
APPENDIX 2 

STRESS IN A FLUID 

1.1 Linear momentum principle 

The lkear momentum principle sta:es that: 

The time rate of change cf L- = The sum of the forces acting 
momentum of a body on this body. 1 - 

For the present application, the body referred to in the above statement consists of some fixed 
quantity of fluid cor.tained in a material volume, V,,,(t), limited by a material surface, A,&), as 
shown in Figure 1. The mcmentum of this material volume is: 

LIP 
Surface force acting on 

AA 

Volumeelement 

The above linear momentum principle can then de’written as: 

Figure 1 Mzterial volume. 

where dldc is material derivative. The forces, C “F, acting on the material volume consist of 
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body forces (usually gravitational forces) and surface forces. Representing by 2 the body force 
per unit mass, the total body force is given by: 

For our application, “g is the acceleration of the gravity 

The surface forces are handled in terms of the stress vector, 7,) , acting on a surface having a 
normal 2 defined as: 

The total surface force acting on the material volume is then written as: 

Substituting Eqs. 2, 3 and 4 into the linear momentum principle, the following equation results: 

for a fluid at rest the above equation becomes: 

1.2 Stress Vector in a Stagnant Fluid 

It is well known that a fluid wili deform continuously under the effect of shear stresses and it can 
only be compressed. In the light of these observations, the stress on a surface within a stagnant 
fluid always acts in the direction opposite to that of the normal to this surface. In the following, 
considering a fluid element in the shape cf a tetrahedrcn and Eq. 6, we will prove that the stress at 
a given point in a stagnant tiuid is isotropic. Fig. 2 shows the selected fluid element as we!l as 
forces acting on its bounding surfaces. Observe that all these forces are normal to the bounding 
surfaces and they are in the direction opposite to that of the outwardly directed unit normals. 
Table 1 summarises the forces and outwardly directed unit normals for the four planes limiting 
the tetrahedron. Application of Eq. 6 to the selected fluid element yields: 

< p &, AV-;<p, >z AAA,+;<p, >z AA&p, >2 M&p, >z AAA, = 0 (7) 

< >2 and c >a show surface and volume averages of a parameter and defined respectively as: 



and 

Figure 5 Static stress on a tetrahedron, 

<f>* =g 

<f>, =g. 
Y 

TABLE 1 

STATIC STRESS ON A TETRAHEDRON 

PLANE AREA NORh4AL FORCE VECTOR - 
+ 

ABC MA, n -7;p, 
-b --f 

BCD AA -i i px 

ADC MY -y ?PY 

ABD MA, -2 ip, 

(8) 

(9) 



Appendix 4 

Referring to the Fig. 2, it can be seen that in Eq. 7 AA,, AA,and AA, can be substituted with: 

AA, =I. Tt AA,, = nPA, (10) 
AA, =x . z A.4. = n,AA, (11) 
AA, =; . ; AA, = n,AA, (‘2) 

where rr, , rr,, and nz are the cosines directors of the plane ABC; thus Eq. 7 become: 

<1,~>,AV-~.(?;<p.>~-7n,<p,>2-~n~<p~>?-5:n,<p,>?)=O. (13) 

Dividing the above equation by A4, and taking the limit as MA, + 0, we will observe that the 
ratio AV/AA. tends to zero and Eq. 13 becomes: 

lim <p&s s- 
M.-*O [ 

(hp. >2 -7 n, <px >: --y n, <pu >I -2 n, <pz >2 
n 1 

= -iip.+7 n,p,+T ng,+Z n,p, = 0 (14) 

Because ofthe limiting process (MA, + 0 or 4V+ 0), in the above equation the average values 
have been replaced with point values. Expressing the unit normal in terms of its sca!ar compo- 
nents: 

rt=I n,+~ n$ .1, 

and substituting it into Eq. 14, we obtain: 

7 nx(pn -px)+T n,(p, -pd+Z n&b -pJ = 0 

In order to satisfy the above equation, all scalar components should be zero, i.e.: 

(15) 

06) 

pn=pr=py=pr. (17) 

The above result proves that the stress at a given point in a stagnant fluid is isotropic. Droppi:g 
the subscript n, the stress vector acting on any arbitrary surface with outwardly directed normal n 
can be expressed as: 

This equation indicates that the magnitude of the stress vector is equal to the p:essure and it is 
oriented in the opposite direction to that of the unit normal. 
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1.3 Stress in a Moving Fluid - Stress Vector and Stress Tensor 

When fluids move, the study of the surface fo+rces are more difficult. The aim of this section is to 

discuss the basic nature of the stress vector, t r”) During this review we will assume that p, 3 
and 7,) are continuous function of the space and time. Furthermore, we will assume that the 
stress vector is a continuous t?mction of the orientation of the surface element which is identified 
by the outwardly oriented unit normal. The following properties of the stress vector and stress 
tensor will be proved: 

1. The stress vectors which act on both sides of a surface at a given point are equal in 
magnitude and opposite in direction. 

= 
2. The stress vector may be expressed in terms of a stress tensor T as: 

-P = 
I, =;.T 

3. The stress tensor is symmetric: 

T, = Tji 

In order to prove the abcve statements, we wi;l use appropriate material volumes as well as aver- 
age values defined with Eqs. 8 and 9. 

1.3.1 The relationship between the stress vectors acting on both sides of a sur$ace at a 
given point 

Let us consider a material volume in the shape of a thin disk as illustrated in Fig 3 and indicate by 
A,(z) the area of each parallel surface, L the thickness of the disk and by A&) the area of the 

lateral surface. 2 and 7 show unit normals tc the parallel and lzteral surfaces respectively. Ap- 
plying the linear momentum conservation principle (Eq. 5) to the above material volume we ob- 
tain: 

or using the volume and surface averages defined by Eqs. 8 and 9, we obtain 

Taking the limit of the above equation as L goes to zero and observing that A&z) also goes to 
zero, we get: 

Since this equation is true for any arbitrary surface element, we conclude that the integrand 
should be equal to zero. Therefore we obtain: 



Figure 3 Material volume having the form of an arbitrary slab. 

7 (n) = -f(-., 

This the proof of the 1st statement. 

1.3.2 The s1ress tensor 

Let us consider an arbitrary material volume which can be expressed as: 

(22) 

V&) = r(zy’ (23) 

where L is a characteristic dimension and T(r) is the shape factor. Using the linear momentum 
principle (Eq. 5) and vohrme average defined by Eq. 9 we cbtain: 

Dividing the above equation by L* and taking its limit as L goes to zero, we obtain: 

(24) 

(25) 

which shows that at every point in the space, the stress is in equilibrium. In the following, using 
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the above equation we will establish a relationship between the stress vector and the stress tensor. 
To this aim, let us consider a volume element in the shape of a tetrahedron as shown in Fig. 4. 
The stresses acting on the four faces of this volume element as well as the areas associated with 
them are shown in Table 2. The application of Eq. 25 to the selected volume element with the as- 
sumption that L* is equal to the oblique area, MA, , yields: 

Figure 4 A material volume with surface stresses. 

(2-9 
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TABLE 2 

STRESSES ACTING ON THE ABOVE MATERIAL VOLUME (TETRAHEDRON) 

PLANE AREA NORMAL STRESS VECTOR 

ABC A.4 
-9 
n L 

BCD Ti.& 
-+ 

-- i T(-i, 

ADC k&l” -; L 
+ 

ABD TLjAA” -2 ’ (W 

If we carry out in Eq. 26 the division by .&4 ,>, we obtain: 

+-+ -++ 
>2 +;; . i < t <-j, >2 +ii _ ;<;, >2 +T; . k< t c-k) >2 1 =o. (27) 

Ir, the abcve equation, taking the limit as 4,4, goes to zero is equivalent to taking the limit as the 
characieristic length L goes to zero and during this limit taking process all average values tend to 
local values. Thus, Eq. 27 becomes: 

7, = -[(ii . 7) t(+) + (2 .Ijt,, + (s; . 2) 7(-k) ] 

Using Eq. 22 the above equation takes the following form: 

where the unit normal s is defined by Eq. 15. 

Eq. 28 show that the stress vector acting on a surface with unit normal 7f can be expressed in + 
terms of the stress vectors acting on the three co-ordinate planes:;(;) , to) and t;,, In rec- 

tangular co-ordinates these stress vectors are expressed as: 

where the first subscript indicates the plane upon which the stress acts and the second subscript 
indicates the direction in which the stress acts. Taking into account that in Eq. 29 the products: 
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are diadic product of two vectors and combining Eqs. 29, 30, 3 1, 32 and 15 we obtain: 

where T is the stress tensor. Therefore, we just proved that the stress vector acting on any arbi- 
trary surface can be obtained by multiplying the stress tensor with the unit normal to this surface. 

1.4 The symmetry of the Stress Temor 

IJsing a material volume which has the shape of a differential cube as shown in Fig. 5 and the an- 
gular momentum equation which has the following form: 

we will prove the symmetry of the stress tensor. In the above equation ;’ is the lever arm and 
Vnr(r) is an arbitrary material volume surrounded a material surface A,(z). .4ssuming that this 
arbitrary material volume can be again represented by: 

V,(r) = I-(r)L’ (35) 

and using the volume average defined by Eq. 9, Eq. 34 becomes: 

$4 xp h-3 I-(r)L’] =<; xp &3 T(r)L3 + I,“,,) (7 X7(“) ) d/l 

Let us return now to the cubical volume element illustrated in Fig. 5 and assume that the charac- 
teristic length L is: 

L=Ax=Ay=& 

and that the origin of the co-ordinates 0 coincide with on of the comer of this element. Thus for 
the selected volume element, the position vector T appearing in Eq. 36 defines any point in this 
element and it tends to zero as L tends to zero. Dividing Eq. 36 by L’ and taking its limit as I, 
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Figure 5 Stress on a differential cube - symmetry of a stress tensor. 

goes to zero we obtain: 

Y 
/ 

(37) 

The above equation shows that the torques are in local equilibrium. The multiplication of Eq. 37 

by y, 7 and 2 gives the X, Y and Z components of the torque. For example, Z component of 
the torque for, the selected volume element is as follows: 
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In the above equation, the averaging operator < >s has heen omitted to simplify the presenta- 
tion. We can easily observe that when L tends to zero: 

T =2-a = Tn,, ; Twp, = Ty,+, ; T,, = Tzr,j, and T,,, = Ts,, 

therefore we obtain: 

or 
T,, = T;r 

Ifwe consider Xand i’components of Eq. 37 we will find that: 

(40) 

and 
T, = T, (41) 

1.5 Kscous Stress Tensor 

T, = T, (42) 

We have seen that stagnant fluids experience only normal stress and at a given point this stress is 
isotropic and oriented in the direction opposite to that of the unit normal of the surface on which 
it acts. We called the magnitude of this stress “the pressure” and it is given with Eq. 18. Using the 
definition of the unit tensor given with Eq. 3 in Appendix 1, Eq. 18 can also be written as: 

+ 
f(,) =-+-i&l. (44) 
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We can easily see that the left and right product of the unit tensor with, a vector are equal and 
they are also equal to the vector itself: 

F.i= i.G= ‘: (45) 

In moving fluids, besides the viscous forces due to the motion of the fluid (deformation of the 
fluid) the pressures forces are also present. Therefore, it is convenient to split stress tensor into 
two parts: one representing the pressure stress and the other viscous stress: 

and the stress vector will be written as: 

7,,, 4 .(-pi + cr) 

Since T and I are symmetric tensors, 6 also should be a symmetric tensor. Furthermcre, since = = 
all of the oGdiagonal terms of p I are zero, the all off-diagonal terms of T and z should be 
equal: 

TX, = (Jxy ; T,=o,and Tzr=arr 
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