivity depends only on temperature and because of this dependence in Eq. 3.34 it is left in the de- 
rivatives. If the conductivity is independent of temperature, i.e., position, Eq. 3.34 becomes: 

When there is no internal heat generation, the above equation reduces to: 

(3.35) 

(3.36) 

where a = klcp (m’k.) is a thermophysical property of the material and it is called “the thermal 
diffisivity.” This equation is called Fourier‘s equation. 

For steady state conditions, Eq. 3.35 reduces to: 

(3.37) 

which is known as Poisson’s equation. Finally for steady state conditions without heat generation 
Eq. 3.35 becomes: 

(3.38) 

which is Laplace’s equation 
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Eq. 3.34 can also be obtained from general conservation equation given in Chapter 2 (Eq. 2.5) re- 
peated here for convenience: 

aw --t 
~+V.w;+?.J;-S,=O (3.39) 

l where 

w property per unit volume of material, 

J; : flow of property per unit of area and time through the 
control surface bounding the control volume, 

sv : generation of property per unit volume and time, 

; : flow velocity. 

In the present case, the body is at rest, i.e., G= 0. Considering Fig. 3.7 and interpreting ir. 
Eq. 3.39 

VI : as the internal energy, pu, 

& : as the heat flux, and 

& : as the heat generation rate q’“, 

Figure 3.7 Control volume to be 
used with general locai conserva- 
tion equation. 

we obtain: ‘. 

apu + -t/t 
x+V. q -q’#=o (3.40) 

Using the general form of Fourier’s law (Eq. 3.7) and knowing that: 



3.13 

(3.41) 

Eq. 3.40 becomes: --t at ?.kV.~+qU’=cpz. (3.42) 
, 

This equation is the same as Eq. 3.34. 

The derivation of the general conduction equation can also be carried out in cylindrical coordinate 
system (r, 8, z) defined in Fig. 3.8a and spherical coordinate system (r, $,0) defined in Fig. 3.8b. 
The resu!ting equations are: 

. . 

z z 

. . I 

1 

\ 

t = f(r,e,z) 

z Y 

‘1. i 

a) Cylindrical. (r,B,z) b) Sphcric~l. (r,q,O) 

Figure 3.8 DitTerent coordinate systems 

Cylindrical coordinates: 

(3.43) 

1.2.2 Initial and Boundary Conditions 

The evaluation of the constants that appear in the solution of the heat conduction equation re- 
quires the use of boundary and initial conditions. In the following, we will discuss the most fre- 
quently encountered boundary and initial conditions. 
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-. 
I. Initial conditions 

In transient heat conduction problems, the temperature distribution in the body under observation 
should be known prior to the initiation of the transient. For example we will specify that at r = 0, 

4 the temperature distribution in the body is given by ~(x,y.z). 

The boundary conditions specifies the thermal conditions applied to the boundary surfaces of the 
body. For example, on the boundary surfaces we may specify the temperature. the heat flux or the 
heat transfer to a fluid by convection. 

1. Frescribed boundary iemperature condition 

‘The temperature on the boundary surfaces of the body, r, , is imposed as illustrated in Fig. 3.9. 
This temperzture may be uniform and constant, a function of space and time or, a function of 
space only or time only. 

Figure 3.9 Prescribed boundary 
x=L .x temperature. 

2. Prescribed boundary heat f7u.x condition 

The heat flux across the boundaries is specified. This flux may be uniform and constant, a function 
of space and time or, a function of space or time only. The heat flux may be removed from the 
boundary surface (Fig. 3.lOa) or supplied to the boundary surface (Fig. 3. lob). 

If heat is removed from the bcundaly (Fig. 3. lOa), the application of the macroscopic energy con- 
servation principle (Eq. 2.23) to a very thin layer at the boundary (see insert in Fig. 3. :Oa) yields: 

or 
I, xi ii&=0 

+ +” -a -a ” 
nl qsd+n2. 4, =O 

(3.45) 

(3.46) 

where ;:i is the conduction heat flux and G: is the prescribed heat flux. Using the Fourier’s law 
of conduction, we obtain: 



3.15 

, 

we obtain: 

a) Heat removal from boundary b) heat addition to bounday 

Figure 3.10 Prescribed heat flux at the boundary. 

(3.47) 

(3 48) 

Since 72, . I= -1 arrd 22 G, n =q; , the above equation becomes: 

(3.49j 

If the heat is supplied to the boundary (Fig. 3. lob), the same reasoning as above yields: 

If the boundary surfaces are well insulated, i.e., 96 = 0, Eqs. 3.49 and 3.50 are reduced to: 

( > a 
ax s=o (3.51) 

3, Convective boundary condition 

A frequently encountered situation is the one in which the bounding surfaces are in touch with a 
fluid where heat is transferred from surfaces to fluid or vice versa as illustrated in Fig. 3.11. If the 
heat is transferred from boundary surfaces to the fluid (Fig 3.1 la), the application of the energy 
conservation principle to a very thin layer at the boundary yields: 

(3.52) 
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2) Heat transfer to fluid 

* 

x 

b) Heat transfer from fluid 

Figure 3.11 Convection at the boundary surfaces 

I 
where ;,l is the conduction heat flux and G,, convection heat flux. Using the Fourier law of 
conduction (Eq. 3.47)) Eq. 3.52 becomes: 

or 
.  ”  

The above equation with theNewton’s cooling law (Eq. 3.12) can be w&en as: 

(3.53) 

(3.54) 

(3.55) 

If the heat is transferred from fluid to the boundary surfaces (Fig. 3.10b), energy conservation 
principle gives: 

x 

In this case qN is given by: 

qK = h,(t, - 1,) 

Substituting the ab0v.e equation into Eq. 3.56 we obtain: 
! 

(3.56) 

k(E) s = h(t, -t,) (3.57) 
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4. Interface of hvo medium with dijferem conductivih, 

When two media with conductivity k, and kz have a common interface as illustrated in Fig. 3.12, 
the heat flux at this interface for each medium should be equal, i.e., 

, Interface 
t 

Figure 3.12 Interface of two me- 
dium with different conductivities. 

I, I, 

q;1 = qi2 

or using the Fourier’s law of conduction (Eq. 3.1) we obtain: 

If the contact resistance between the two media is zero, then the temperatures on both sides of 
the interface are equal, i.e., 

However, in practice the contact resistance is different from zero. In this case, representing the 
conductance at the interface by h, , the temperatures on both sides of the interface are related by: 

q;, = q:; = h&l; - tzi) (3.61) 

The contact conductance will be discussed in details in chapter on “Heat Removal from Nuclear 
Reactors.” 

1.2.3 One Dimensional Steady State Conduction 

In this section, we dill discuss heat conduction problems where only one dimension is enough to 
describe the temperature distribution. For example, the heat flow in a wall of finite thickness in x- 
direction but infinite extent in they- and z-directions or heat flow in a long cylinder with angular 
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symmetry constitute one dimensional heat transfer problems. For a one-dimensional steady state 
conduction heat transfer, the general conduction equations (Eqs. 3.34, 3.43 or 3.44) are written 
aS: 

Rectangu!ar coordmates: 

. 

(3.62) 

Spherical coordinates: 

(3.63) 

(3.64) 

1.2.3. I Conduction Heat Transfer in a Slab 

I. Plune wall with prescribed boundary temperatures 

As iilustrated in Fig. 3.13 the wall has a finite thickness (2) but infinite extent. Both faces, located 
sr x -0 and x = L are kept at specified temperatures I; and t, , rcsl;ectively. There is no heat 

‘4 
k = Const. 

0. b 
x 

Figure 3.15 Slab with prescribed 
temperatures. 

sources within the slab. sunder these conditions Eq. 3.62, for a constant conductivity, reduces to 
CT? -=O 
ax= 

(3.65) 

with boundary condnions: 
x=0 t= I, (3.66) 
x=L t= tz. (3.67) 
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The solution of Eq. 3.65 is: 

t=Ax+B (3.68) 

A and B are arbitrary constants. Application of the boundary conditions allows us to determine the 
, values of the constants. The substitution of these values into Eq. 3.68 yields: 

f(x)=tl+ f2-fl -X_ 
L 

(3.69) 

The heat flux through any plane in the wall perpendicuiar to the x-axis can be de:ermined by using 
the Fourier’s law of conduction: 

?’ = &?!. = k!l-[z 
ax L (3.70) 

Il. Multilayer waN with prescribed boundary temperutures 

Figure 3.14 illustrates a wall of two layers. The thickness of the walls are L, and L, and the con- 

Figure 3.14 Multilayer wall. 

ductivity are k, and k2 , I-espectively. The outside temperatures are t, and f3 , respectively. we 
wish to determine the heat flux through the wall. 

Since the steady state conditions exist, the heat ilux through the layers is constant. The application 
of Eq. 3.70 to layers 1 and 2 yield: 

tz - 13 

q” =k2x- Or 

fz - t3 = q”p 

2 
(3.72) 
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Upon addition of the above equations we obtain: 

II -I3 qv=- 
ii+? 

(3.73) 

Calling: 
s 

K=1 
Li,.$ 

(3.74) 

Eq. 3.73 can then be written as: 
q” = K(t, - t,) (3.75) 

where K is the cverall heat transfer coefficient. The above discussion shows that the knowledge of 
the interface temperature, I,, is not necessary to determine heat flux through the multilayer walls. 

III. Multilayer wall bounded on each side by convectingjLi& 

Fig. 3.15 iliusrrates a multilayer wall bounded on each side by convecting fluids. The convection 
coefficients are respectively h, and h, and the temperature of the circulating fluids are I, and tn , 
respectively. We wish to determine the heat flux through the wall. 

CONVECTING CONVECTING 

The heat flux through the layers is constant and can be written as: 

Figure 3.15 Multiiayer 
wall with con,ection on 
both sides. 

(3.76) 



q” = h2(t4 - ff2) or 
t4 - lf2 = 7 iI 

Upon addition cf the above equations we obtain: 

where 
qs = K(ff, -t,) 
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(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

If the wall consists of n layers. the overall heat transfer coetkient will have the following form: 

IV. Plane wall with heat generation mdprescribed boundary temperatures 

The only difference between this case and the case I is the heat generation in the slab. For a con- 
stant conductivity, Eq. 3.62 becomes: 

with boundary conditions given by Eqs. 3.66 and 3.67. The solution of the above equation is: 

The application of the boundary conditions yields: 

(3.85) 

(3.86) 
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and 
E=l,. 

Knowing A and B, the temperature distribution in the slab is given by: 

(3.87) 

, I(x)=~[~-(~)*]+(12-II)~+,, (3.88) 

V. Plane wuN with hear generaiion, otre surface insulated the other subjected to convective heat 
transfer 

This case is illustrated in Fig. 3.16. The temperature distribution is given by Eq 3.85. In this case, 
the constants are determined by using the following boundary conditions: 

Figure 3.16 Plane wall with heat 
generation; one face insulated the 
other coo!ed by convection. 

and are given by: 

x=L _ g 44 - = h[ t(x) - tf] ax 

A=0 

u, m 
B=$+$L+fi. 

The temperature distribution has, therefore, the following form: 

(3.39) 

(3.90) 

(3.91) 

(3.92) 

(3.93) 
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VI. PIane waN wilh heat generation and convective boundary condifions on both faces 

As illustrated in Fig. 3.17, both faces of the plate are washed with a fluid at temperature ir The 
heat transfer coefftcient is h. The faces 1 and 2 are located at x = -L and x = L, respectively. .T!, 
Heat generation rate is q 

, 
A 

Figure 3.17 Plane wall with 
heat generation and convective 
boundaries. 

x=-L x = I‘ 

The temperature disrributicn is again given by Eq. 3.85 subject to following boundary conditions: 

x=L -k& 
> 

= b[f(X) - lf] 

x=-L k&y = h/r(x) - rf] 

Eq. 6.94 signify that the conduction heat transfer that arrives to the face at x = L, - k(8 t/ax), is 
equal to the convective heat flux that enters the fluid bulk, i.e., h[t(L) - t/l. The same boundary 
condition at the face at x = -L does not have a minus sign in front of the k(8fla.r) term. This 
point was examined in details during the discussion of the boundary conditions in Section 1.2.2. 
Using boundary conditions 3.94 and 3.95, the constants A and B appearing in Eq. 3.55 are deter- 
mined as: 

A=0 (3.96) 

(3.97) 

The temperature distribution is given by: 



qx)=g 1- ; z +q++ [ 01 
3.24 

(3.98) 

Comparing Eqs. 3.93 and 3.98 , we observe that the temperature distributions are the same. 
Eq. 3.98 shows that the maximum temperature occurs in the midplane of the slab, i.e. , x = 0, 

’ Therefore, at this point the temperature gradient is zero and there is no heat flux in either direc- 
tion of x-axis. Eq. 3.98 also shows that the temperature distribution in the slab is symmetrical. 
When a given case has both geometrical and thermal symmetries about x = 0, it is more conven- 
ient to solve the conduction equation over the half region, i.e., for the slab under consideration 
between x = 0 and x = L by using the following boundary conditions: 

instead of using boundary conditions given by Eqs. 3.94 and 3.95. This discussion also explains 
why the temperature distributions given by Eqs. 3.93 and 3.98 are the same. 

The fuel eiement of a pool type reactor is composed of a plate of metallic uranium of thickness 
ZL, placed in sandwich between two aluminum plates (cladding) ofthickness(l; -Lr), This tire1 
element is illustrated in Fig. 3.18. Heat energy, due to the fission of U,,, , is generated in the fuel 
plate at a uniform rate qV’ The tission energy deposited in the cladding plates is negligible. The 
convection hezt transfer cceffrcient and the temperature of the fluid washing the firei element are 
h and /r , respectively. Determine the temperature distribution in the fuel element. 

This is a multiregion problem that involves two governing equations. As seen from Fig. 3.18, the 
problem has geometric and thermal symmetries with respect to the mid-plane of the ftiel element. 
Under these conditions, it is more convenient to solve the problem over the half of the fuel ele- 
ment extending from x = 0 tax = LT. Indicating by 1 the fuel region and by 2 the cladding region, 
the heat conduction equations are written as: 

Fuel: 

Cladding: 

d=t, q”’ 
z+-p for Olx$L, 

I 

dZtz = o - 
dx* 

for L, Sx<Lz 

(3.101) 

(3.102) 

with boundary conditions given by: 

x=0 (3.103) 
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Figure 3.18 Fuel element of a pool type reactor 

Solutions of Eqs. 3.10 1 and 3.102 are given by: 

and 

,,’ 2 
t,(x)=-F+Ax+B, 

1 

r,(x)=Cx+D:. 

Combining Eqs. 6.103 through 6.109, we obtain four equations: 

, A=O, 

ql”L: --+B=CL,+D. 
2kl 

/h 

k-AL 
- 

X 

(3.104) 

(3.105) 

(3.106) 

(3.107) 

(3.108) 

(3.109) 

(3.110) 
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-qP’L, = klC , (3.111) 

-kzC = h(CL* + D - t/i. (3.112) 

’ The solution of these equations yields the values of A, B, C and D. The temperature distribution 
throughout the fuel element is then given by: 

Fuel: 

f*(X) = fp[ 1 ~-(&J-2(~) +*(gy$)(ltj$-)]+” (3.113) 

Cladding: 

r&z) = -- q’;:[p&+&-)]+rf. (3.114) 

1.2.3.2 Conduction in Cylindrical Geometty 

I. Long hol!ow cylinder with prescribed temperature on the walls 

Consider the !ong hollow cylinder illustrated in Fig. 3.13 with in;ler and outer radii rl and rz , re- 
spectively, The temperature of the inner wall is I, and that of the outer wall is 1*. There is no heat 
generation within the cyiinder and the conductivity of the material is constant. We wish to deter- 

. .. mine the temperature variation in the cylinder wall. 

li’io~r~ 3.19 Long hallow cylinder 

The application of Eq. 3.63 to the present situation yields: 

(3.115) 
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with boundary conditions: 
r= rl f = t1 (3.116) 

r = rz I = tz (3.117) 

’ The integration of Eq. 3.115 gives: 
f(r) =Alnr+B 

where A and B can be easily determined by using boundary conditions: 

(3.118) 

. . 

A= [2-fl 

In (i-z/r,) ’ 

B=f, -(fz-fl) lnrl 
In(r2/rl) 

The temperature distribution is then given by: 

(3.119) 

(3.121) 

Based on the above temperature distribution, the linear heat flux (or heat flux per uni: length) 
through a surface located at r can be easily calculated: 

(3.i22) 

II. Hollow cylinder with convective boundaries on both walIs 

Fig. 3.20 is a sketch of a pipe in which a fluid at temperature I, circulates. Heat is transferred 
from this fluid to the pipe by convection, through the pipe wall by conduction then to the fluid 
outside again by convection. The temperature of the fluid outside is rd What is the linear heat 
flux through the wall of the pipe. 

Under steady state conditions, the linear heat flux is constant and we can write: 
Inner surface of the pipe: 

Through the wall (Eq. 3.127): 

; ’ q =2xk ‘let2 or I, -fz = 4, 
ln(r2h) 2rrklln(rzlrl) 

Outer surface of the pipe: 

(3.123) 

(3.124) 
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.  ”  

Figure 3.20 Pipe with 
convective boundaries. 

4’ = 2n rdh(f2 - 1~) or 12 - ‘n = 27Lqr2hZ 

Upon addition ofEq. 3.123.3.124 and 3.125, we obtain: 

q’= Ql - tJ7 

I 
ZZT,,k; 

+ In(r*h) 
-zr+dx 

9’ = q/, - t/2) 

where K is the overall heat transfer coefficient and has the following form: 

(3.125) 

(3.126) 

(3.127) 

(3.122) 

III. Long Solid cylinder with heaf generation and prescribed boundary iemperature 

The mathematical formulation of the problem is given by Eq. 3.63. Assuming that the conductivity 
of the cylinder material is constant, this equation becomes: 

(3.129) 



The boundary conditions are: 

r=O 

, r=rO 

The solution ofEq. 3.129 is: 

WC0 
dr 

I= I, 

,,, 

f(r)=-$r’+Alnr+B 

The application of boundary conditions shows that: 

A=0 

n, 

LL=t,+f$a. 

The temperature distribution is then given by: 

. I 

IV. Solid cylinder with heat gemration and convective bounaluy condition 

In this czse the boundary conditions will be: 

wzo 
dr 

r = r0 -k(+g) = h[f(r) - ff] 

3.29 

(3.130) 

(3.131) 

(3.132) 

(3.133) 

(3.134) 

(3.135) 

(3.136) 

where tr is the temperature of the convecting fluid. Using the above conditions we obtain for the 
integration constants A and L? the following: 

A=0 (3.138) 

The temperature distribution is given by: 
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The boundary conditions are: 

r= 0 

r=ro 

The solution ofEq. 3.129 is: 

dlo&J 
dr 

1 = tv 

“, 
r(r)=-$r2+Alnr+B 

The application of boundary conditions shows that: 

The temperature distribution is then given by: 

* . 

IV. Solid cylinder with heat generation and convective boundary condilion 

In this case the boundary conditions will be: 

r=O 4dco 
dr 

r=ro -k(~) = h[ l(r) - t/l 

(3.130) 

(3.131) 

(3.132) 

(3.133) 

(3.134) 

(3.135) 

(3.136) 

where t, is the temperature of the convecting fluid. Using the above conditions we obtain for the 
integration constants A and B the following: 

A.70 (3.138) 

(3.139) 

The temperature disti-ibution is given by: 
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(3.140) 

’ Consider the long cylinder sketched in Fig. 3.21. The outer surface cf the cylinder at r = rz is 

Figure 3.21 Long hollow 
der with heat generation. 

cylin- 

. - 

perfectly insulated whereas the inner surface at r = rr is cooled by convection. Heat is generated 
uniformly in the cylinder at a rate of qw . Determine the temperature distribution in the cylinder at 
the point where the coolant temperature is rr The conductivity of the cylinder material is 
constant. 

To determine the temperature distribution in the wall region, Eq. 3.63 should be solved subject to 
the following boundary conditions: 

r=rl kdt(r) - = h[r(r) - ff] 
dr 

r = r2 dr(r)=O 
dr 

(3.142) 

The solution of Eq. 3.63 is given by Eq. 3.132. The integration constants are determined by using 
the above boundary ,conditions. The use of Eq. 3.142 gives: 

,,, 

or 



and Eq. 3.141 yields: 

, 

I,, 

A=$ 
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(3.144) 

(3.146) 

Substituting Eqs. 3.144 and 3.146 into Eq. 3.132, we obtain the temperature distribution as: 

II TX 
t(r) = -5? + f&&n r + fg($-1) +g(+-+) +r/ (3.147) 

1.2.4 One Dimensional Time Dependent Conduction 

In this section we will discuss transient conduction problems in a system. Transient heat transfer 
ccnditions are achieved when heat generation is suddenly started or stopped, or the boundary 
conditiotx of a heated body are suddenly changed. Under these conditions, the temperature at 
each point in the body will start changing. These changes will continue until a new equilibrium is 

’ - reached between the energy created in the body and the energy removed from the body, or until 
an equilibrium temperature is reached between the hot body and the surrounding. To determine 
the temperature distribution within a solid during a transient process, we should solve general 
conduction equation (Eqs. 3.34 or 3.43, or 3.44) with appropriate boundary and initial conditions. 
For one dimensional geometry these equations reduce to: 
Rectangular coordinates: 

Cylindrical coordinates: 

Spherical coordinates: 

(3.148) 

(3.149) 

In certain class of ptoblems, the spatial distribution of the temperature in solid body stays nearly 
uniform during the transient. Under this condition, we may assume that the temperature in the 
body is independent of space and varies only with time. The analysis of heat transfer with such an 
assumpticn is called the “lumped zysfern analysis.” Since the temperature is a function of time 
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only, the heat transfer analysis can be easily conducted. Because its simplicity, in this section the 
discussion of the transient heat transfer will start with lumped system analysis. 

, 1.2.4.1 Lumped System Approach- System with High Conductivi@ 

Lumped system approach assumes that the thermal conductivity of the solid object is so great that 
during a transient heat transfer process the temperature gradient within the object is small, i.e., the 
temperature, for all practical purposes, can be considered as uniform at any instant. To illustrate 
this approach, two examples that consist the immersion of a hot object in a quenching bath of infi- 
nite extent, i.e. , constant temperature and a solid object in which heat is suddenly generated and 
placed in a constant temperature surrounding will be considered. Both cases wig be discussed by 
using macroscopic energy equation (2.23) which for the present case is written as: 

pudV = -j, 2 . ; * o!4 + j, q”dV 

where 
11 internal energy per unit mass 

? density 

ii unit normal vector to the bounding surface 
+ ” 
9 : heat flux applied to the bounding surface 

q”’ : heat generation rate 

’ _ Assuming that p, u and q” are constant throughout the solid body , q# is constant over the 
bounding surface of the body and knowing that: 

Eq. 3.151 becomes: 

pvk.,v$ 
dT 

(3.152) 

cpV$=-AT;.;” +Vq 
m 

(3.153) 

They,,!’ and A are the volume and bounding surface area of the solid object, respectively. If 
n . q is positive, heat flows out of the object, if it is negative, heat flows into the object. 

I. Immersion of a high thermal conductivity solid body in a quenching bath 

Consider a solid body at an initial temperature /i immersed suddenly in a quenching bath of infi- 
nite extent, i.e. , at a constant temperature tf as sketched in Fig. 3.22. Assuming that the material 
of the body has a high thermal conductivity, the gradient within the body will be small, conse- 
quently, the temperature distribution will be uniform and almost equal to the surface temperature. 
The heat transfer from the body to the surrounding is controlled by convection. Under these con- 
ditions, the term.4 z . G 

” 
Eq. 6. I53 is positive and given by: 

A;$ =Aq;=Ah,(t-t/). (3.154) 
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QUENCHING 
FLUID 

, 

A 
Figure 3.22 So!id object 
in an infinite quenching 
bath. 

There is no heat generation in the body. Therefore, Eq. 6.153 becomes: 

(3.155) 

with initial condition: 

Introducing the following variable change: 

Eq. 3.155 can be written as: 
e=t-rf (3.157) 

de -=- 
dr 

Ah,, 
CPV 

(3.153) 

with boundary condition: 
ei = tj - t/. (3.159) 

The solution of Eq. 3.158 subject to initial condition is given by: 

(3.160) 

or 
‘; 
/ /Ah \ 

f  - t f  = (ti - ‘f)exp \---$i (3.161 

The quantity cpV/Ah, the “thermal time constant” for the geomettry under consideration and has 
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the dimension of time. The numerator of the time constant, cpV, is called is called the “lumped _~ 
thermal capacitance,” and l/Ah, is known as the convective resistance. 

Let us give a closer look the exponent of Eq. 3.161 and rearrange it as follows: 

, (3.162) 

with a = k/cp We observe that the time constant does not contain the thermal conductivity; we 
introduced it by multiplying the numerator and the denominator of Eq. 3.162 by the thermal con- 
ductivity, k. The ratio of volume to bounding surface area of the body is called the “characteristic 
length” i.e., 

L,=S. 

With this definition, Eq. 3.162 becomes: 

h,Ar h,L, a T -=--- 
CPV k Lf’ 

t 

T 

I 

T:R H T, -- 
f, 

(3.163) 

(3.164) 

(3) Bi < 0.1 (b)O.l<Bi=l (c! Bi x1 I 

Figure 3.23 Relationship between the Biot number 
and the temperature profile. 

The term h,L,/k (= h,VlkA) is known as “Biot number.” The term az/Lf (= aTA2/V2) is 
known as “Fourier number.” The Biot number is a dimensionless ratio of convection coefficient to 
thermal conductivity g and ives an indication of the temperature drop within the solid body com- 
pared to the temperature difference between the solid surface and the fluid. If the Biot number: 
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(3.165) 

then Eq. 6.161 can be used with little error. Therefore, the criterion for the use of lumped system 
approach is appropriate when Biot number is less than 0.1. The effect of the Riot number on the 

, temperature distribution in the solid body is illustrated in Fig. 3.23. Fig. 3.23a shows that when 
Bi < 0.1, the temperature distribution is nearly flat and the con-<e&on heat transfer coefficient is 
the controlling parameter. Fig. 3.23~ shows that Bi >> I, the conduction process controls the 
heat transfer. In turn, Fig. 3.23b shows that for 0. I < 3 < 1 both conduction and convection 
should be accounted for. 

The Fourier number is a dimensionless time parameter. It represents the ratio of heat transfer by 
conduction to the energy storage rate within rhe body. In terms of dimensionless numbers, 
Eq. 3.161 is written as: 

: - ff = (t - tJexp (-BLFo) (3.166) 

II Sudden hear genera:ion in a solid body 

Consider the solid body sketched in Fig. 3.24. Initially the body is in equilibrium with the sur- 
rounding which has an infinite extent. The temperature of the surrounding is r, and it is constant. 
At time zero, heat is sudden!y generated in the body at a rate of qn’ lV/& The conductivity of 
the material is great and heat transfer from the body to the surrounding is contro!led by convcc- 
tion only. We wish to determine the variation of the body temperature with time. 

Lumped system approach can also be used in this case to determine the temperature history of the 

h, (t - 5.) 
Figure 3.24 Solid body with 
heat generation. 

body. The application of Eq. 3.153 to the present case yields: 

01 

n, 

p+f)+$ (3.167) 



“, 
de -=- 
dt 

$3 + g 

where 8 = [ - f/ The initial condition is: 

, 
z=o f=ff or Cl=0 

The solution of Eq. 3.168 is given by: 
(Ah \ fi 

tl = E exp t--&J 9 Ah, 

Using the initial condition, the constant, B, is determined as: 
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(3.168) 

(3.169) 

(3.170) 

Substituting Eq. 3,171 into Eq. 3.170 and knowing that 8 = 1 - ff , we obtain for the variation of 
the temperature with time the following expression: 

. - In the above solution, if T = 0, f = I/; if r + 03, the temperature of the body becomes: 

, ”  

f = f,, + ;k 

(3.172) 

(3.173) 

1.2.4.2 Systems with High Su$ace Conductance 

We will discuss now the systems where the convection heat transfer coefficient (film conductance) 
is very high. Therefore, the surface temperature of the object, for all practical purposes, is equal 
to the temperature of the surrounding fluid. Because of the shape of the fuel rods used in nuclear 
reactors, we will only consider transient conduction in solid cylinders. We will assume that the 
cylinder is infinitely long and axial symmetry exists. Under these conditions, the transient prob!em 
will have two independent variables: radial coordinate, r, and time, ‘c. In the absence of heat 
sources and constant conductivity, the heat conduction equation (Eq. 3.148) reduces to: 

ar 
( 
a2f iaf 

a,=a g+rz 1 (3.174) 

The solution of thi,’ equation can be obtained by using the method of separation of variables. 
Therefore, a solution in the following fgrm will be sought: 



I@, T) = R(r)T(r). 
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(3.175) 

I 

Substituting Eq. 3.175 into Eq. 3.174, we obtain: 

=-x2, (3.176) 

h2 is a separation cocstant introduced because of the fact that each member of this equation is a 
tinction of only one of the variable and that the equality between the members is only possible 
when both of them are equal to the same constant. The separation constant is taken to be negative 
to obtain a negative exponential solution in time. 

Eq. 3.175 yields two ordinary differential equations: 

and 

g+A2aT=0 

ai+ld!3+p~=0, 
dr2 rdr * 

(3.177) 

(3.17Sj 

The solution cf these equations are: 

T(r) =A exp(-h’aT) (3.179) 
and 

R(r) = C~&,r) t DY,@ r) , (3.180) 
. - 

respectively. J, and I’, are zero order Bessel fimctions of the first and second kind, respectively. 
Since the cylinder is solid, U, is undefined when r + 0. Consequently, to obtain a meaningful so- 
lution to a physical prcblem, the constant D should be equzl to zero. The solution of Eq. 3.174 is 
then given by: 

f(r, 7) = Bexp(-h2ar)J,(hr) (3.181) 

where B = AC. The constants Baud h are to be determined by initial and boundary conditions. 

Consider now a solid cylinder of radius r. subject to an initial temperature distributionj@ which 
is symmetrical with respect to the axis of the cylinder. Assume that the temperature of the surface 
of the cylinder is suddenly reduced to 0 “C (or to any other constant temperature) and maintained 
at that value for all subsequent times. This is equivalent to immerse the cylinder in an infinite jur- 
rounding at temperature 1, with very high heat transfer coeffkient such as seen, for example, un- 
der boiling liquid conditions. What is the temperature distribution in the cylinder as a tinction of 
space and time. 

The temperature diskibution in the solid cylinder is given by Eq. 3.18 1 subject the following initial 
and boundary conditions: 

r=O 1 =f(r) (3.182) 
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T10 t=O at r=r,. (3.183) 

The application of the boundary condition given by Eq. 3. 183 to Eq. 3.181 results in: 

, J,(h r,) = 0 (3.184) 

This equation has infinite number of roots (A, with n = 1,2,3, . ..m) and each root correspond to 

a particular solution of Eq. 3.174. The general solution ofEq. 3.174 is then given by: 

t(r, T) = 5 B.exp (-h$zzt).l,(li,r) 
PI=* 

The application of initial condition given by Eq. 3.183 to the above solution leads to: 

f(r) = g &Jo(Lr) 

(3.185) 

(3.186) 

Since L’s are defined as the roots of Eq. 3.184, the set of functions: 

{J&W)f n= 1,2,3 ,.... 00 (3.187) 

as discussed in Appendix III, constitutes a set of orthogonal functions. The constants B,‘s ap- 
.’ pearing in Eq. 3.185 can, therefore, be determined by using the properties of the orthogonal time- 

tions. According to Appendix III, these constants are given by: 

B n = Iz rf(r) J&Mr 
(3.188) I $Ji(k.r,) 

where JI is first order Bessel function of the first kind. The final solution is obtained by substitut- 
ingEq. 3.188 intoEq. 3.186: 

(3.189) 

1.2.4.3 System with Finite Internal Conductivity and Surface Conductance 

In this case both conductances (internal and surface) have finite values. The long cylinder dis- 
cussed in the previous section is now immersed in a fluid of finite heat transfer coefficient h. The 
temperature distribufion is still given by Eq. 3 18 1. The only difference is in the boundary condi- 
tions: 

5=0 t=f(r) (3.190) 



120 g=+ atr=r, 
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(3.191) 

In Eq. 3.191 it is assumed that If= 0. This assumption does not affect the generality of the solu- 
tion. If rf were different from zero, we would simply change the reference temperature and write: 

’ 8 = t - tf . This change would give the same result as tf = Cl. The application of boundary condi- 
tion given by Eq. 3.191 leads to: 

Knowing that: 

Eq. 3.192 becomes: 

aJ&r) 
ar = -)iJl(hr) 

hr JdkrJ _ hr, 
“J&r,) - k 

(3.192) 

(3.193) 

(3.!94) 

The above equation has infinite number of roots (h. with )i = l,Z, 3, . . . . ..oo) and each roots corre- 
sponds to a particular solution of Eq. 3.174. The general solution is given by: 

t(r, 5) = z, B,exp(-hzar) J&r) (3.195) 

.- where B, are constants to be determined. Upon application of initial condition given by 
Eq. 3.190, we obtain: 

f(rj = z, B.J,(h,r) (3.196) 

Referring to Appendix III and comparing Eqs. 3.195 and III.3 1, we conclude that the set: 

~J&r)~ (3.197) 

constitutes a set of orthogonal functions. The constants i5’. in Eq. 3.196 can then be determined 
by using the proper&es of orthogonal functions and according to III.32 in Appendix III have the 
following form: 

B = ~I~ti4JoWWr 

” J%rJ +JXh,r,)’ 

Finally the temperature distribution is given by: 
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1.2.4.4 System wifh Finite Internal Conductivity and Surface Conductance and Subject 
to SuaUen Heat Generation 

A long solid cylinder of radius r0 has an initial temperature distributionf’(r) which is symmetri- 
cal with respect to the axis of the cylinder. For times f 2 0 heat is generated in this cylinder at a 

’ constant rate of q* Wafflm’ The boundary surface of the cylinder is subject to convection with 
an infinite surrounding at temperzture rf = 0 “C. The convection heat transfer coefftcient is con- 
stant and equal to h,. Determine the temperature distribution as a function of space and time in 
the cylinder. 

The difference between :his case and the two cases studied above is the sudden heat generation in 
the solid cylinder. Under this condition, the mathematical formulation of the problem is written as: 

The initial and boundary conditions are specified as: 

7=0 f=f’(r) for OIr<r,, (3.2Oi) 

720 _ ka l(r) -=h,t(r) for r=rO. ar (3.202) 

Moreover, the temperature should have a finite value at I = 0. 

Because of the presence of the term q”/k , Eq. 3.200 is a nonhomogeneous differential equation 
and its solution can not be obtained by the method of separation of variables. To get around of 
this diffkulty, we will assume that the solution of this equation has the following form: 

f(r, 7) = tk(r, 7) + t,(r). 

Substituting Eq. 3.203 into Eq. 3.200, we obtain: 

(3.203) 

(3.204) 

Since the lefl hand side of this equation is a fknction of r and 7 and the right hand side is a tImc- 
tion of r only, the equality of both sides is only possible if they are equal to the same constant. If 
this constant is different from zero, we still obtain a nonhomogeneous equation. The only possibil- 
ity toward a solution is that this constant be equal to zero. Therefore, Eq. 3.204 yields two differ- 
ential equations: 

and 

azts+~dl,+C=o 
a? rar k 
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(3.206) 

An examination of the above equations shows that the problem is split into a steady state problem 
’ for t,(r), (Eq. 3.205), and into a homogeneous transient problem for th(r,T), (Eq. 3.206). The 

nonhomogeneity qw/k is included in the steady state problem whereas the transient nature of the 
problem is included in the homogeneous equation. The initial and boundary conditions for 
Eqs. 3.205 and 3.206 are obtained by combining Eqs. 3.203, and Eqs. 3.201 and 3.202: 

7=0 t(r, 0) = fh(r, Oj + t,( r) (3.207) 

T20 
_ ka hdr, 4 _ g h(r) 

ar 
- = hfh(r, t) + ht,(r) 

at- 
at r = r0 (3.208) 

Since 

Eq. 3.207 becomes: 
!(r, 0) =f’(r) 

?F=O h&r, Oj =f’(r) - f,(r) =f(r) 

Eq. 3.208 can be written as: 

(3.209) 

(3.210) 

T20 _ ka thk 2) 

ar 
-hrh(r,7)=ky+ht,(r) at r=r, (3.21 I) 

We can easily see that the above equality is only possible if both sides are equal to the same con- 
stant and this constant can not be anything else but zero. Consequently, the boundary condition 
given by Eq. 3.211 becomes: 

and 

-/$@ = k,(r) 
ar 

at r = r, (3.212) 

_ kafh(r, 7) 

ar 
= h th(r, 7) at r = r. 

Eq. 3.212 constitutes the boundary condition for Eq. 3.205, and Eqs. 3.210 and 3.213 constitute 
the initial and boundary conditions for Eq. 3.206. 

The solution of Eq., 3.205, subject to boundary condition specified by Eq. 3.212, is given by 
Eq.3.140withif=I): 

(3.214) 
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, 

In turn, the solution of Eq. 3.206, subject to initial and boundary conditions specified with 
Eqs. 3.210 and 3.213, is given by Eq. 3.199. Therefore the final solution is: 

(3.215) 

wheref(r) is defined with Eq. 3.210. 

If initially, the cylinder were in equilibrium with surrounding,f(r) would be zero andf(r) would 
be: 

f(r) = -f,(r) 

Under this condition the temperature distribution is given by: 

(3.216) 

f(r,r)=f,(r)+fh(r,T)=~[1--(~)2]+~ I 

(3.217) 

In the above temperature distribution when 7 + m , the solution tends toward the steady state 
temperature distribution. When r = 0, the second term of the equation is nothing else but the de- 
velopment in series of the first term, I,(r). Therefore t(r, 0) = 0; this is the initial condition. 

Fig. 3.25 compares for a given time, 7, the transient temperatures with steady state 
temperatures.This figure shows thzt at each time, r, the steady state temperatures, t,(r), are sub- 
tracted by an amount of fh(r, t) to obtain the transient temperature distribution, t(r, 7). 
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Figure 3.25 Comparison of the transient and steady state temperatures for a 
given time. 
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