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4. Forced Convection Heat Transfer 

In Chapter 3, we have discussed the problems of heat conduction and 

used the convection as one of the boundary conditions that can be applied to 

the surface of a conducting solid. We also assumed that the heat transfer rate 

from the solid surface was given by Newton’s law of cooling: 

In the above application, hc, the convection heat transfer coefficient has been 

supposed known. The aim of this chapter is to discuss the basis of heat 

convection in fluids and to present methods (correlations) to predict the value of 

the convection heat transfer coefficient (or film coefficient). 

As already pointed out, the convection is the term used to indicate heat 

transfer which takes place in a fluid because of a combination of conduction due 

to molecular interactions and energy transport due to the motion of the fluid 

bulk. The motion of the fluid bulk brings the hot regions of the fluid into contact 

with the cold regions. If the motion of the fluid is sustained by a force in the fom 

of pressure difference created by an external device, pump or fan, the term of 

“forced convection is used”. If the motion of the fluid is sustained by the 

presence of a thermally induced density gradient, then the term of “natural 

convection” is used. 

In both cases, forced or natural convection, an analytical determination 

of the convection heat transfer coefficient, hc, requires the knowledge of 

temperature distribution in the fluid flowing on the heated surface. Usually, the 

fluid in the close vicinity of the solid wall is practically motionless. Therefore, the 

heat flux from the solid wall can be evaluated in terms of the fluid temperature 

gradient at the surface: 

4.2 



where 

k, : thermal mh3ivity of the fluid 

: fluid kmperati gadient aI the su&ce in the dire&m of tk normal to the s&ace 

The variationof the temperature in the fluid is schematically illustrated in Figure 

4.1. Combining Equations 4.1 and 4.2 we obtain: 

4.2a 

where 

tW : tempemhlre of the wall 

1, : temperature of the fluid far fmm the wall 

Figure 4.1 Variation of the temperature in the fluid next to the heated surface 

The analytical determination of hc given with Equation 4.2a is quite 

complex and reqtires the solution of the fundamental equations governing the 
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motion of viscous fluid; equations of conservations of mass, momentum and 

energy. A brief discussion of these equations was given in Chapter 2. 

4.1 

4.1.1 

Fundamental Aspects of Viscous Motion and Boundary Layer 

Motion 

viscosity 

The nature of viscosity is best visualized with the following experiment. 

Consider a liquid placed in the space between two plates, one of which is at 

rest, the other moves with a constant velocity U under the effect of a force F 

The experimental setup is illustrated in Figure 4.2. 

Figure 4.2 Shear stress applied to a fluid 

The distance between the plates is e and the surface area of the upper 

plate in contact with liquid is A. Because of the nonslip condition, the fluid 

velocity at the lower plate is zero and at the upper plate is U Assuming that the 

Couette flow conditions prevail (ie, no pressure gradient in the flow direction) a 

linear velocity distribution, as shown in Figure 4.1, develops between the plates 

and is given by: 

lJ 
UZ-y 

.5 4.3 



The slope of this distribution is constant and given by: 

du U -=- 
dy cz 

The shear stress exerted by the plate to the liquid is written as: 

rL 
A 

4.4 

It is possible to repeat the above experiment for different forces (i.e. 

upper plate velocities) and plot the resulting shear stress, r, versus the slope of 

the velocity distribution (du I&Y). Such a plot is shown in Figure 4.3, 

Figure 4.3 ? versus (du 16’) 

Data points lie on a straight line that passes through the origin. Therefore r is 

proportional to the velocity gradient, (du /&) and the constant of proportionality 

is P. p is called the “dynamic viscosity’. Based on the above discussion, the 

shear stress can be written as: 

r$2! 
r!Y 4.5 

In a more general way, consider a laminarflow over a plane wall. The velocity 

of the fluid is parallel to the wall and varies from zero to some value far from the 



wall. The velocity distribution close to the wall, as depicted in Figure 4.4 is not 

linear. 

Figure 4.4 Velocity distribution next to a wall 

Let us select a plane SS’ parallel to the wall. The fluid layers on either side of XY 

experience a shearing force r due to their relative motion. The shearing stress, 

7, produced by this relative motion is again directly proportional to the velocity 

gradient in a direction normal to the plane .W: 

The ratio of the dynamic viscosity to the specific mass of the fluid 

4.6 

4.7 

is called “kinematic viscosity” 

The dynamic viscosity has dimensions: 

/) =_5=K~=E 
& LZ L LZ 

h 46 

F,L.T’ are force, length and time, respectively. In the SI, the dimensions of the 

dynamic viscosity becomes: 



The dimensions of the kinematic viscosity are: 

LZ 
“z- 

T 

or in SI units 

Ill2 
V=T 

The physiml basis of viscosity is the momentum exchange between the 

fluid layers. To understand better this statement, consider one dimensional 

laminar flow of a dilute gas on a plane wall as depicted in Figure 4.5. The 

velocity of the fluid L is only a function of Y. Let us imagine in the flow a 

surface SS parallel to the plane wall. 

Figure 4.5 Momentum exchange by molecular diffision 

Because of the random thermal velocities, gas molecules continually 

cross the SS surface both above and below. We may assume that the last 

collision before crossing the surface .YS, each molecule acouires the flow 

velocity corresponding to the height at which this collision has taken place. 



Since this velocity above the SS is greater than that below, molecules crossing 

from above transport a greater momentum in the direction of the flow across the 

surface than that transported by the molecules crossing the same surface from 

below. The result is a net transport of momentum across the surface SS from 

the region above to the region below. According to the Newton’s second law, 

this change of momentum is balanced by the viscous force. This is the reason 

for which the region of gas above SS is submitted to a force which is due to the 

region of the gas below SS (-7) and vice versa (T). 

We will try now to estimate in an approximate manner the dynamic of 

viscosity ,c. If there are m molecules per unit volume of the dilute gas, 

approximately I/3 of these molecules have an average velocity (G) parallel to 

1 
the yaxis From these molecules, half of them (ie, zn) have an average 

velocity in the direction of Y’ and the other half have an average velocity in the 

l- 

direction of Y-. Consequently, an average 6 m molecules cross the plane SS 

per unit surface and per unit time from above to below and vice versa. 

Molecules coming from above SS undergo their last collision at a distance 

approximately equal to the mean free path JI and their flow velocity is 4 + a) 

and their momentum is mdY +a) where m is the mass of the molecule. The 

same argument is also true for molecules coming from below the surface SS 

and their velocity is & -a) and momentum m &’ - A). Therefore, the 

momentum component in the direction of the flow that crosses the surface SS 

from above to below is: 

4.9 

and from below to above: 



The net momentum transport is the difference between Eqs 4.10 and 4.9 and 

according to the Newton’s second law should be balanced by a viscous force, r. 

Therefore we may write: 

T = i ni&(y -a)- (y + a)] 

Developing 4Y -a) and 4Y + a) in Taylor series and neglecting the terms of 

second and higher orders, we obtain: 

4.12 

Substitution of Eqs 4.12 and 4.13 into 4.11 yields. 

r=-L~;~~G!=-&+ 
3 dY ti 4.14 

The negative sign shows that the viscous stress acting on the upper face of .V 

surface is in the direction opposite to the flow direction (or I*). From 4.14 we 

observe that: 

Although the constant I/3 may not be correct, the dependence of p on 

JJ%~ and 1 should be rather correct. 

41.2 Fluid Conservation Equations- Laminar Flow 

We have already pointed out that the analytical determination of the 

convection heat transfer coefficient defined with Eq. 4.2 requires the solution of 

the fluid conservation equations: mass, momentum and energy to obtain the 

temperature distribution in the fluid washing the heated solid. Once the 



temperature distribution is determined and if the fluid motion in the region 

immediately adjacent to the heated wall is laminar, which is usually the case, the 

convection heat transfer coefficient is then determined by using Eq. 4.2. The 

derivation of the fluid conservation equations is beyond the objective of this 

course. We will present within the framework of this course, the basic elements 

which enter in the derivation of the conservation equations and present these 

equations for an incompressible flow. 

In Chapter 2, we have already established that the fluid conservation 

equations have the following forms: 

I) Local mass conservation equation 

$7+?.pk= 0 

II) Local momentum conservation equation 

2.6 

4.7 

Ill) Energy conservation equation (total energy in enthalpy form) 

4.8 

In the above equation: 

~istbeunittemm = 0 1 
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velcdy ( 14v.w are components of the velocity vectot) 

specitic mass 

wxelefation of gravity 

heat flux 

energy genetation 

Each term of the stress tensor can be related to the velocity gradients as follows 

(Janna, 1966) 

Furthermore we know that 

4.9 

4.10 

4.11 

4.12 

4.13 

4.14 

4.15 

Assuming that 

I. The fluid is incompressible and has constant properties, i.e., 

c~, p, p and k are constant, 

2. The kinetic energy and potential energies are negligible, 



3 .  T h e  p r e s s u r e  d o e s n ’ t  c h a n g e  w i t h  t i m e ,  s z o  

4 .  N o  e n e r g y  g e n e r a t i o n  6  = n  

a n d  t a k i n g  i n t o  a c c o u n t  E q .  4 . 9  t h r o u g h  4 . 1 5 ,  t h e  c o n s e r v a t i o n  e q u a t i o n s  ( E q ’ s  

4 . 6 , 4 . 7  a n d  4 . 8 )  b e c o m e :  

I .  M a s s  c o n s e r v a t i o n  e q u a t i o n  

4 . 1 6  

I l .  M o m e n t u m  c o n s e r v a t i o n  e q u a t i o n  

x - c o m p o n e n t  

au au au au 
~+"~+v&+w~ 

4 . 1 7  

y c o m p o n e n t  

4 . 1 9  

4 . 2 0  

P # J  i s  t h e  v i s c o u s  d i s s i p a t i o n  t e r m ,  i t  i s  u s u a l l y  n e g l i g i b l e  c o m p a r e d  t o  h e a t  

t r a n s f e r r e d .  E q s .  4 . 1 7  t h r o u g h  4 . 1 9  a r e  k n o w n  a s  N a v i e r - S t o k e s  e q u a t i o n s .  I n  



the problems of heat convection is a threedimensional incompressible laminar 

flow, the energy equation (Eq. 4.20) must be solved to obtain the temperature 

distribution in the fluid. However, this equation contains the three components 

of the velocity and its solution can only be carried out in conjunction with the 

mass conservation equations and Navier-Stokes equations for a given set of 

boundary conditions: shape and temperature of the heated body over which the 

fluid flows, the fluid velocity and temperature far from the body, etc. For the 

incompressible and constant property fluid we selected the unknown quantities 

are: M v, W, p and t There are five equations: 4.16 through 4.20 to determine 

these unknowns. Once the temperature distribution in the fluid is known, the 

convection heat transfer coefficient at a given point on the heated surface can 

be determined with the aid of Eq. 4.2. 

It should be pointed out that the basic equations that govern the 

convection are nonlinear and are among the most complex equations of applied 

mathematics. No general mefiods are available for the solution of these 

equations. Analytical solutions exist for very simple cases. In recent years, with 

the advent of high-speed and highcapacity computers, a good deal of progress 

has been made in the analysis of complicated heat transfer problems. However, 

these analysis is time consuming and very costly. Fortunately, a large number 

of engineering problems can be adequately handled by using simplified forms of 

the conservation equations, ie., by using a one dimensional model and 

experimentally determined constitutive equations such as frtction and heat 

transfer coefgcients. The solution of these simplified forms can be obtained 

more easily. On the other hand, the soundness if the assumptions made to 

obtain the simplified foms of the conservation equations should be verified by 

ad-hoc experiments. 

The conservation equations dertved above apply to a laminar fluid 

motion. In laminar flows, the fluid particles follow we&defined streamlines. 

These streamlines remain parallel to each other and they are smooth. Heat and 
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momentum are transferred across the streamlines (or between the adjacent fluid 

layers which slide relative to one another) only by molecular diffusion as 

described in Section 4.1. Therefore, the cross flow is so small that when a 

coloured dye is injected into the fluid at some point, it follows the streamline 

without an appreciable mixing. Laminar flow exists at relatively low velocities 

4.3 Fluid Conservation Equation - Turbulent Flow 

The term turbulent is used to indicate that there are random variations 

or fluctuations of the flow parameters such as velocity, pressure and arid 

temperatures about a mean value. Figure 4.6 illustrates, for example, the 

fluctuations of the u component of the velocity obhined from a hot-wire 

u P 

I I 

, 
AT,- 

LtiUb3 
* 

I 

Figure 4.6 Turbulent velocity fluctuations about a time average, 

If we denote by G the time average velocity and by U’ 

the time dependent velocity fluctuation about that average value, the true 

velocity may be written as: 

lA=i+!_i 

The same reasoning may also be done for two components and write: 

4.21 



v=!Y+v’ 4.22 

VV=G+ti 4.23 

Because of these randomly fluctuating velocities, the fluid particles do 

not stay in one layer but move tortuously throughout the flow. This means that a 

certain amount of mixing and energy exchange occurs between the fluid layers 

due to the random motion of fluid particles. This type of mixing is not-existent in 

iaminar flows and is of great importance in heat transfer problems since the 

random motion of the particles tend to increase the rate of heat exchange 

between the fluid layers. As a matter of fact, the rate of heat transfer is 

generally much higher in turbulent flows than in laminar flow. Turbulent flow 

exists at velocities that are much higher than in laminar flow. As a final note, the 

pressures and temperatures in turbulent flows are written as: 

p=E+pl 4.24 

t=i+f 4.25 

The average values appearing in Eqs. 4.21 through 4.25 for steady turbulent 

motion are given by: 

The time interval AT, is taken large enough to exceed amply the period of the 

fluctuations. On the other hand, the time average of the fluctuations, f ‘is zero: 

4.27 

In the above discussion f may denote any flow parameter. 

To obtain the fluid conservation equations which apply to a turbulent flow, we 

substitute in Eqs. 4.16 through 4.20, W,WP and i by Eqs. 4.21, 4.22, 4.23, 

4.24 and 4.25 respectively. Since in most of the convection problems the 

viscous dissipation is negligible, this term can be dropped from the energy 

conservation equatton (Eq. 4.20). The next step consists of time averaging of 

the resulting equations by taking into account the following averaging rules: 



cf = c f (c is a constan 

The following conservation equations are then obtained for steady turbulent _________------__ 

flows: 

4.2a 

4.29 

4.30 

4.31 

4.32 

4.33 

4.34 

4.35 

4.36 

4.37 

4.36 

I. Mass conservation equation 
- - 

z $!+?.!+LO 
& ay az 

Il. Momentum consetvation equation: 

x-component 

4.39 

ycomponent 



z-component 

Ill. Energy conservation equation 

where 

4.44 

Examination of the about equations shows that the usual steady equations (Eq. 

au av b at --- 
4.16 through 4.20 with &‘&‘& an’ % terms equal zero) may be applied to 

the mean flow provided certain additional terms are included. These terms, 

indicated by dashed undertines and they are associated with the turbulent 

fluctuations. The fluctuating terms appearing in Eq. 4.40 to 4.42 represent the 

components of the “turbulent momentum flux” and they are usually referred to 

as additional “apparent stresses” or “Reynold stresses” resulting from the 

turbulent fluctuations. The fluctuating terms appearing in Eq. 4.43 represent the 

components of “the turbulent energy flux”. A discussion of the meaning of 

“apparent stresses” and “turbulent energy flux” will be done during the study of a 

flow over a heated wall. 

4.2 The Concept of Boundary Layer 

Let us consider the flow of viscous fluid over a plate, as illustrated in Fig, 4.7, 
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Figure 4.7 Velocity profile in the vicinity of a plate 

The velocity of the fluid far from the plate (free steam velocity) is U. If the basic 

“non slip” assumption is made then the fluid particles adjacent to the surface 

adhere to it and have zero velocity. Therefore, the velocity of fluid close to the 

plate varies from zero at the surface to that of the free stream velocity, U. 

Because of the velocity gradients, viscous stresses exist in this region and their 

magnitude increases as we get closer to the wall. The viscous stresses tend to 

retard the flow in the regions near to the plate. 

Based on the above observations, Ludwig Prandtl, in 1904 proposed his 

boundav layer theory. According to Prandtl, the motion of a fluid of small 

viscosity and large velocity over a wall could be separated into two distinct 

regions: 

1. A very thin laver (known as velocity boundary layer) in the immediate 

neighbourhood of the wall in which the flow velocity ( u) increases rapidly with 

the distance from the wall. In this layer the velocity gradients are so large that 

even with a small fluid viscosity, the product of the velocity gradient and the 

viscosity (ie. the viscous stress, r) may not be negligible. 

2. A potential flow region (or potential core) outside the boundav layer were the 

influence of the solid wall died out and the velocity gradients are so small that 

the effect of the fluid viscosity, ie. the viscous stress, r, can be ignored. 



A good question would be: where is the frontier between these two regions 

situated? The answer is that, because of the continuous decrease of the 

velocity as we move off the wall, it is not possible to define the limit of the 

boundary layer and the beginning of the potential region. In practice, the limit of 

the boundary layer ie., the boundary layer thickness, is taken to be the distance 

to the wall at which the flow velocity has reacted some arbitrary percentage of 

the undisturbed free stream velocity. 99% of the free stream velocity is the most 

often used criterion. 

42.1 Laminar Boundary Layer 

The flow in the boundary layer is said to be laminar where fluid particles move 

along the streamlines in an orderty manner. The criterion for a flow over a flat 

plate to be laminar is that a dimensionless quantity called Reynolds number, 

Re”, and defined as: 

Rex c 5 
4.45 

should be less than 5 x 105. The number is the ratio of the inertia forces to the 

viscous forces. 

The analytical study of the boundary can be conducted by using: 

1. The fluid equations given by Eqs. 4.16 through 4.20, or 

2. An approximate method based on integral equations of momentum and 

energy. 

The integral method describes, approximately, the overall behaviour of the 

boundav layer. The derivation of the integral ftuid equation will be given in this 

section. Although the results obtained by the integral approach are not 

complete and detailed as the results that may be obtained by the application of 
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the differential equations, this method can still be used to obtain reasonable 

accurate results in many situations. 

4.2.1.1 Conservation Equations - Local Formulation 

I. Mass and Momentum Equations 

As a simple example, consider the flow and heat transfer on a flat plate as 

illustrated in Figure 4.8. 

cft.Y1. 

L- contrwl whme 

0 
w 

x*w 

Figure 4.8 Velocity boundary layer in Laminar flow near a plane. 

The x coordinate is measured parallel to the surface starting from leading edge, 

and the y coordinate is measured normal to it. The velocity and the pressure of 

the fluid far from the plate are U(x) and P_(x), respectively; usually they are 

constant. The leading edge of the plate is sharp enough not to disturb the fluid 

flowing in the close vicinity of the plate. The boundary layer starts with the 

leading edge of the plate and the thickness is a function of the coordinate x. 

The thickness of the boundary layer is denoted by 6f.z). 
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Assuming that the flow field is steady and two dimensional (ie., no velocity and 

temperature gradients in z direction which is perpendicular to the plane of the 

sketch), body forces P&L and & are negligible compared to the other terms, 

Eqs 4.16 through 4.19 become: 

Mass conservation equation: 

Momentum conservation: 

4.46 

4.47 

4.40 

The coefficent v (m%) is the kinematic viscosity of the fluid. Even with the 

above simplifications, Eqs 4.46 through 4.48 are still non-linear and cannot be 

solved analytically. 

An order of magnitude analysis of each term of Eqs 4.46,4.47 and 

4.48 shows that the following terms (Schlichttng, 1979) 

a+ h av a+ a$ azu a" a" alv a+ 
v~.~~.v~,v~a~~v~.u~.v~,v~a~v~ 

are very small and can be ignored. Therefore, Eqs 4.46 through 4.48 become 

&!+&=n 
ax 3~ 4.49 

a2 au 12 a34 
u-$+v~==-&+vT$ 

4.50 

1 ap ---= 0 

pay 4.51 

Eq. 4.51 shows that, at a given x, the pressure is constant in the y direction, 

ie., it is independent of y. This result implies that the pressure gradient, 
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3~ 18.~ ap I&, in the boundary layer, taken in a direction parallel to the wail, is 

equal to the pressure gradient potential flow taken in the same direction. The 

boundary conditions that apply to Eqs 4.49 and 4.50 are: 

Aty=O u=v=O 4.52 

Aty =m U = U(x) wtih is usually cxxstant 4.53 

The solution of Eqs. 4.49 and 4.50 under the above boundav conditions yields 

the velocity distribution and the boundary layer thickness. However, this 

solution is beyond the scope of this course: it can be found in ScHichting (1979) 

at pages 135-140. 

At the outer edge of the velocity boundary layer the component of the 

velocity parallel to the plate, u, becomes equal to that of the potential flow, U(X) 

Since there is no velocity gradient in this region; 

!KO& ?Ko 
+ ?vx 4.54 

and Eq. 4.50 becomes 

4.55 

Integrating the above equation we obtain: 

~+;@I~(+ GxBtaIlt 

This is nothing else but the Bernoulli equation. 

4.56 

Il. Energy conservation equation 

If the temperature of the plate ( fw) is different from the temperature of 

the mainstream ( L), a thermal boundary layer of thickness 6, forms. Through 

the layer of the fluid temperature makes the transition from the wall temperature 

to the free stream temperature. The thickness of the thermal boundary layer is 

in the same order of magnitude as the velocity boundary layer thickness defined 
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above. However, the thicknesses of both boundav layers are not necessarily 

equal (Figure 4.6). 

For a two dimensional flow where viscous terms have been neglected in 

comparison with the heat added from the wall, the energy equation given by Eq. 

4.20 for steady state conditions takes the following form 

4.57 

An order of magnitude analysis shows that the term 

St 
TG 

Is very small and can be ignored compared to v. Therefore Eq. 455 

becomes: 

at at azt 

kJ 
a=- 

where PP For a constant temperature wall, tw, the applicable boundary 

conditions are: 

y=o t=tw 4.59 

y=- t=t_ 4.60 

.x=o t=t_ 4.61 

The solution of Eq 4.58 in conjunction with Eqs 4.49 and 4.50 subject to 

boundav conditions given by Eqs 4.52, 4.53 and 4.59 through 4.61 yields the 

temperature distribution and the thickness of the themtal boundav layer defined 

with the same criterion as the velocity boundary layer. The knowledge of the 

temperature distribution in the thermal boundary layer allows us to determine in 

conjunction with Eq 4.2 the convection heat transfer coefficient, I. 



4.2.1.2 Conservation Equations- Integral Formulation 

One of the important aspects of boundary layer theory is the 

determination of the shear forces acting on a body and the convective heat 

transfer coefficient if the temperature of the wall is different horn that of the free 

stream. As was discussed in the previous section, such results can be obtained 

from the governing equation for laminar boundary layer flow. We also pointed 

out that the solutions of these equations were quite difficult and were not within 

the scope of the present course. In this section, we will discuss an alternative 

method called “integral method” to analyze the boundaty layer and to determine 

the shear stress and the convection heat transfer coefticient. The use of this 

method simplifies greatly the mathematical manipulations and the results agree 

reasonably well with the results of exact solutions. 

The integral method of analyzing boundav layers, introduced by Von 

Karman (lg46), consists of fixing the attention on the overall behaviour of the 

layer as far as the conservation of mass, momentum and energy principles are 

concerned rather than on the local behaviour of the boundary layer. 

In the derivation of the integral boundary layer equation, the integral 

conservation equations given in Chapter 2, Eqs 2.21, 2.22, and 2.33 will be 

used. These equations for a fixed control volume (ie., iG = 0) and under steady 

state flow conditions have the following forms: 

Mass conservation: 

jJi.@A=o 
4.62 

Momentum conservation (volume forces (i.e. gravity) are neglected: 

- ~ ~ ~ . ~ ~ ~ - ~ ~ ~ . ~ ~ ~ A + ~ ~ ~ ~ ~ A = o  

Energy equation (enthalpy form): 

j ) i + & A + j ) + " d A = O  

4.63 

4.64 
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where the kinetic and potential energies as well as the viscous dissipation are 

neglected: there are also no internal sources. U is the internal energy. 

I. Boundav layer mass conservation equation 

Consider again the flow on a flat plate illustrated in Fig 4.9. As already 

discussed, a boundary layer develops over the plate and its thickness increases 

in some manner with increasing distance X. For the analysis, let us select a 

control volume (Fig 4.9) bounded by the two planes ab and cd which are 

perpendicular to the wall and a distance a? apart, the surface of the plate, and a 

parallel plane in the free stream at a distance I from the wall. 

l.hitoflhc 

Plxentid flow 

Y 

I 

I 

Figure 4.9 Control volume for approximate analysis of boundary layer 

Assuming that the flow is steady and incompressible, the application of Eq. 4.62 

to the control volume yields: 

4.65 

where ti is the mass flow rate entering or leaving the control volume: 



4.66 

where, for a unit width of the plate A = !.x 1 and & = 1. dy: 

,&, = A_, = hl. A Taylor expansion of Eq. 4.67 allows us to write: 

4.67 

4.68 

In this expansion only the first two terms are considered, since the terms of 

higher order are small and can be neglected compared to the first two. 

z+I~~ = 0,solid wall 4.69 

Substituting Eqs. 4.66, 4.68 and 4.69 into Eq. 4.65 we obtain for & : 

4.7g 

Il. Momentum conservation equation 

In the derivation of the integral momentum conservation equation we 

will assume that there is no pressure variation in the direction perpendicular to 

the plate, the viscosity is constant and stress forces acting on all faces except 

the face C& are negligible. Applying the momentum conservation equation (Eq 

4.63) to the control volume in Fig. 4.9 and indicating by A4 the momentum, we 

write: 

4.73 



A Taylor expansion allows us to write: 

4.74 

4.75 

The forces acting on the control volume consist of pressure and viscous 

stress forces: 

Pressure force acting onsurface ab: 

and on surface c d :  

Knowing that 

and substituting it into Eq. 4.76, we obtain: 

Viscous stress forces acting on the surface A: 

since the flow is two dimensional, the stress tensor consists of 

and 

% is nothing else but ‘L and r% is negligible. Therefore, Eq. 4.78 

becomes: 

4.76 

4.77 

4.78 

4.79 

4.80 

4.81 
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The stresses acting on surface & and cd are negligible. Since 1 is chosen so 

that bc lies outside of the boundary layer, there is no viscous stress acting on 

that face. 

Substituting 4.72,4.74, 4,76,4.76, and 4.61 into 4.71 we obtain: 

Multiplying Eq. 4.62 by rand knowing that: 

7j&.;Z-~~<~.;Cl , we obtain: 

~2d~+u(~)~J~~d~-~~-~~ =o 

or 

Adding and subtracting to the left hand side of Eq. 4.64 the term: 

and with some algebra, we obtain for a constant P the following equation: 

Using Eq. 4.56, z can be written as 

4.62 

4.63 

464 

4.65 

4.86 

and knowing that the pressure in y-direction is constant, the term u?x 

is written as: 



Combining Eq. 4.85 and 4.87 we obtain: 

4.87 

4.88 

In this equation I is set equal to the boundary layer thickness, &)since both 

integrals on the left hand side of Eq. 4.88 are zero for y B @I). Eq. 4.88 is the 

“integral momentum equation” of a steady, laminar and incompressible 

boundary layer. If the velocity distribution is known, then the integrands of the 

two integrals are known, and ‘L may be easily determined: 

The resulting expression may then be interpreted as a differential equation for 

&), the boundary layer thickness, as a function of x. Eq. 4.88 will be used 

later to determine @). 

Ill. Energy conservation equation 

The integral energy equation may be obtained in a similar way to that of 

the momentum equation. As already discussed, the thermal boundary layer 

thickness, 4 (x), is deflned as the distance from the heat exchange wall at which 

the fluid temperature reaches 99% of its uniform value in the potential flow 

region. The thickness of the thermal boundary layer has the same order of 

magnitude as the velocity boundary layer. However, the thicknesses of these 

two layers are not necessarily equal. Figure 4.10 shows a fluid flowing over a 

constant temperature wall tS. The temperature of the potential flow is r, We 

assume that $ > L, although the reverse may also be true. Once more the 

control volume consists of two planes perpendicular to the wall and a distance 

~Lx apart, the surface of the plate and a plane taken outside of both boundary 

layers (Figure 4.10). In the derivation of the integral energy equation, Eq. 454 

will be used. Note the I in Eq. 4.84 is the enthalpy. 



Figure 4.10 Control volume for integral conservation of energy 

In the present derivation, we will assume that the kinetic and potential energies 

and viscous dissipation are small compared to the other quantities and thus they 

are neglected. Applying the energy conservation equation (Eq. 4.64) to the 

conVol volume seen in Fig. 4.9 and indicating by .E the flow energy, we write: 

&+izd+&+ Jfi&&2A=o 
& 4.69 

where: 

4.90 

4.91 



Substituting Eqs. 4.90 through 4.93 into 4.89, we obtain 

~[~~~*~d~]-~[~~~~~,d~]+ k,$[ =O 
zo 

or 

We can also write that 

/+z=&f) 

therefore Eq. 4.94 becomes 

c,,&, -f)dy = k,$ 
,“=a 

4.94 

4.95 

4.96 

Equations 4.88 and 4.96 can also be used in the approximative analysis of 

steady turbulent boundary layers by replacing 6 by 2 and by using an 

appropriate expression to describe turbulent shear stress and heat flux on the 

wall. 

In this equation, I is set equal to the thermal boundary layer thickness q(x), 

since the integral on the left-hand side of Eq. 4.96 is zero for y S. ‘f@). Eq. 4.96 

is the “integral energy equation” of a steady, laminar and incompressible 

boundav layer. 

4.2.2 Turbulent Boundary Layer 

So far we have discussed equations of conservation for a laminar 

boundaT layer. However, in many applications, the boundary layer is turbulent. 

In this section we will discuss the basic features of turbulent boundary layer. In 



laminar flows, we have seen the heat and momentum are transferred across 

streamlines only by molecular diffusion and the cross flow of properties is rather 

small. In turbulent flow, the mixing mechanism, besides the molecular transport, 

consists also macroscopic transport of fluid particles from adjacent layers 

enhancing, therefore, the momentum and heat transport or in general, property 

transport. 

In order to understand the basic features of the turbulent boundary 

layers and the governing equations we will assume that these equations for a 

flow over a flat plate may be obtained from laminar boundary layer equations 

(Eqs 4.49, 4.50 and 4.58) by replacing r~v.2 by; 

u=?i+li 

v=ir+v< 

t =F+t’ 

and taking the time average of these equations. We will further assume that the 

velocity of the potential flow is constant. This implies that pressure also 

constant. Under these conditions, the conservation equations for a turbulent 

boundary layer are: 

ai ai 
s+Y&=o 

‘@&an be Based on the experiments, in Eqs 4.98 and 4.99 the terms aI 

neglected relative to $ F’and :a relative to $“‘r’. Consequently, the 

momentum and energy equations become: 

4.97 

4.98 

4.99 



4.100 

In the above equations the laminar expression for shear and heat flux 

4.101 

have been introduced to emphasize the origin of the terms involved. The shear 

stress r? and heat flux &’ represent the flux of momentum and energy in the Y 

direction due to molecular scale activity. 

- liv* a- an 
To understand the signiftcance of aY and 5 terms, let us 

consider a two dimensional flow in which the mean value of the velocity is 

parallel to the x-direction as illustrated in Figure 4.1 I. Because of the turbulent 

nature of the flow, at a given point, the instantaneous velocity of the fluid change 

continuously in direction and magnitude as illustrated in Figure 4.12. The 

instantaneous velocity components for the present flow are: 
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Figure 4.11 Turbulent momentum exchange 

Figure 4.12 Instantaneous turbulent velocities 

Ld= l4.tUs 

” =v’ 

4.lW 

4.103 
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As discussed in Section 4.1, an exchange of molecules between the 

fluid layers on either side of the plane SS will produce a change in the .x- 

direction momentum of the fluid because of the existence of the gradient in the 

X-direction velocity, This momentum change of shearing force in the fluid which 

is directed in the x-direction denoted by rf in Eq. 4.10. If turbulent velocity 

fluctuations occur both in the zc and y directions, which in the case under study, 

the y-direction fluctuations, v’ transport fluid lumps which are large in 

comparison to molecular transport across the surface .Ss’ as illustrated in Fig. 

4.11. For a unit area of ss, the instantaneous rate of mass transport across Xj 

is: 

P’ 4.104 

This mass transfer is accompanied by a transporl of _r-direction momentum. 

Therefore, the instantaneous rate of transfer in the y-direction of Idirection 

momentum per unit area is given by: 

-pv’ G + U) 4.105 

where the minus sign, as will be shown later, takes into account the statistical 

correlation between u’and v’. The time average of the X-momentum transfer 

gives rise to a turbulent shear stress or Reynolds stress: 

c = -&j_ p++ +r 
4.106 

Breaking up Eq. 4.106 into two parts, the time average of the first is: 

4.107 

since 1 is a constant and the time average of (P”‘) is zero. Integrating the 

second term of Eq. 4.106 gives: 

4.106 

or if P is constant: 



q = -pE 4.109 

where ~7 is time average of the product of u’and v’ We must note that even 

though 7 = 7 = 0, the average of the fluctuation product a is not zero. To 

understand the reason for introducing a minus sign in Eq. 4.105, let us consider 

Fig. 4.13. From this figure we can see that the fluid lumps which travel upward 

(v’ > 0)arrive at a layer in the fluid in which the mean 

1 
Y 

L x,u 

4.13 Mixing length for momentum transfer 

velocity i is larger than the layer from which they come. Assuming that the fluid 

particles keep on the average their original velocity L during their migration, they 

will tend to slow down other fluid particles after they have reached their 

destination and thereby give rise to a negative component u’. Conversely, if 

V’ is negative, the observed value of ri at the new destination will be positive. 

On the average, therefore, a positive v’ is associated with a negative ri, and 

vice versa. The time average of u’v’ is therefore not zero but a negative 

quantity. The turbulent shear stress defined by Eq. 4.109 is thus positive and 

has the same sign as the corresponding laminar shear stress Z?. Based on the 

above discussion Eq. 4.100 can be written as: 
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is called total shear stress in turbulent flow. 

To relate the turbulent momentum transport to the time-average velocity 

gradient & 14, Prandti postulated that (Schlichting, 1979) the macroscopic 

transport of momentum (also heat) in turbulent flow is similar to that of molecular 

transport in laminar flow. To analyze molecular momentum transport (Section 

4.1) we have introduced the concept of mean free path, or the average distance 

a molecule travels between collisions. Prandtl used the same concept in the 

description of turbulent momentum transport and defined a mixing length 

(known as Prandtl mixing length), 1 which shows the distance travelled by fluid 

lumps in a direction normal to the mean flow while maintaining their identity and 

physical properties. (e.g., momentum parallel to x-direction). Referring again to 

Fig. 4.13, consider a fluid lump located at a distance 1 (Prandtl mixing length) 

above and below the surface .Ss. The velocity of the lump at y + I would be: 

whileat y-!: 

4.113 

If a fluid lump moves from layer y- 1 to the layer y under the influence of a 

positive v’ , its velocity in the new layer will be smaller than the velocity 

prevailing there of an amount: 

4.114 

Similarly, a lump of fluid which arrives at y from the plane y + I possesses a 

velocity which exceeds that around it, the difference being: 

4.115 



Here v’ < 0. The velocity differences caused by the transverse motion can be 

regarded as the turbulent velocity components at y, Examining Eqs 4.114 and 

4.115, it can be concluded that the u’ fluctuation is in the same order of 

au 

magnitude of ‘7, i.e., 

4.116 

4.117 

Substituting Eq. 4.116 into 4.109, we obtain 

T ai T,=-pe5 

or calling Em = -z, apparent kinematic viscosity, 

ai 
7, = pEm - 

3Y 

The total shear stress is than given by (Eq. 4.111) 

4.118 

4.119 

Prandti has also argued that the v’ fluctuation is of the same order as ri. em, 

the apparent kinematic viscosity, is not a physical property of the fluid as jr or V; 

it depends on the motion of the fluid and also on many parameters: the most 

important is the Reynolds number of the flow. L is also known to vary from point 

to point in the flow field: it vanishes near the solid boundary where the 

transverse fluctuations disappear. The ratio of c 1 v under certain circumstances 

can go as high as 400 to 500. Under such cases, the viscous shear (i.e., V) is 

negligible in comparison to the turbulent shear km) and may be omitted. 

The transfer of heat in a turbulent flow can be modelled in a similar way 

to that of the momentum transfer. Let us consider a two-dimensional time-mean 

temperature distribution shown in Fig 4.14. The ftuctuating velocity V’ 

continuously transports fluid particles and the energy stored in them across the 

surface SS. 
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4.14 Mixing length for energy transfer in turbulent flow 

The instantaneous rate of energy transfer per unit have at any point in the ?’ 

direction is: 

where t = 2 + t’, The time average of the turbulent heat transfer is given by: 

Carrying out the above integration we obtain: 

Substituting Eq. 4.122 into 4.101 we obtain: 

4.120 

4.122 

4.123 

f=C+d 

is called total heat flux in turbulent flow. 

4.124 

Using Prandtl’s concept of mixing length we can write that: 

4.125 



Combining Eqs. 4.122 and 4.125 we obtain: 

4.126 

Here, it is assumed that the transport mechanism of energy and momentum are 

similar; therefore, the mixing lengths are equal. The product ~7 is positive on 

the average because a positive v’ is accomplished by a positive (and vkxs 

versa. The minus sign which appears in Eq. 4.17 is the consequence of the 

conversion that the heat is taken to be positive in the direction of increasing y; 

this also ensures that heat flows in the direction of decreasing temperature, thus 

satisfies the second law of thermodynamic. 

Representing by % = fi Eq. 4.126 becomes 

4.127 

The total heat transfer is then given by (4.124) 

4.126 

or 4.129 

where o = k ’ Fp is the molecular diffusivity of heat. a~, is called the “eddy 

diffusivity of heat” or eddy heat conductivity. 

4.3 Forced Convection Over a Flat Plate 

In the previous section we discussed velocity and thermal boundary 

layers with extent of 8(x) and s,(x), respectively. The velocity boundary layer is 

characterized by the presence of velocity gradients, i.e., shear stresses whereas 

the thermal boundav layer is characterized by temperature gradients, i.e., heat 

transfer. From an engineering point of view we are mainly interested in 

determining wall fritiion and heat transfer coefficients. In this section, we will 

focus our attention on the determination of these coefficients for laminar and 



turbulent flows. in order to reach rapidly the objectives, the integral momentum 

and energy equations (Eqs. 4.88 and 4.96) will be used. 

4.3.1 Laminar Boundary Layer 

In laminar boundary layers, we discussed that fluid motion is very 

orderly and it is possible to identify streamlines along which fluid particles move. 

Fluid motion along a streamline has velocity components in ,Y and y direction ( LA 

and v). The velocity component v normal to the wall, contributes significantly to 

momentum and energy transfer through the boundary. Fluid motion normal to 

the plate is brought about by the boundary layer growth in the x-direction 

(Figure 4.8) 

Consider a flat plate of constant temperature placed parallel to the 

incident flow as shown in Fig. 4.15. Wewill assume that the potential velocity 

U(x) and temperature l, are constant. The constant potential velocity, 

according Eq. 456 implies that longitudinal pressure gradient (in either the 

potential region or on the boundary layer) is zero. It will also be assumed that 

I 
‘f 

J 

p=const* g-O 

c!-- 
x*uJ 

Figure 4.15 Velocity &thermal boundary layers for laminar flow past a ftat plate 



all physical properties are independent of temperature. In the following we will 

detemtine the friction and heat transfer coefficient on the plate. 

4.8.1.1 Velocity Boundary Layer - Friction Coefficient 

For flow past a flat plate in which u(x) = rJ(a co-t ) and d@ do= 0, the 

integral momentum equation (Eq. 4.88) becomes: 

The above momentum integral equation involves two unknown velocity 

component r&Y)and the boundary layer thickress. If the velocity profile were 

known, it is then possible to obtain an expression for the boundary layer 

thickness. A typical velocity profile in the boundary layer is sketched in Fig. 

4.15. This profile can be represented with a third degree polynomial of y in the 

form: 

~x,Y)=~(x)+~(x)Y+c(~)Y~ +G)y3 

This polynomial must satisfy the following boundary conditions: 

y=o u=o 

y=6 ll=lJ 

yzs au 
z=O 

yzo a2u -- 
ay-' 

4.131 

4.132 

4.133 

4.134 

4.135 

The last condition is obtained for a constant pressure condition from Eq. 4.50 by 

setting the velocities u and v equal to zero at y =O. We will also assume that 

the velocity profiles at various .X positions are similar; i.e., they have the same 

functional dependence on the y coordinate. Using the boundav conditions 

4.132 through 4.135, 4 b, c and d are determined as: 



4 . 1 3 6  

a n d  t h e  f o l l o w i n g  e x p r e s s i o n  i s  o b t a i n e d  f o r  t h e  v e l o c i t y  p r o f i l e :  

4 . 1 3 7  

S u b s t i t u t i n g  E q .  4 . 1 3 7  i n t o  E q .  4 . 1 3 0 ,  k n o w i n g  t h a t :  

4 . 1 3 8  

a n d  c a r r y i n g  o u t  t h e  i n t e g r a t i o n  w e  o b t a i n :  

o r  

4 . 1 3 9  

4 . 1 4 0  

T h e  i n t e g r a t i o n  o f  t h e  a b o v e  e q u a t i o n  y i e l d s :  

C ? = 4 . 6 4  - J ! ~ X + C X X l s L  
L - - - - -  4 . 1 4 1  

R e f e r r i n g  t o  F i g .  4 . 1 5  w e  s e e  t h a t  a t  x  =  Q  1 =  0 ,  t h e r e f o r e  t h e  c o n s t a n t  i s  z e r o  

a n d  t h e  v a r i a t i o n  o f  t h e  v e l o c i t y  b o u n d a r y  l a y e r  t h i c k n e s s  i s  g i v e n  b y :  

o r  

C ? = 4 . 6 4  ; ;  
$  4 . 1 4 2  

1 4.64 4 . 6 4  - =  
X  

I -  

= -  
p l J _  R e i 2  

P  4 . 1 4 3  

e d g e .  

i s  t h e  R e y n o l d s  n u m b e r  b a s e d  o n  X ,  d i s t a n c e  f r o m  t h e  l e a d i n g  

T h e  e x a c t  s o l u t i o n  o f  t h e  b o u n d a r y  l a y e r  e q u a t i o n s  ( E q s .  4 . 4 9  a n d  4 . 5 0 )  

y i e l d s :  



I 5.0 -=- 
.x Rey2 4.144 

Therefore, Eq. 4.28 yields a value for &) 8% less than that of the exact 

analysis. Since most of the experimental measurements are only accurate to 

within 1 O%, the results of the approximate analysis are satisfactory in practice. 

Combining Eqs. 4.138 and 4.143, we obtain forwail shear stress: 

z,, = 0.323$$ 
4.746 

Wall friction coefficient is defined as : 

c+ +- 

TPU2 
4.146 

or with Eq. 4.145 

4.147 

This is the local friction coefficient. The average friction coefficient is given by: 

CX = 
2 J 

.a- 4.148 

or with Eq. 4.147 

4.149 

4.3.1.2 Thermal Boundary Layer - Heat Transfer coefficient 

Now, we will focus our attention to the themal boundary layer and 

determine the heat transfer coefficient. Consider again the flow on a flat plate 

illustrated in Fig. 4.15. The temperature of the plate is kept at rw starting from 

the leading edge and the temperature of the potential flow is &and is constant. 

Under the above conditions, a thermal boundary layer starts forming at the 

leading edge of the plate. In order to determine the heat transfer coefttcient, the 



thickness of the thermal boundary layer, 4 (x), should be known. To do so, we 

will use the integral energy equation given by Eq. 4.96 and rewritten here for 

convenience: 

4.96 

The above integral equation involves two unknowns: the temperature &Y) and 

the thermal boundary layer thickness. If the temperature profile were known it 

would then be possible to obtain an expression for the thermal boundary layer. 

The velocity profile has already been determined and given by Eq. 4.137. A 

typical temperature profile is given in Fig. 4.15. The profile, in a way similar to 

that of the velocity profile, can be represented with a third degree polynomial of 

y in the form: 

r(x, y)= a(x) + b(x)y + c(.x)y2 + d(x)y3 4.150 

with boundary conditions: 

y=o t=tw 4.151 

Y=4 I = t, 4.152 

Y=r? & 0 
Sj= 4.153 

a3 
y=o -=* 

3YZ 4.154 

The last condition is obtained from Eq. 458 by setting the velocities u and v 

equal to zero at y = 0. Under these conditions the temperature distributions is 

given by: 
3 

4.155 

Introducing a new temperature defined as: 

e= I-tw 

Eqs 4.96 and 4.155 can be written as: 

4.156 



t 3y ly3 
-z---- - 

0 ew 24 24 

4.157 

4.158 

where % = $ - L 

Substituting in Eq. 4.157 u and 0 by Eq. 4.137 and 4.158, we obtain: 

where o = k, ’ Wp 

Defining 4 as the ratio of the thermal boundary layer thickness to the velocity 

boundary layer thickness 6, 16, introducing this new parameter into Eq. 4.159, 

perfomGng the necessary algebraic manipulations and carrying out the 

integration we obtain: 

4.160 

A simplification can be introduced at this point if we accept the fact that 5, the 

ratio of boundary layer thickness, will be near 1 or better less than unity. We will 

later see that this is true for Prandtl (Pr) numbers equal or greater than 1. This 

situation is met for a great number of fluids. With the above assumption the 

second term in the bracket in Eq. 4.160 can be neglected compared to the first 

one and this equation becomes: 

4.161 

or 

Taking into account Eq. 4.140: 

&!!=??!J!!L 
aLx 13ozI 

4.162 

4.140 



anrl Eq. 4.142 

4.142 

and introducing them into Eq. 4.162, weobtain: 

4.163 

_E ” 
The ratio p or a is a non-dimensional quantity frequently used in heat 

transfer calculations; it is called the Prandtl number and has the following form: 

With the above definition, Eq. 4.163 becomes; 

or 

Making a change of variable as : 

Y={3 

Eq 3.166 is written as: 

4 dY 13 1 
y+Txz=zK 

The homogeneous and particular solutions of the above equations are: 

Homogeneous y=cY with rr=-314 

Particular 

13 1 
Y=GE 

The general solution is then given by: 

t3_!_+$ 
y=CiPr 

4.164 

4.165 

4.166 

4.167 

4.168 

4.169 

4.170 

or 



Since the plate is heated starting from the leading edge, the constant C must be 

zero to avoid an indeterminate solution at the leading edge, therefore: 

or 

4.173 

In the forgoing analysis the assumption was made that c s 1. This assumption, 

according Eq. 4,173 is satisfactory for fluids having Prandti numbers greater 

than about 0.7. For a Prandtl number equal to 0.7, 6 is about 0.91 which is 

close enough to 1 and the approximations we made above is still acceptable. 

Fortunately, most gases and liquids have Prandi numbers higher than 0.7. 

Liquid metals constitute an exception: their Prandtl numbers are in the order of 

0.01. Consequently the above analysis cannot be applied to liquid metals. 

Returning now to our analysis, we know that the local heat transfer 

coefficient was given by Eq. 4.2 which, for the present case, is written as: 

-k ?! 
f 

/IX = 
( 1 9Y @ 

& - t, 4.174 

4.175 

4.176 

Substituting Eq. 4.176 in Eq, 4.175, we obtain: 



4.177 

Combining the above equation with Eqs 4.173 and 4.142 we obtain: 

4.178 

This equation may be made nondimensional by multiplying both sides by X ‘k,: 

z z 0.332Jfi. 
, I- 

5 

4.179 

or N& = 0.332&& 4.180 

where N& is the Nusselt number, deftned as: 

N%+ 

f 4.181 

Eq. 4.180 express the local value of the heat transfer coefficient in terms of the 

distance from the leading edge of the plate, potential flow velocity and physical 

properties of the fluid. The average heat transfer coefficient can be obtained by 

integrating over the length of the plate: 

4.182 

- 7lL 
NL+ =r=2NuxzL 

f 4.183 

or 

where 4.185 

The above analysis was based on the assumption that the fluid properties were 

constant throughout the flow. If there is a substantial difference between the 

wall and free stream temperature, the fluid properties should be evaluated at the 

mean film temperature defined as: 
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L + lf 
l m  = -  

2 4.188 

It should be pointed out that the expressions given by Eqs. 4.180 and 4.185 

apply to a constant temperature and when: 

Przo.7 

Rex S5x 105 

However, in many practical problems the surface heat flux is constant and the 

objective is to find the distribution of the plate surface temperature for given fluid 

flow conditions. For the constant heat flow case it was shown that the local 

Nusselt number is given by: 

N % = 0.453R‘~‘~~ Pru3 z 4.187 

4.3.2 Turbulent Boundary Layer 

A turbulent boundary layer is characterized by velocity fluctuations. 

These fluctuations enhance considerably the momentum and energy transfer, 

i.e., increase surface friction as well as convection heat transfer. The turbulent 

boundary layer doesn’t start developing with the leading edge of the plate. The 

development of the velocity boundary on a flat plate is sketched in Fig 4.16. 

The boundary layer is initially laminar. At some distance from the leading edge, 

the laminar flow in the boundary layer becomes unstable and a gradual 

transition to turbulent flow occurs. The length over which this transition takes 

Figure 4.16 Development of laminar 8 turbulent boundary layers on a flat plate 



place is called “ the transition zone”. In the fully turbulent region, flow conditions 

are characterized by a highly random, three-dimensional motion of fluid lumps. 

The transition to turbulence is accompanied by an increase of the boundary 

layer thickness, wall shear stress and the convection heat transfer coefrrcient. 

in the turbulent boundav layer three different regions are observed 

(Fig. 4.16): 

I, A laminar sub-layer in which the diffusion dominates the property transport, 

and the velocity and temperature profiles are nearly linear. 

2. A buffer zone where the molecular diffusion and turbulent mixing are 

comparable to property transport. 

3. A turbulent zone in which the property transport is dominated by turbulent 

mixing. 

An important point in engineering applications is the estimation of the 

transition location from laminar to turbulent boundary layer. This location, 

denoted by &, is tied to a dimensionless grouping of parameters called the 

Reynolds number: 

I&$ 
4.188 

where the characteristic length .X is the distance from the leading edge. The 

critical Reynolds number is the value of Rex for which the transition to turbulent 

boundary layer begins. For a flow over a flat plate the critical Reynolds number, 

depending on the roughness of the surface and the turbulence level of the free 

steam, varies between 10’ to MCP It is usually recommended to use a value of 

Rex = .5dp for the transition point from laminar to turbulent flow. From Fig. 

4.16, it is obvious that the transition zone for a certain length and a single point 

of transition is an approximation. However, for most engineering applimtions 

this approximation is acceptable. We should also emphasize that the flow in the 

transition zone is quite complex and our knowledge of it is very limited. 



4.3.2.1 Velocity Boundary Layer - Friction Coefficient 

Analytical treatment of a turbulent boundary layer is very complex. This 

is due to the fact that the apparent kinematic viscosity cm, as already pointed out 

in Section 4.2.2, is not a property of the fluid but depends on the motion of the 

fluid itself, the boundary conditions, etc. Here, we will use a simple approach to 

determine the thickness of the turbulent boundary layer. 

The general characteristics of a turbulent boundary layer are similar to 

those of a laminar boundary layer: the time-average flow velocity vanes rapidly 

from zero at the wall to the uniform value of the potential core. Due to the 

transverse turbulent fluctuations, the velocity distribution is much more curved 

near the wall than in a laminar flow case. However, the same distribution at the 

outer edge of the turbulent layer is more uniform than that corresponding to a 

laminar flow. 

A number of experimental investigations have shown that the velocity in 

a turbulent boundary layer may be adequately described by a one-seventh 

power law: 

u= 
0 

I!, 
Y 

u 5 
4.189 

where 8 is the boundary layer thickness and u is the time average of turbulent 

velocity. For the sake of simplicity the bar notation to show the time average is 

dropped with understanding that all turbulent velocities referred to are time- 

averaged velocities. This power law represents well the experimental velocity 

profiles for local Reynolds numbers in the range sx to5 < R% < to’. Although 

Eq. 4.189 describes well the velocity distribution in the turbulent layer, it is not 

valid at the surface. This can be seen when we try to evaluate the shear stress 

on the wall which has the following form: 

4.190 



A c c o r d i n g  t o  E q .  4 . 1 8 9 ,  t h e  v e l o c i t y  g r a d i e n t  a n y w h e r e  i n  t h e  b o u n d a r y  i s :  

&L 1 U -  = - -  
d y  I  P y G J T  

4 . 1 9 1  

T h i s  r e l a t i o n  l e a d s  t o  a n  i n f i n i t e  v a l u e  o f  t h e  s t r e s s  a t  t h e  w a l l .  T h i s  i s  n o t  

p h y s i c a l l y  p o s s i b l e .  I n  o u r  p r e v i o u s  d i s c u s s i o n ,  w e  h a v e  p o i n t e d  o u t  t h a t  t h e  

t u r b u l e n c e  d i e s  o u t  i n  t h e  v i c i n i t y  o f  t h e  w a l l  a n d  t h e  b o u n d a r y  l a y e r  b e h a v e s  i n  

a  l a m i n a r  f a s h i o n .  I n  t h i s  r e g i o n ,  t h e  v e l o c i t y  d i s t r i b u t i o n  i s  a s s u m e d  t o  b e  

l i n e a r .  B a s e d  o n  t h e  a b o v e  d i s c u s s i o n ,  t h e  v e l o c i t y  d i s t r i b u t i o n  i n  t h e  t u r b u l e n t  

r e g i o n ,  i n c l u d i n g  t h e  b u f f e r  z o n e ,  w i l l  f o l l o w  o n e - s e v e n t h  p o w e r  l a w  w h e r e a s  i n  

t h e  l a m i n a r  s u b - l a y e r  w i l l  b e  l i n e a r .  T h i s  l i n e a r  v a r i a t i o n  w i l l  b e  s e l e c t e d  s o  t h a t  

t h e  s l o p e  a t  y  = 0  y i e l d s  t h e  w a l l  s t r e s s  o b t a i n e d  e x p e r i m e n t a l l y  b y  B l a s i u s  

( 1 9 1 3 )  f o r  t u r b u l e n t  f l o w s  o n  a  s m o o t h  p l a t e :  

4.192 

w h e r e  V i s  t h e  k i n e m a t i c  v i s c o s i t y .  T h e  v e l o c i t y  d i s t r i b u t i o n  i n  t h e  l a m i n a r  s u b -  

l a y e r  w i l l  j o i n  t o  t h a t  i n  t h e  f u l l y  t u r b u l e n t  r e g i o n  a t  a  d i s t a n c e  s S  f r o m  t h e  w a l l .  

T h i s  d i s t a n c e  i s  c o m m o n l y  c a l l e d  t h e  t h i c k n e s s  o f  t h e  l a m i n a r  s u b - l a y e r .  T h e  

r e s u l t i n g  v e l o c i t y  p r o f i l e  i s  s k e t c h e d  i n  F i g .  4 . 1 7 .  

T o  d e t e r m i n e  t h e  t u r b u l e n t  b o u n d a v  l a y e r  t h i c k n e s s ,  w e  w i l l  e m p l o y  E q .  

4 . 1 3 0 ,  r e p e a t e d  h e r e  f o r  c o n v e n i e n c e  ( u  =  c ~ n a r &  d p  1~~5 = 0) : 

A l t h o u g h  t h e  a b o v e  e q u a t i o n  i s  d e r i v e d  f o r  a  l a m i n a r  f l o w ,  i t  m a y  a l s o  b e  u s e d  

f o r  a  t u r b u l e n t  f l o w  a s  l o n g  a s  t h e  v e l o c i t i e s  u s e d  a r e  t i m e  a v e r a g e  v e l o c i t i e s  

a n d  a s  l o n g  a s  w a l l  s h e a r  t e r m ,  r W ,  i s  a d e q u a t e l y  r e p r e s e n t e d  f o r  t u r b u l e n t  f l o w ,  

f o r  e x a m p l e  w i t h  E q .  4 . 1 9 2  f o r  a  t u r b u l e n t  f l o w  o n  a  p l a t e .  F o r  t h e  p u r p o s e s  o f  

i n t e g r a l  a n a l y s i s ,  t h e  m o m e n t u m  i n t e g r a l  i n  E q  4 . 1 3 0  c a n  b e  e v a l u a t e d  b y  u s i n g  

t h e  p o w e r  l a w  g i v e n  b y  E q .  4 . 1 8 9 .  T h i s  i s  j u s t i f i e d  b y  t h e  f a c t  t h a t  t h e  l a m i n a r  

s u b - l a y e r  i s  v e r y  t h i n .  F o r  t h e  w a l l  s h e a r  s t r e s s ,  t h e  B l a s i u s  c o r r e l a t i o n  g i v e n  b y  



Figure 4.17 Velocity protiles in the turbulent zone and laminar sub-layer 

Eq. 4.192 will be used. Consequently, the substitution of Eqs. 4.189 and 4.192 

into 4.130 yields: 

Integration of the above equation yields: 

or 

This equation can be easily integrated to obtain: 

4.193 

4.194 

The constant may be evaluated for two physical situations: 

I. The boundary layer is fully turbulent tram the leading edge of the plate. In 

this case boundary condition will be: 

x=o S=O 4.196 



2. The bou-rdav layer follows a iaminar growth pattern up to R< =5x 10’ and a 

turbulent growth thereafter. in this case the boundary condition will be: 

Sr can be obtained from Eq. 4.144 repeated here for convenience: 

1 4.64 _=- 
X Re;2 4.198 

as: 

For our application, we will retain the first option. Consequently, the constant in 

Eq, 4.195 is zero and the thickness of the boundary layer is given by: 

I 0.376 
= 0.376Re;“5 

4.200 

This assumption is not true in practice. However, experiments show that the 

predictions of Eq. 4.200 agree well v&h data. When Eq. 4.144 and 4.200 are 

compared we observe that the thickness of the turbulent boundary layer 

increases faster than that of laminar boundary layer. The equations for 

boundary layer thickness (i.e., Eqs 4.144 and 4.200) apply only to the regions 

of fully laminar or fully turbulent boundary layers. As can be seen from Fig. 4.16 

the transition from laminar flow to turbulent flow does not occur at a definite 

point, but rather occurs over a finite length of the plate. The transition zone is a 

region of highly irregular motion and the knowledge of the flow in this region is 

quite limited. For most engineertng applications, it is customary to assume that 

the transition from laminar boundary to turbulent boundary occurs suddenly 

when the local Rex number is equal to 5x 10’. At the transition point the 

thickness of the boundary layers will be different with the turbulent boundav 

layer thicker than the laminar boundary layer; i.e., a discontinuity exists in the 

thickness. 



Let us now focus our attertion to the laminar sub-layer, illustrated in 

Fig. 4.17 and determine its thickness, &, and the velocity of the fluid at the 

juncture between the laminar sub-layer and the fully turbulent zone denoted by 

% 

Since the velocity varies linearly in the laminar sub-layer, the shear 

stress in this layer is given by 

du 

T=%i =5 4.201 

Combining this expression with the wall shear stress correlation established by 

Blasius for a turbulent boundary, we obtain for the variation of the velocity the 

following expression: 

u2 P ‘I4 
u=o.o228p- - 

P PUS y c I 
when y = ss, u= us, the above expression becomes: 

The velocity profile in the turbulent region was given by Eq. 4.169 which, for 

y = 6s and u = us, can be wrttten as: 

1 7 
_L= 0 5 
I u 

The combination of Eqs 4.203 ans 4.204 yields: 

5=1.87 

4.202 

4.203 

4.204 

4.205 

6, the thickness of the turbulent boundav layer is given by Eq. 4.200, therefore 

Eq. 4.205 becomes: 

4.206 

Combining Eqs. 4.204 and 4.206 we obtain: 



The wall shear stress can also be written as: 

4.207 

4.208 

Using Eqs. 4.200, 4.206 and 4.207, the above equation becomes: 

0 0296 
z,, = pun=--- & 0.2 

X 4.209 

$Jz 
Dividing both sides of this equation by 2 and using the definition of the wail 

friction coefficient, c+, given by Eq. 4.146, we obtain: 

4.210 

This is the local wail friction coefficient, 

4.3.2.2 Heat Transfer in the Turbulent Boundary Layer 

The concepts regarding turbulent boundary layers discussed in 

Sections 4.2.2 and 4.3.2.1 will now be employed for the analysis of heat transfer 

as flat plates in turbulent flow. We will tirst discuss the Reynolds analogy for 

momentum and heat transfer. Subsequently we will discuss a more retined 

analogy introduced by Prandtl. 

Reynolds Analogy for Laminar boundary layer 

In a two-dimensional laminar boundary layer, the shear stress at a 

plane located at y is given by: 

CIu 
r=p5 

4.211 

The heat flux across the some plane is: 

4.212 
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Dividing Eqs 4.211 and 4.212 side by side, we obtain 

f kfd -z--- 
r /J du 

This expression can also be written as: 

4.213 

4.214 

fiCp ‘kQ is the Prandti number. Reynolds assumes that F’r = 1, therefore Eq. 

4.214 becomes: 

C=_c 2 
r p du 4.215 

Assuming that q” If ratio is constant and equal to the same ratio on the wall, 

i.e., 

C=$ 
1 .L 4.216 

Eq. 4.215 can be easily integrated from the wall conditions t = tw, L =c , to the 

potential flow conditions r= $9 uz u, 

$jIdu=-cpj;;dt 
4.217 

on 

x rWcp 
t -t,=TT w 4.218 

The left hand side of Eq. 4.218 is nothing else but convection heat transfer, h. 

Therefore we write: 

LC /,zL 
lJ 

Using the definition of wall friction coefkient 

4.219 

Eq. 4.219 becomes 

4.146 

4.220 



M u l t i p l y i n g  b o t h  s i d e s  o f  t h e  a b o v e  e x p r e s s i n g  X ,  k n o w i n g  t h a t  f o r  

T %  =  1 .  C ~  =  k ,  ‘ p ,  a n d  u s i n g  t h e  d e f i n i t i o n  o f  l o c a l  R e y n o l d s  n u m b e r  

a n d  l o c a l  N u s s e l t  n u m b e r :  

E q .  4 . 1 4 7  i s  w r i t t e n  a s :  

N & $ e X  
4 . 2 2 1  

T h i s  i s  t h e  d i m e n s i o n l e s s  s t a t e m e n t  o f  R e y n o l d s ’  a n a l o g y  f o r  l a m i n a r  f l o w .  

O b s e r v e  t h a t  h e a t  t r a n s f e r  c o e f f i c i e n t  i s  r e l a t e d  t o  t h e  w a l l  f r i c t i o n  f a c t o r .  

I n  S e c t i o n  4 . 3 . 1  . I  i t  w a s  s h o w n  t h a t  f o r  a  l a m i n a r  f l o w  o n  a  f l a t  p l a t e ,  t h e  

w a l l  f r i c t i o n  c o e f f i c i e n t  w a s  g i v e n  b y  ( E q .  4 . 1 4 7 )  

0 . 6 4 6  
C T = -  

4 . 1 4 7  

F o r  t h i s  c a s e  R e y n o l d s  a n a l o g y  ( E q .  4 . 2 2 1 )  g i v e s :  

N r i *  =  0 . 3 3 2 R e J j z  4 . 2 2 2  

T h e  r e s u l t  o b t a i n e d  f r o m  t h e  i n t e g r a l  m o m e n t u m  a n d  e n e r g y  a n a l y s i s  w a s  ( E q .  

4 . 1 8 0 )  

N U  z  0 . 3 3 2 R e ” * F V B  z  z  4 . 1 8 0  

F o r  F ’ r  =  1, t h i s  r e s u l t  i s  t h e  s a m e  a s  t h e  o n e  o b t a i n e d  b y  R e y n o l d s ’  a n a l o g y .  

T h e r e f o r e ,  t h e r e  i s  a n  a g r e e m e n t  b e t w e e n  E q s .  4 . 1 8 0  a n d  4 . 2 2 2 .  I t  a p p e a r s  

t h a t  t h e  e f f e c t  o f  t h e  P r a n d t l  n u m b e r  d i f f e r i n g  f r o m  u n i t y  c a n  b e  e x p r e s s e d  b y  a  

f a c t o r  e q u a l  t o  P r u 3 .  T h e  l a t t e r  f a c t  i s  s o m e t i m e s  a p p l i e d  i n  o t h e r  c a s e s  w h e n  

e x a c t  s o l u t i o n  t o  t h e  t h e r m a l  b o u n d a r y  l a y e r  c a n n o t  b e  o b t a i n e d ,  a n d  

e x p e r t m e n t a l  s k i m  f r i c t i o n  m e a s u r e m e n t s  a r e  u s e d  t o  p r e d i c t  h e a t  t r a n s f e r  

c o e f f t c i e n t s  

R e y n o l d s ’  a n a l o g y  f o r  t u r b u l e n t  b o u n d a r y  t a y e r  
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In Section 4.2.2, we have seen that the total shear stress and heat flux 

in a turbulent boundary layer were given by Eqs 4.119 and 4.129, respectively. 

These equations are repeated here for convenience: 

where 

4.119 

V: is the kinematic viscosity related to molecular momentum exchange 

(molecular diffusivity of momentum) 

cm: is the apparent kinematic viscosity related to turbulent momentum 

exchange (eddy diffusivity of momentum) 

a : is the molecular diffusivity of heat 

%: is the eddy diffusivity of heat 

Reynolds assumed that the entire flow in the boundary layer was turbulent. This 

means that he neglected the existence of the viscous sub-layer and the buffer 

zone. Under these conditions the molecular diffusivities of momentum (V) and 

heat (a) can be neglected in comparison with turbulent diffusivities (cm and %), 

i.e., 

V<<&,,,anda<<&d 4.223 

Moreover, Reynolds assumed that: 

&m=&H=& 

Under these conditions, Eqs 4.119 and 4.129 become: 

du 

r=q =% 4.224 

4.225 

Dividing Eqs. 4.225 and 4.224 side by side, we obtain 

< dt 

$=-c - P du 

Comparing Eq. 4.226 with Eq. 4.215, we observe that these equations are 

similar provided that in laminar boundary layer the Prandtl number is equal to 1 



Comparing Eq. 4.226 with Eq. 4.215, we observe that these equations are 

similar provided that in laminar boundary layer the Prandtl number is equal to I. 

Prandtl’s Modification to Reynolds’ Analogy 

Prandtl assumed that the turbulent boundary layer consisted of two 

layers: 

I, A viscous layer where the molecular diffusivities are dominant, that is: 

v=&manda=&H 4.227 

2. A turbulent zone where the turbulent diffusivities are dominant, that is: 

~~>>vand&~=a 4.228 

He also assumed that c,,, = cH = c This approach implies that the Prandtl 

number is not necessarily equal to 1. 

The variation of velocity and temperature in this two-region boundary 

layer is illustrated in Fig. 4.18. In the laminar sub-layer, the velocity and the 

temperature vary linearly: from zero to z+ for velocity and from lW to ls, for 

temperature. In the turbulent region the variation of the velocity, as discussed in 

Section 4.3.2.1 is given by one-seventh power law (Eq. 4.189) and varies from 

r+ to U , velocity of the potential flow, whereas the temperature varies from 

rs to tp, temperature of the potential flow. 

Applying Eq. 4.213 to the laminar sub-layer we write: 

< Tdu= -5dt 
4.229 

Integrating this equation between 0 and US and between L and & assuming that 

CL 
I 

CR& 
z ratio is constant and equal to G we obtain: 

or 4.230 



Figure 4.18 Turbulent boundary layer consisting of two layers: Prandtl approach 

4.231 

Applying now Eq. 4.226 to the turbulent region of the boundary layer we write: 
, 

:duz -cpdt 

4.232 

Integrating this equation between r+ and U , and between r* aad r/, (see Fig. 

4.18) and assuming again qylr, ratio is constant and equal to q: / TW, we obtain: 

or 

The elimination of za, between Equ. 4.231 and 4.234 yields 

4.233 

4.234 

4.235 

Knowing that: 



Eq. 4.235 is wdtten as: 

orwith przc#‘k,: 

hc=gp&CJ 
4.236 

The above equation is the statement of Prandtl’s modification of Reynolds’ 

analogy and may be written in a dimensionless form by multiplying both sides 

_X /k, and by rearranging the numerator: 

1 q” PC0 uxp 

21 

lvuz = 

TplJ* 5 p 

1 +$(Fr- 1) 

Recognizing that: 

4.238 

Eq 4.238 becomes: 

k+ .Pr.Re 
N&= ’ 

l+;(Pr-l) 
4.239 

AC 
For a turbulent flow cp and U are given with Eqs. 4.206 and 4.210, repeated 

here for convenience: 

U, 2.12 -=- 
lJ R&’ 

4.206 

4.207 



Substituting these relationships into Eq. 4.239, we obtain: 

0.0292 Ret8 Pr 

NrC= 1+2.12 R&P&1) 4.240 

This relation is found to give adequate results for turbulent heat transfer 

coefkients in spite of many simplifications. The fluid properties in Eq. 4.208 

should be evaluated at the mean temperature and the Prandtl number should 

not be too different from unity. The major difficulty of Eq. 4.240 is its integration 

to obtain the average Nusselt number. It is observed that for FV numbers not 

different from unity, which is the case for many gases and liquids, the 

denominator of Eq. 4.240 is nearly constant. Therefore, for such cases it is 

recommended that following expression be used in the estimation of the heat 

transfer coefficient: 

Nq = O.O2!X ReO’ F’?’ 4.241 

Again the mean film temperature (Eq 4.186) should be used for all properties, 

Eq. 4.241 can be integrated along the plate to obtain an average Nusselt 

number. For a plate length L, this average is given by 

or 

7ZL 
%= k  

L ~O.CJ36 Re0~aPrl’3 
I 4.242 

This latter relation assumes that the boundary layer is turbulent starting from the 

leading edge of the plate. As discussed in Section 4.3.2 and illustrated in Fig. 

4.16, starting from the leading edge over certain portion of the plate the 

boundav layer is laminar. The transition to turbulent flow occurs at a distance 

xc. This point is specified by a crttical Reynolds number; usually a value of 

.5x w is used. Under these conditions, a better average film coefficient and 

average Nusselt number would be given by the combination of Eqs. 4.180 and 

4.241: 



4.243 

In the above averaging, it is assumed that the laminar to turbulent 

transition occurs instantaneously. The following expression is obtained for the 

average Nusselt number: 

iv& = 0.036 Pr1J3[Re;.8-R~;;+ 18.44 Re;;] 4.244 

where k,is the critical Reynolds number. If &=5oo,ooo, the above relation 

becomes: 

4.245 

4.4 Forced ConvecUon in Ducts 

Heating and cooling of fluid flowing inside a duct constitutes one of the 

most frequently encountered engineering problems. The design and analysis of 

heat exchanges, boilers, economizers, supar heater and nuclear reactors 

depend largely on the heat exchange process between the fluid and the wall of 

the tubes. 

The flow inside a duct can be laminar or turbulent. The turbulent flow 

inside ducts is the most widely encountered type in various industrial 

applications. Laminar flow inside ducts is mainly encountered in compact heat 

exchanges, in the heating and cooling of heavy fluids such as oils, etc. 

When a fluid with uniform velocity enters a straight pipe a velocity 

boundav layer (also a thermal boundary layer, if the tube is heated) statis 

developing along the surface of the pipe as illustrated in Fig. 4.19. 



Potaltiai core 

4.19 Flow in the entrance region of a pipe 

Near the entrance of the pipe, the boundav layer develops in a way similar to 

that on a flat plate. Because of the presence of an opposite wall on which a 

boundary layer also develops, at a given point along the tube, both boundary 

layers will touch each other and till the entire tube. The length of the tube ousr 

which the viscous layers have grown together and ftlled the tube cross section is 

called the starting or entrance length. The flow beyond this region is termed 

“fully developed flow”. In the entrance region the flow consist of a potential core 

region near the centre of the tube where the velocity is uniform and a boundary 

region near the wall of the tube where the velocity varies from the potential core 

value to zero at the wall. As we proceed along the pipe in the entrance region, 

the portion of the tube occupied by the boundary layer, where the flow velocity 

varies, increases and the position occupied by the potential core decreases. 

Consequently, in order to satisfy the principle of mass conservation, i.e., a 

constant average velocity, the velocityof the potential core shouts increase. 

This increase is illustrated in Fig. 4.19. 

The transition from laminar to turbulent flow is likely to occur in the 

entrance length. If the boundary layer is laminar until it fills the tube, the flow in 

the fully developed region will be laminar with a parabolic velocity protile, 

However, if the transition from laminar to turbulent flow occurs in the entrance 



region, the flow in the fully developed region will be turbulent with somewhat 

blunter velocity profile as illustrated in Fig. 4.20. In a tube, the Reynolds number 

based on the diameter: 

is used as a criterion for the transition from laminar to turbulent flow. 

Figure 4.20 Velocity profile in turbulent pipe flow 

Here C is the pipe diameter and Um is the average velocity of the flow in the 

pipe, for: 

the flow is usually observed to be turbulent. This value should not be treated as 

a precise value, since a range of Reynolds numbers for transition has been 

experimentally observed depending on the pipe roughness and the smoothness 

of the flow. The generally accepted range for transition is: 

2ooo<FkD<40110 4.247 

For laminar flow, the length of the entrance region maybe obtained from an 

expression of the flow (Langhaar, 1942) 

+ =0.0.575 ReD 
4.248 



There is no satisfactory expression for the entry length in turbulent flow, it is 

known that this length is practically independent of Reynolds number and, as a 

first approximation it can be assured that (Kay and Crawford, 1980.) 

t0+ 
4.249 

Usually it is assumed that the turbtient flow is fully developed for & 1 C > 10. 

4.41 Laminar Flow 

In this section, the velocity distribution, frictional pressure loses and the 

convection heat transfer coefficient will be discussed for the fully developed 

region. The discussion of the entrance region is beyond the scope of this 

lecture. 

4.4.1.1 Velocity Distribution and Friction Factor in Laminar Flow 

The form of the velocity can be easily determined for a steady state 

laminar flow of an incompressible, constant property flow in the fully developed 

region of a circular tube. In the fully developed region, velocity profile doe not 

change along the tube. It depends only on the radius, i.e., u= u(r). 

To proceed with the analysis, let us select a fix control volume of radius 

r and length & sketched in Fig. 4.21. The application of the macroscopic 

momentum balance (Eq. 2.22) to the above control volume yields (see Eq. 4.63) 

Multiplying this equation by I and knowing that the velocity profile does not 

change in the xdirection (je-;jA rf.PdA=O), we obtain: 

4.250 



-dx- 

Figure 421 Control volume in a iaminar, fully developed flow in a 

circular tube 

which is simply a balance equation between of the forces acting on the control 

volume, i.e., balance between shear and pressure forces in the flow. The 

pressure and viscous stress terms in Eq 4.250 can be written as: 

Substituting Eqs. 4.251 and 4.252 into 4.250 we obtain: 

We know that: 

and this equation with y = R- r (or dy = -dr) becomes: 

*,z -p; 

Substitution of Eq. 4.254 into Eq. 4.253 yields: 

4.251 

4.252 

4.253 

4.254 

4.255 

Since the axial pressure gradient is independent of r, Eq. 4.255 may be 

integrated to obtain: 



4.256 

The constant C can be easily determined by setting: 

r=R u=o 

Therefore, the constant becomes: 

4.257 

4.258 

It follows that the velocity profile ofthe fully developed flow is given by: 

4.259 

Hence the fully developed proftle is parabolic. Note that the pressure gradient 

must always be negative. 

The average velocity is given by: 

J: 2mpudr 
CJ”, = 

RR1 

Substituting u in the above equation by Eq. 4.259 and carrying out the 

integration, we obtain: 

Substituting this result into Eq. 4.259, the velocity profile is then 

rJm can be calculated from the knowledge of the volume flow rate: 

where Q is the volume flow rate in I& ‘3 and A is the flow section in &. I 

4.262 can be used to determine frictional pressure gradient. 

4.260 

4.261 

4.262 

4.263 

Eq. 



Eq. 4.253 can also be written for a control volume bounded by the tube 

wall and two planes perpendicular to the axis and a distance CICX apart as: 

or as 

dp 4rR _=-_ 
dz D 

where D is the diameter of the tube. rR is given by: 

4.265 

Dividing both sides of Eq. 4.265 by ‘P??, and calling: 2 

+%- 

;NJ; 

we write 

4.266 

where f is the friction factor. Since the velocity distribution is known % can be 

easily evaluated from Eq. 4.266 as: 

4.269 

The substitution of Eq. 4.269 into Eq. 4.267 

Q!!L=L& 
PU~D &a 4.270 

where is the Reynolds number based on the diameter of the 

pipe. 

Equation 2.266 in conjunction with Eq. 2.270 allows us to evaluate the 

frictional gradient component of the total pressure gradient in a laminar flow. 

The pressure drop in a tube of length L is obtained by integrating Eq. 2.268: 



4.271 

4.4.1.2 Bulk Temperature 

For flow over a flat plate, the convection heat transfer coefficient was 

defined as: 
,, 

/,zL 
L - i, 4.272 

where 21 is the temperature of the potential stream. However, in a tube flow 

there is no easily discernible free-stream condition. Even the centerline 

temperature ( tc) cannot be easily expressed in terms of inlet flow parameter and 

wall heat flux. Consequently, for fully developed pipe flow it is customary to 

define a so-called “bulk temperature” in the following form: 

For incompressible flow with constatt CP, this definition is written as: 

fb = LR pCptu2mdr 

lilCP 
4.274 

The numerator of Eq. 4.273 or 4.274 represents the total energy flow through 

the tube, and the denominator represents the product of mass flow and specific 

heat integrated over the flow area. The bulk temperature is thus representative 

of the total energy of the flow at a particular location along the tube. 

Consequently, as can be seen from Eq. 4.274, the multiplication of the bulk 

temperature with the mass flow rate and the specific heat given the rate at which 

thermal energy is transported with the fluid as it moves along the tube. 

With the above definition of the “bulk temperature”, the local heat 

transfer coefticient is than deftned as: 



where L is the pipe wail temperature. 

In practice, in a heated tube an energy balance may be used to 

detem-rine the bulk temperature and its variation along the tube. Consider the 

tube flow seen in Fig. 4.22. The flow rate of the fluid and its inlet temperature 

(or enthalpy) to the tube are ti, respectively. Convection heat transfer occurs at 

the inner surface. 

?b I catrolbtThnTc 
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Figure 4.22 Control volumes for integral flow in a tube 

Usually, fluid kinetic and potential energies, viscous dissipation and axial heat 

conduction are negligible. Steady state conditions prevail. Under these 

conditions the variation of the bulk temperature along the tube will be 

determined for “constant surface heat flux” and for “constant surface 

temperature”. 

I. Constant surface heat flux 

Representing by 4: constant wall heat flux and applying the energy 

conservation equation (Eq. 4.64) to the control volume limited by the tube wall 



and by two planes perpendicular to the axis and a distance cfx apart (Fig. 4.22) 

we can write: 

4.276 

or 

4.277 

Integration of this equation between the inlet of the tube and a given axial 

position (x) yields: 

It(x)-/& =+ 4.278 

Enthalpy difference h- hi can be wrttten in terns of temperature as: 

h(x)-h< =ip[z&)-ti] 4.279 

Combining Eqs 4.278 and 4.279, we obtain the variation of the bulk 

temperature along the tube as: 

r&)++%J:X 4.280 
fi 

2. Constant surface temperature 

Results for the axial distribution of the mean temperature are quite 

different when the temperature of wall is maintained at a constant value r~. 

Under this condition the local wall heat flux is given by: 

where he is the convection heat transfer coefftcient. 

Eq. 4.277 and knowing that: 

dh = Fpdt 

we obtain: 

dt 

L - 6 &I 

Integration of this equation yields: 

4.281 

Substituting Eq. 4.281 into 

4.282 
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of ?&) is straightforward. If not, iterations are required to determine the value 

of the bulk temperature. The bulk temperature concept introduced in this 

section is applicable to both laminar and turbulent flows in tubes. 

4.4.1.3 Heat Transfer in Fully Developed Laminar Flow 

Although the analysis of the velocity distribution for fully laminar pipe 

flow is relatively simple, Eq. 4.262, the analysis of temperature distribution and 

consequently film coefficient is complex. 

In a circular tube with uniform wall heat flux and fully developed laminar 

flow condition, it is analytically found that the Nusselt number is constant, 

independent of ReD. F? and axial location: (Ozirtk, 1985) i.e., 

N%= !Q k =4.364 
4.292 

In this analytical derivation, it is assumed that the velocity distribution in the tube 

is given by Eq. 4.262 which is true for isothemral flows. For constant surface 

temperature conditions, it is also found that the Nusselt number is constant: 

Again, Eq. 4.262 is used for velocity distribution in this analytical analysis. 

The use of a velocity distribution corresponding to isothemal flow 

condition is only valid for small temperature differences between the fluid and 

the tube wall. For large temperature differences, the fluid velocity distribution 

will be influenced by these differences as indicated in Fig. 4.23. Curve b shows 

the fully developed parabolic distribution that would result for isothemal or very 

small temperature difference flow. When the heating is significant, the viscosity 

is lowest near the wall; as a result, the velocity increase (curve a) 





LD z&c- 
O.OfB(D 1 L)Re” Pr 

kf =‘66+ l+0.04[(D/L)&~Pr~‘3 
4.294 

where ?%D is the average Nusselt number. The above empirical relation 

approaches to the limiting value %G = 366 (Eq. 4.293) as the pipe lergth 

becomes very great compared with the diameter. in this relation the fluid 

properties are evaluated at the bulk temperature. Eq. 4.294 is recommended 

for: 

Sieder and Tale(l936) gave the following more convenient empirical correlation: 

4.295 

The fluid properties are to be evaluated at the bulk fluid temperature except for 

the quantity LL, dynamic viscosity, which is evaluated at the wall temperature. 

The term (& ‘flWr14 IS Included to account for the fact that the boundary layer at 

the pipe surface is strongly influenced by the temperature dependence of the 

viscosity. This is particularly true for oils. The term (& ~!LY applies to both 

heating and cooling cases. The effect of starting length is included in the term 

(D’ ‘y’. The range of applicability of Eq. 4.295: 

0.46 C Pr < 16,700 

0.0044 < 2 < 9.75 



4.4.2 Turbulent Flow 

It is experimentally verified that one-seventh power law (Eq. 4.189) 

Blasius relation for shear stress on the wall (Eq. 4.192) sS 18 ratio (Eq. 4.203) 

and L+ /(I ratio(Eq. 4.205) established for a turbulent flow in smooth tubes. 

4.4.2.1 Velocity Dlstribution and Friction Factor 

The one-seventh power law given by Eq. 4.189, repeated here for 

convenience: 

can also k applied to turbulent flows in pipes by replacing 

ybyR-r 

hyRorDl2 

Ub Urn 

U_ is the maximum velocity (Fig. 4.20). The velocity distribution for a pipe flow 

is then given by: 

AC R-r m 
z- 

C 1 Urn R 4.296 

As in the case of the flat plate flow, this relation is approximate does not 

describe accurately the flow situation near the wall, it gives, however, a good 

representation of the gross behaviour of turbulent pipe flow. The average 

velocity is given by: 

4.297 

To obtain the pipe wall friction factor, we will use the Blasius relation 

given by Eq. 4.192 and repeated here for convenience: 



4.192 

Replacing, 

we obtain: 

or using the definition of the friction factor given by Eq. 4.267 

0.312 
U4 =e 

4.298 

4.299 

The above relation fits the experimental data well for: 

If the constant 0.312 is replaced by 0.316, the upper limit can be extended to 

10’. For higher Re renumbers the following relation can be used: 

Prandtl Equation 

von Karman Equation 

+Olog (D/,?)+l.74 f-&O.01 

4.301 

Several friction factor correlations are available in the literature. 

For turbulent flows, the frictional pressure gradient is given by the came 

expression obtained for laminar flows (Eq. 4.268) repeated here: 

4.268 



The only difference is that the friction factor, f , will be determined by using one 

of the correlations given above (Eqs 4.299-4.301) or any other ad-hoc frtction 

factor correlation available in the literature 

4.4.2.2 Heat Transfer in Fully developed Turbulent Flow 

The heat transfer correlation established in Section 4.3.2.2 for a flat 

plate (Eq. 4.237) repeated here for convenience, is given by: 

& 
hz ’ 

l++r-1) 
4.237 

This equation was based on Reynolds’ analogy as modified by Prandtl. It was 

assumed that the turbulent boundary layer consists of two layers: a viscous 

layer where the molecular diffusivity is dominant. This structure should remain 

the same for turbulent flows in pipes. In order to apply Eq. 4.237 to turbulent 

flow in pipes, the following adjustments will be made: 

U will be replacsl by U,,, (l3l. 4.29). and 

K+ will be ~placed by rR 

The velocity ratio I+ /rI given by Eq. 4.205 

will be adapted to pipe flow condition by interpreting: 

uas u_, u_ - - &7 (ET.q.4.297) and 

Under these conditions, 4 IU ratio given by Eq. 4.205 becomes: 

,m 

~444-..4!- - 
U c I @JmD 

244 
z------ 

Rey 

Using the deftnition of the friction factor (Eq. 4.267) 

4.205 

4.302 



f+_ 

;m 

the wall shear stress rR can be written as: 

f rR =ToU; 

We will assume that f is given by: 

+E 

4.267 

4.303 

4.304 

Replacing in Eq. 4.287, Uby U=, using Eqs. 4.302, 4.303 and 4.304, and 

introducing the Nusselt number ( .VU= @I k,) and diameter Reynolds number 

(hD =,IJcI,JI/~), we obtain: 

0.0396 F&rFr 

NS= 1+2.44Re~~Qr-l) 4.305 

Experiments show that the relation works reasonably well in spite of the 

simplifying assumptions that have been made in its derivation. It is usually 

suggested (Hoffman, 1938) that the constant 2.44 in Eq 4.305 be replaced by: 

l._5IF’~ 
4.306 

Consequently, Eq. 4.305 becomes: 

0.03% R$?r Pr 
No = l+l.5F’-~~6Re~~8(~-l) 

4.307 

Both of these relations are based on the determination of the fluid properties at 

the bulk fluid temperature. Eqs. 4.305 and 4.307 give good results for fluids with 

Pr - number close to 1. 

If the difference between the pipe surface temperature and the bulk fluid 

temperature is smaller than 6C for liquids and 60C for gases, the following 

empirical correlation based on the bulk temperature can be used: 

NL+, = 0.023 Re;Tr” 
4.308 

where 



I = 0.4 for heating 

I = 0.3 for cc0ling 

This correlation is applicable for smooth pipes for 

0.7<Pr<l60 

Re>1qm 

For temperature difference greater than those specified above or for fluids more 

viscous than water, Sieder and Tale (1936) proposed: 

C 1 

0, 14 

A$ = 0.027 Re;a Pr’j3 2 

4.309 

All properties are evaluated at the bulk fluid temperature except for IL which is 

to be evaluated at the pipe wall temperature. Range of applicability: 

0.7<~<16,700 

F?z>lWOo 

The previous heat transfer correlations give a maximum errors of & 25% in the 

range of 0.67 c PI c ICG and apply to turbulent flow in smooth tubes. An accurate 

correlation applicable to rough ducts has been proposed by Petukhow 

X= 1.07+12.7(+-1 

for liquids: 

for gases: I = 0. The range of applicability of the Petukhow correlation is: 

4.310 

4.311 



104<ReD<5X 1rY 

2<FY<l4O =_5% error 

OS c PI c 2oCKl = 10% error 

0.@3<~<4n 

Ail physical properties, except &, are evaluated at the bulk temperature. &,i.s 

evaluated at the wall temperature. The friction factor f can be determined 

using an adequate correlation such as Eq. 4.300 or 4.301. 

4.5 Non-Circular Tubes 

So far, discussion of the friction factor, frictional pressure gradient and 

heat transfer coefftcient for turbulentflow has been limited to flow in circular 

tubes. However, in engineering application the flow section is non-circular. The 

correlations for friction factor as well as for heat transfer coefftcient presented 

above may be applied to non-circular tubes if the diameter appeartng these 

correlations is replaced by the hydraulic diameter of the non-circular duct 

deftned as: 

D=&! 
lz P 43.l2 

where A is the cross-sectional area for the flow and Pis the wetted parameter. 

For example, the hydraulic diameter of an annular cross section with 

inner diameter D,, and outer diameter DJs given by: 

4.313 
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