APPENDIX3 A Short Summary of

Orthogonal Functions Used in.Chapter 4

Given a countably iniinite set of functions: g;(x). g;(x), g3(x) -+ gu(x) +-
Gm(x) +++, the functions are termed orthogonal in the interval 2 s x < b if

'rg.,(x)g..(x) dx=Gform#n. (D.1}

A set of orthogonal {unctions has particular value in the possible representa-
tion of an arbitrary function as an infinite series of the orthogonal set in the
specified interval, If f(x) denotes the arbitrary function, consider the possibility
of expressing it as a linear combination of the orthogonal functions:

J(x) = C1g,(x) + Cag3(x} + -+ + C\gu(x) + - + Coglx) + -

fx)= Z‘C,.g.(x)- ) : (D.2)
The C’s are constants to be determined. If the series of Eq. (D.2) is convergent
and integrable after multiplication by one of the functions, say g,(x), then

b b

91(x)g.(x) dx + C, j g2(x)g.{x) dx + -

L] L

Jf (x)gdx) dx = C, J-

!
(]

&
+C, J‘ gnz(x) dx+..+4+C, -[ gna(X)ga(x) dx + ---.

692




A Short Summasry of Orthogonal Functions 593

The orthogonality definition given in Eq. (D.1) makes all the integrals on
the right side of the above equation vanish except for the one term when
m = n. Thus

]

b
jf(x)g.‘(x) dx=0+0++ c,.j g} (x)dx + 0+ -,

and the constant C, may be calculated:

ff (x)ga{x} dx

- (D.3)
. J‘ guz(x) dx

C, =

Thus when the function f{x) is given, Eq. (D.3) enables one to calculate the
constants, C,, to be used in the series representation of f(x). These constants
are expressed in terms of the given set of orthogonal functions, g (x).

A set of functions [g,(x), g;(x), ---] may form an orthogonal set in the
interval @ < x < b with respect to a weighting factor, p(x), if:

'[ l’p(x)g,(x)g.‘(x) dx =0 for m # n. (D.4)

L]

As before, if an arbitrary function, f(x) can be represented as an infinite series
of the functions:

f) = Cigy(x) + Caga(x) + - + Cgolx) + - + Coglx) + -

- ¥ Cao,

then the constants are given by

f (x}f(x)g,(x) dx
o= : (D.5)

J p(¥)g.%(x) dx

; a
Some of the othogonal sets of functions used in Chap. 4 will now be discussed
as examples.
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The Sine and Cosine Functions

Consider the following set of functions in the interval 0 < x < L:

. x . 2nx ., 3nx . nnx
SIH‘E,SIHT,S]H—E,"',SlnT,"'

This may also be expressed:

sin A,x, sin 4,x, sin 4;x, -+, sin 4,x, +-

h
where D.6)

Now in the interval

. . sin(4, + 4,)x  sin(4, — i,,,)x]
J"sm Axsin A x dx = [— T ) 0. — 1) (D.7)
=0ford,#4,,
since
nrx mn
).,, = -L— N lm'= —L— .

Thus the set of functions in Eq. (D.6) is an orthogonal set. Also, for m = n:

L L
'[ sin®(1,x) dx = RE (1,x — sin 1,x cos 4,x) (D.8)
o 2}'" . 4]
_L
=3

Thus ar arbitrary function, f(x), may, if the series converges, be represented
as a’series of the functions of Eq. (D.6):

J(x)=C;sin A;x + CysinJox + -,




The Sine and Cosine Functions
or

fx)= Y C,sindx.
nN=1
The C,’s wili be, from Eqs. (D.3) and (D.8),
2 L
C,= —J. f(x)sin A, x dx.
Lo
A,,=-E‘-,n= 1,2,3.

Thus, the function f(x) is representable by the following series:

l.}(x) sin A,x dx.

oo

2 w0
f(x)== Y sin 2,x
L nxl
In a similar fashion, one can show that the set of functions

{cos 4.x}, A, =1’Lf, n=0123,

535

{D.9)

(D.10)

(D.11)

(D.12)

is an orthogonal set in 0 < x < L. Also, then, an arbitrary function f(x), may

be represented as a convergent serics of these functions:

f(x) = ﬁ + i A,cos d.x,
n=x]

2
if
2 L
‘ A,,=-—Jf(x)ccs).,,xdx
L Jo
with
An:%,pz=o,1,2.3,---.
Thus,

1 L 2 = L
Sl = I J- f(x)dx+ = Y cos d,x J‘of(x) cos A,x dx.

Lunl

(D.13)

(D.14)

(D.15)
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In many instances in heat conduction problems it may be necessary to
express a fuaction as an infinite series of the sines or cosines, such as in Egs.
(E.9) or (D.13), but in which the 4.’s are defined by relations other than
that specified by Eqs. (D.6) and (D.12). These characteristic equations
defining the A,’s arise out of the application of the boundary conditions of the
particular problem under consideraticn. One such case is discussed in Chap.
4, wherein one wishes to represent a function as a sine series in the interval
0<x <L as in Eq. (D.9), when the i's are defined as the roots of the

equation:

(4, Lytan{(3,L)y - B =0 (D.16)
wheren = 1,2, 3, ..

B = constant.
Now, since Eq. (D.16) may be written
(A,L)sin(A,L) = B cos(,L)

some algebra will show that the integral expressed in Eq. (D.7) will again
vanish. Also, Eq. (D.8) gives, instead of L2, that

L .
J‘ sint(a,) dx = = - 0L coshD)
¢ - un

Thus, if 4, is a root of
(L) tan(A,L) — B =0,

then an arbitrary function, f(x}), may be expressed as a sine scries

F(x) = ﬁlc, sin 1.x, (D.17)

where

L
J. J(x)sin A, x dx
= 9 .
L sinA,Lcosd,L

2 21,

(D.18)

Ca
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Thus, in terms of these constants, f(x) may be represented by

L
w A J J(x)sin A,x dx

(x)==2 > sin 4,x 9 ;
&) ,,Zl AL ~sini,LcosAL

Similarly when Eq. (D.16) holds, an expaasion in terms of cosines may
be made:

f(x)= 3 A, cosdx, (D.19)
a=l
where
L
J S{x)cos A x dx
— o »
Ao = L sinA,LcosA,L (D-20)
2 2,

The corresponding representation of f(x) is, then

L
© A, J‘ J(x)cos L, x dx
_ 0
fx) =2 Z c0s AL T s AL cos LL’

nal

The Bessel Functions

In heat conduction problems in cylindrical coordinate systems, the solu-
tions are often expressed in terms of the Bessel functions (Appendix C). To
express an arbitrary function as an infinite series of such functions it will be
necessary to show their orthogonality. The Bessel functions are orthogonal
with respect to the weighting factor: p(x) = x. For example, considering J,,
it will be shown that an arbitrary function may be expressed, in an interval,
- as a linear combination of the set Jo(4,x), Jo(4;x), Jo(4:x), ..., Jo(dx), ...,

where the parameters denoted by A, are defined, in some way, by the bound-
ary conditions of the problem.

N P Y L T
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In other words, it will be shown that a function f(x) may be represented in
the following way, provided that the 4,’s are properly defined:

J(5) = Cydoliyx) + Codo(Asx) + -

o ({D.2]
= ¥ Culo(A). D2
n=]

In order to be able to do this, Eq. {D.4) shows that [for p(x) = x]the foliowing
condition must be satisfied:

/ b
) J xJo(A X0 (4,5} dx =0, m # n. (D.22)

Then Eq. (D.5) chows that the constants C, are:

rx J(x)M o(A,x) dx

5
] xJ o2 (A,%) dx

C,=

(D.23)

In order to prove the orthogonality condition of Eq. (D.22) and to evaluate
the constants given by Eq. (D.23), one needs expressions jor

bel oA ) o{Ax) dx

@
..

and

b

J xJo*(A,x) dx.

These two integrals may readily be evaluated by repeated “integration-by-
parts,” utilizing the following formulas resulting from Eq. (C.i1) of

Apperdix C:
d d
Z.; [JO(Anx)] = —IT.,,J](A.,‘X), 'd_x [le(lnx):l = A,,XJ{J(A."X)

J‘ J(Ax) dx = — ,11 Jo(A ), J xJ (A x) dx = ; 71,(4%).
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The results are

| I %T o) o) dx = 15 [ oM 1(20%) = 2ad o2 ()]
- (D.24)

.[xJ 0 X(Ax) dx = %2 [Jo*(Ax) + J 3(A,x)]. (D.25)

As a particular sxample consider the set of functions J,(4,x), Jo(4;x), ...
Jo(1.%), ... in which the 4,'s 2re defined in the following way for the interval
0 < x < R. Let the A,'s be the roots of the equation

Jo(A,R) =0, (D.26)

Examination of the tables of Jy(x) given in Appendix C shows that J, has a
succession of zeros that differ by an interval approaching 2 as x -+ o0. Hence,
ti:erc are a countably infinits set of the A,’s defined in Eq. (D.26). For the
interval 0 < x < R, Eq. (D.24) rcduces to

R
R Ny
Ic ij(lnx)JO(Amx) dx = 41-_2——1_2 ['IAJO(AMR)JI(AHR) - j‘m‘IO(’lnR}Jl\lmR)] *

By virtue of Eq. {D.26), Jo{4,R) = J,(1,.R) = 0 so that

foJ o(AeX)W {1 X} dx =0,

0

“Thus the functions J,(4,x), Jo(2,x), ..., are orthogona! in the interval
0<x<RIif A is a root of Eq. (D.26). To use Eq. (D.23) to obtain the
constants of the linear series expansion, then Eq. (D.25) must be evaluated for
the particular definition of 4,.

Thus

R

3 2
J xJo(Ax) dx = 3 o™ (4.R) + J *(A,R)]
0

2

= 5 [0+ J,%AR)]

R? .
= _2" le(’{uR) .
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Summarizing, an arbitrary function may bc expressed, in the interval
0 < x < R as a series of J,'s:

10 = 3 CIo0).

The constaats, C,, will be given by Eq. (D.23):

R:c ST (A, x) ax
C, = = (D.27)
570

if the A,’s are the roots of
»’o(lnR) - O
In a similar fashicn it may be shown that the same expression,

Jx) = Z Cod o 4,%) (D.23)

may be written in the interval 0 < x < R if the A.'s are the roots of

Ji{ALR)=0. (D.29)
In this case, the C,’s are given by " .
R
x S (x) o(4,x) dx
C,= R‘ (D.30)
57 0 (4.R)

As a final example, Sec. 4.6 considers the possibility of expressing an
arbitrary function, f(x), as a series expansion in Jy(4,x), when 4, is defined as
the nth root of the transcendental equation

; Ji(4,R)

R s = B=0. (D.31)
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In the latter equation B is a constant. That the functions with 2, thus defined
are orthogonal in the interval G < x < R can be seen by substitution of
Eq. (D.31) into Eq. (D.24):

R R » J1(4nR)
J.o xJ o(4pX) o(Apx) dx = iL,,,T—u)._’ [l,(/l,,,R R )J’ 1{AR)

J n(l..R))
B

- AR ( JI(J.,,,R)] =0.

The fact that this latter equation equals zero results from the definition of the
A,'s {and 4,'s) given in Eq. {D.31). Equation (D.25) yieids, then,

R RZ
J‘ xJo*(Ayx) dx = S 0 (4aR) + J,%(4,R)]
v]

so that Eq. (D.23) gives the £,’s 1o be

75 || 2o dx

SR+ T AR) N

C.
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