
CONVECTION - GENERAL 

CONVECTION 

l WE HAVE SEEN THAT HEAT TRANSFER FROM A SOLID 
TO A LIQUID IS GOVERNED BY NEWTON’S LAW OF 
COOLING: 

l UP TO NOW, WE HAVE SUPPOSED THAT , THE CON- 
VECTION HEAT TRANSFER COEFFICIENT, h, , WAS 
KNOWN. 

e THE OBJECTIVES OF THIS CHAPTER ARE: 

l TO DISCUSS THE BASICS OF HEAT CONVECTION l-N FLUIDS, 

- TO PRESENT METHODS TO PREDICT THE VALUE OF HEAT 
TRANSFER COEFFICIENT. 

o CONVECTION IS THE TERM USED FOR HEAT TRANS- 
FER IN A FLUID BECAUSE OF A COMBINATION OF: 

c CONDUCTION DUE TO MOLECULAR INTERACTIONS, AND 

l ENERGY TRANSPORT DUE TO THE MOTION OF THE FLUID 
BULK. 

o THE MOTION OF THE FLUID BULK BRlNGS THE HOT 
REGIONS IN CONTACT WITH THE COLD REGIONS. 

e THE MOTION OF THE FLUID BULK MAY BE SUSTAIN- 
ED: 

* BY A THERMALLY INDUCED DENSITY GRADIENT (NATU- 
RAL) CONVECTION OR 

* BY A P~SSURE DIFFERENCE CREATED BY A PUMP (FORCED 
CONWXTION). 
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CONVECTION - GENERAL 

l IN BOTH CASES, THE DETERMINATION OF h, 
REQUIRES THE KNOWLEDGE OF TEMPERATURE 
DISTRIBUTION IN THE FLUID FLOWING OVER THE 
HEATED WALL. 

l SINCE THE FLUID IN THE VICINITY OF THE SOLID 
WALL IS PRACTICALLY MOTIONLESS, HEAT FLUX 
FROM THE WALL IS GIVEN BY:’ 

Flow direction 

Figure 4.1 Variation of the temperature in the fluid next to the heated wall. 
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CONVECTION - GENERAL 

l ANALYTICAL DETERMINATION OF h, REQUIRES THE 
SIhdULTANEOUS SOLUTION OF: 

- MASS 

- MOMENTUM, AND 

- ENERGY 

CONSERVATION EQUATIONS. 

o THE ANALYTICAL SOLUTION OF THESE EQUATIONS IS 
VERY DIFFICULT AND IT IS ONLY POSSIBLE FOR VERY 
SIMPLE CASES. 
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VISCOSITY 

l THE NATURE OF VISCOSITY IS BEST UNDERSTOOD BY 
CONSIDERING A LIQUID PLACED BETWEEN TWO 
PLATES. 

Fix wall / 

Figure 4.2 Shear stress applied to a fluid. 

t THE LOWER PLATE IS AT REST. 

b THE UPPER PLATE MOVES WITH A CONSTANT VELOClTY 
UNDER THE EFFECT OF A FORCE F. 

b THE DISTANCE BETWEEN THE PLATES IS SMALL. 

b THE SURFACE AREA OF THE UPPER PLATE IS: A. 

l BECAUSE OF THE NON SLIP CONDITION ON THE 
WALLS THE FLUID VELOCITY: 

) AT -lJdE LOWER PLATE IS ZERO, 

b AT THE UPPER PLATE IS U. 
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l UNDER THESE CONDITIONS, A LINEAR VELOCITY DIS- 
TRIBUTION DEVELOPS BETWEEN THE PLATES: 

u 
U=--y 

e 
l THE SLOPE: 

du u 

4 e 
l THE SHEAR STRESS: 

F z=- 
A 

l IF THE FORCE F (or ‘c = F / A ) APPLIED TO THE UPPER 
PLATE CHANGES (i.e., UPPER PLATE VELOCITY), du / dy 
CHANGES AS: 

4 
T 

Figure 4.3 T versus duldy. 
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CONVECTION - VISCOSITY CONVECTION - vw2OSITY 
/ 

l WE SEE THAT: l WE SEE THAT: 
du du 

, “3 “3 
OR OR 

du du 

z=pdy z=pdy 

l Jo IS CALLED ” THE DYNAMIC VISCOSITY.” l Jo IS CALLED ” THE DYNAMIC VISCOSITY.” 

e IN A MORE GENERAL WAY, CONSIDER A LAMINAR 
FLOW OVER A PLAW WALL. 

l THE VELOCITY DISTRIBUTION HAS THE FOLLOWING 
FORM: 

e IN A MORE GENERAL WAY, CONSIDER A LAMINAR 
FLOW OVER A PLAW WALL. 

l THE VELOCITY DISTRIBUTION HAS THE FOLLOWING 
FORM: 

Y Y 

u u 
0 0 

Figure 4.4 Velocity distribution next to a wall Figure 4.4 Velocity distribution next to a wall 
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CONVECTION - VISCOSITY 

l THIS DISTRIBUTION IS NOT LINEAR. 

l SELECT A PLANE SS PARALLEL TO THE WALL. 

l FLUID LAYERS ON EITHER SIDE OF SS EXPERIENCE A 
SHEARING FORCE DUE TO THEIR RELATIVE MOTION. 

l THE SHEAR STRESS IS GIVEN BY: 

l THE RATIO OF THE DYNAMIC VISCOSITY TO THE 
SPECIFIC MASS: 

IS CALLED “KINEMATIC VISCOSITY.” 

a UNITS: 
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PHYSICAL BASIS OF THE VISCOSITY 

l CONSIDER ONE DIMENSIONAL LAMINAR FLOW OF A 
DILUTE GAS ON A PLANE 

A 
Y 

U Velocity 
profile 

b 
0 

ad 
Figure 4.5 Flow of a dilute gas over a plane wall. 

0 u=u(y) 
e CONSIDER A SURFACE SS PARALLEL TO THE WALL. 

l BECAUSE OF THE “RANDOM THERMAL VELOCITIES, ” 
GAS MOLECULES CROSS SS SURFACE BOTH 

F ABovE,AND 

w BELOW. 

PAGE 4.8 



CONVECTION - VISCOSITY 

l AT THE LAST COLLISION BEFORE CROSSING THE 
SURFACE SS EACH MOLECULE 

t ACQUIRE THE FLOW VELOCJTY (u) CORRESPONDING TO 
THE HEIGHT AT WHICH THIS COLLISION TAKES PLACE. 

l SINCE THE FLOW VELOCITY ABOVE THE PLANE SS IS 
GREATER THAN BELOW: 

b MOLECULES CROSSING FROM ABOVE TRANSPORT A 
GREATER MOMENTUM IN THE DIRECTION OF THE FLOW 
ACROSS THE SURFACE THAN 

* THAT TRANSPORTED BY THE MOLECULES CROSSING THE 
SAME SURFACE FROM BELOW. 

l THE RESULT IS A NET MOMENTUM FLOW ACROSS THE 
PLANE SS 

t FROM THE REGION ABOVE 

t TO THE REGION BELOW. 

l ACCORDING TO THE NEWTON’S SECOND LAW: 

b THE MOMENTUM CHANGE l-N THE REGION ABOVE (OR BE- 
LOW) IS BALANCED BY THE “VISCOUS FORCE.” 

l CONSEQUENTLY 

b THE REGION ABOVE SS IS SUBMITTED TO A FORCE DUE TO 
THE REGION BELOW ( --z ), AND 

* VICEVERSA( z ). 
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rnwvw7w-w - ww-msrrv 

l BASED ON THE ABOVE DISCUSSION AN ESTIMATION 
OF THE “DYNAMIC VISCOSITY” CAN BE DONE: 

) IF THEY ARE n MOLECULES PER UNIT VOLUME OF THE 
DILUTE GAS, APPROXIMATELY 

- (l/3) HAVE AVERAGE VELOCITY ( V ) PARALLEL TO 
THE y-axis. 

) FROM THESE MOLECULES: 

-THEHALF ( f )I-IAVEANAvERAGE VELOCITY IN 

THE DIRECTION OF y+ , AND 

-THEOTHERHALF( ;- )MTHEDIRECTIONOF y-. 

) CONSEQUENTLY 
- 

- F MOLECULES CROSS SS PER UNIT SURFACE AND 

UNIT TIME FROM ABOVE TO BELOW, AND 

- VICEVERSA. 

) MOLECULES COMING FROM ABOVE SS UNDERGO THEIR 
LAST COLLISION AT A DISTANCE EQUAL TO THE “MEAN 
FREE PATH” A, 

- THEIRFLOW VELOCITY IS: u( y + h) 

-THElRMOMENTUM: M4Y + A) 

) MOLECULES FROM BELOW: 

- VELOCITY: U(Y - 9 

- MOMENTUM: mu(y -v 

PAGE 4.10 



CONVECTION - VISCOSITY 

b MOMENTUM COMPONENT IN THE DIRECTION OF THE 
FLOW WT CROSSES THE SURFACE ..SS : 

- FROM ABOVE TO BELOW: 

++(y + h)] 
- FROM BELOW TO ABOVE: 

$qmu(y - h)] 
t THE NET MOMF3TUM TRANSFER IS: 

+m[u(y-A)-u(y+h)] 
t THENETMOMENTUM TRANSFER SHOULD BE BALANCED 

BYTHEVISCOUSFORCE Z . 

I 

r=+z[u(y-A)-u(y+h)] 
I 

du 
u(y+h)xl(y)+h- 

dy 

u(y-h)r u(y)-2 
dY - 
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CONVECTKON - CONSERVATION EQS.- LAMINAR FLOWS 

FLUIDCONSERVATIONEQUUATIONS-LAMINAR 
FLOW 

‘OBJECTIVE: 

DISCUSS THE BASIC ELEMENTS THAT ENTER IN THE ES- 
TABLISHMENT OF THE CONSERVATION EQUATIONS FOR 
AN INCOMPRESSIBLE FLOW. 

e LOCAL MASS CONSERVATION EQUATION 

a 
-p+V.pG = 0 

& 
at 
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CONVECTION - CONSERVATION EQS.- LAMMAR FLOWS 

l LOCAL MOMENTUM CONSERVATION EQUATION 

p = const. 

1 

7=0 i 
0 0’ 

10 

0 0 1 

ali av 
Orv =<Ty, =p --+- ( 1 ay ax 

2~ aw 

i 1 
-- ~s==ory=P az+ay 

2~ au o,=ox,=p - - ( 1 ax +aZ 

I 

ij F : diadic product of two 
vectors. 

= 
I : unit tensor. 
= 
cr : stress tensor. .J .h =% 

g :acceleration of the 
gravity. 
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CONVECTION - CONSERVATION EQS.- LAMINAR FLOWS 

x - COMPONENT 

a~ au a~ au 
~+"~+v~+w~ 

a% azu a% --- ax2+ay2 +az2 +Pgx 

y - COMPONENT 

z - COMPONENT 

aw aw a~ aw 
- ~+"~+"~+"-& 

azw azw azw --- 
/~"-- .~ ax2+ay2+az2 +Pgz 

9 J .s- I 
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CONVECTION - CONSERVATION EQS.- LAh’lINAR FLOWS 
. 

l LOCAL ENERGY CONSERVATION EQUATION 

-$ ( 2 . ) ;Tp+%++;++- p h+-lC v’ -- 

I 5 

;:e,,yq., (ri, .%.r>;.: 

q” = -k, f? t -3.:~2,...v 

+ KINETIC ENERGY . . .;. .l..L, 
NEGLIGIBLE. 

c POTENTIAL ENERGY c _..: .n ..,, . . .: , 

NELIGIBLE. 
b C,,,p,&k, ARE CONS- 

..,, 

TANT. ..,, .,..~ 

t PREKXJRE DOESNOT e-s,, rcr,-3.“; s: 
CHANGE WITH TIME: 

3P -: ,,.^“’ .,<.‘i~ I 
-=o , o.<.,-~, .<,I.. ,.:..,; ~,.., ..,ozw 
a7 ? I~’ .‘; ’ * ’ * j. -~’ “; I, ,~ ._. ,_ I:? ‘1. . NO EmRGy GENE- ~’ y * .(. ,I, - ~- ” 

RATION .‘.? ~~>.. 

7 

at at at 

Pdx+v- 
+ flat 

ay 'Z 
5 

4 
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CONVECTION - CONSERVATION EOS.- LAMINAR FLOWS 

l THE SOLUTION OF THE ENERGY EQUATION IN CON- 
JUNCTION WITH 

- CONTINUITY EQUATION, 
- NAVJER-STOKES (MOMENTUM ) EQUATIONS, AND 
- APPROPRIATE BOUNDARY CONDITIONS 

YIELDS THE TEMPERATURE DISTRIBUTION IN THE 
FLUID OVER THE HEATED WALL. 

l FOR AN INCOMPRESSIBLE FLOW, THE UNKNOWNS 
ARE: 

w,w,p,t 

l THERE ARE 5 EQUATIONS TO DETERMINE THESE 
UNKNOWNS. 

l ONCE THE TEMPERATURE DISTRIBUTION IN THE 
FLUID WASHING THE HEATED WALL IS KNOWN, THE 
CONVECTION HEAT TRANSFER COEFFICIENT IS DE- 
TERMINED BY 

l THE CONSERVATION EQUATIONS ARE NONLINEAR. 

a NO GENERAL METHODS EXIST FOR THEIR SOLUTION. 

o ANALYTICAL SOLUTIONS ARE LIMITED TO VERY SIM- 
PLE CASES. 
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CONVECTION - CONSERVATION EQS.- LAMINAR FLOWS 
c . 

l FORTUNATELY, A LARGE NUMBER OF ENGINEERING 
PROBLEMS CAN BE HANDLED: 

. BY USING ONE DIMENSIONAL MODELS, AND 

b EXPERlMlZNTALLY DETERMINED CONSTITUTIVE 
EQUATIONS. 

e THE SOLUTIONS CAN BE OBTAINED MORE EASILY. 

f 
l THE ABOVE CONSERVATION EQUATIONS APPLY ONLY 

\ 

TO LAMINAR FLOWS. 

t IN A LAh4INAR FLOW, FLUID PARTICLES FOLLOW WELL 
DEFINED STEAMLINES. 

h THE STREAMLINES REMAIN PARALLEL TO EACH OTHER 
AND THEY ARE SMOOTH. 

b HEATANDMOMENTUM ARE TRANSFERRED ACROSS THE 
STEAMLINES ONLY BY MOLECULAR DIFFUSION. 

b LAMlNAR FLOWS EXIST AT LOW VELOCITIES. 
\ / 

. . 
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CONVECTION - CONSERVATION EQS.- TURBULENT FLOW 
. 

TURBULENTFLOW 
l IN TURBULENT FLOW, THE FLOW PARAMETERS: 

- VELOCITY 
- PRESSURE 
-TEh@ERATURJZ 

FLUCTUATE ABOUT A MEAN VALUE. 

u ii 

I 
/ 

* 
---- ._” time 

Figure 4.6 Turbulent velocity fluctuations about a time average. 

l INSTANTANEOUS VALUE OF FLOW PARAME TERS (u, v, 
w,p, QAREWRITTENAS: 

u=ii++’ 
v=V+v’ 
w=W+w’ 
p=ji+p’ 

t=i+t’ 

----- 
u, v, w, p, t : TIME AVERAGE FLOW PARAMETERS, 
u’, v’, w’, p’, t’ : TIME DEPENDENT FLOW PARAMETERS. 



CONVECTION - CONSERVATION EOS.- TURBULENT FLOW 

l BECAUSE OF THE RANDOMLY FLUCTUATING VELO- 
CITIES, THE FLUID PARTICLES DO NOT STAY IN ONE 
LAYER (OR STREAMLINE) AND FOLLOWS A TORTUOUS 
PATH. 

l CONSEQUENTLY, A MIXING OCCURS BETWEEN FLUID 
LAYERS AND THIS INCREASES THE HEAT AND MO- 
MENTUM EXCHANGES. 

l THE AVERAGE OF A FLOW PARAMETER IS GIVEN BY: 

l THE TIME INTERVAL, AZ,, SHOULD BE LARGE TO EX- 
CEED AMPLY THE PERIOD OF THE FLUCTUATIONS. 

e THE TIME AVERAGE OF f’: 

~,=~JoA~lffd~=~JoA~‘(f -T)dT=f-f=” 

1 1 
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CONVECTION - CONSERVATION EQUATIONS- TUREHJLENT FLOW 

CONSERVATIONEQUATIONSFORSTEADY 
TURBULENTFLOW 

au+av+aw o - 
ax ay az= 

( 
au a.4 au au 

P ~+U~+v~+W~ 
ap 

1 ( 
a% ak a% -- --- = ax+p ax2+ay* +a=* 

\ 
I 
/ + Pi?, 

( 
av av av 

P ~+“~+“ay+waz k?)2$+p(~+e+cJ)+pgy 

( 
aw aw a~ aw ap 

1 ( 
a% azw azw - ) ~+"~+vay+W~ --- =-z+P ax2 +ay2 + az2 

1 
+Pg; 

at at at at = k 
PC, ~+U~+vay+wz& 

( 1 ( 
a? f a? + a9 --- 

f a2 ay2 a2 1 
WHERE VISCOUS DISSE’ATION TFXM, CL@, IS IGNORED. 

u=U+U v=V+v’ 

:II 
w=iv+-w’ 
p=F+p’ 

t=ii-t’ 
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CONVECTION - CONSERVATION EQUATIONS- TURBULENT FLOW 
. 

CONSERVATION EQUATIONS FOR STEADY TURBULENT FLOW 

LAMINAR FLOW CONSERVATION EQUATIONS 

I 

t=i+t’ 
I 

1 \VEEWGING RULES 

f =j%f’ 

g=E+g’ 

pg’=o 

$ +g=f+g 
- 

p=gg=o 

jg=f$g+f’g’ 

7 = (7)1+ (fl)’ I 

af 37 
( 1 dx =dx 

c = cord. 

k-- f 
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CONVECTION - CONSERVATION EQUATIONS.- TURBULENT FLOW 
. 

CONSERVATION EQUATIONS FOR STEADY TURBULENT FLOW 

l MASS CONSERVATION EQUATION 

l MOMENTUM CONSERVATION EQUATIONS 

ai9+,a7ij+,aiv+waw -- 
a-c ax ay dz 

Body forces ignored 

l ENERGY CONSERVATION EQUATON 

( al at a -+wg +72&-+& 
1 ' 

a 
'Cp r+udx+vay 

L-9 .___-- - 
-pcpz+cpz 
ay - __-_- ._^._..^...._.............--...........-......-.., 

a= a2 v==- -+L 
a2 +af a2 

- 

PAGE 4.22 



CONVECTION - CONSERVATION EOUATIONS.- TURBULENT FLOW 

l WHEN TURBULENT FLOW EQUATIONS ARE COMPAR- 
ED WITH STEADY STATE LAMINAR FLOW EQUATIONS 
WE OBSERVE ADDITIONAL TERMS (FRAMED WITH 
DOTTED LINES). 

l THESE TERMS ARE ASSOCIATED WITH TURBULENT 
FLUCTUATIONS. 

l IN THE MOMENTUM EQUATIONS THESE ADDITIONAL 
(FLUCTUATING) TERMS REPRESENTS “TURBULENT 
MOMENTUM FLUX,” WHICH ARE USUALLY REFERRED 
TO AS: 

r . . . . . . . . ‘ . . . . . - . . - - - - - . . - - . . . . . . . - - - - - . - - - - - - - - . . . . . . . -  

1 APPARENT STRESSES, OR i 
i REYNOLDS’ STRESSES. i 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-----. 

l IN THE ENERGY EQUATION THE FLUCTUATING TERMS 
REPRESENT: 

I.....--.-.--..............--.-.----------.....-.-------.-.........--...--.--..------.----..-.-.---.--..-~ 
i THE COMPONENTS OF THE TURBULENT ENERGY j 
i FLUX. 
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CONVECTION - BOUNDARY LAYER 
L 

CONCEPT OF BOUNDARY LAYER 

l CONSIDER A VISCOUS FLOW OVER A PLATE 

Figure 4.7 Velocity profile in the vicinity of a plate 

l THE VELOCITY OF THE FLUID CLOSE TO THE PLATE 
VARIES FROM ZERO TO THE VELOCITY OF THE FREE 
STREAM U. 

l BECAUSE OF THE VELOCITY GRADIENT, THERE ARE 
VISCOUS STRESSES IN THIS REGION. 

l THE MAGNITUDE OF THE VISCOUS STRESSES IN- 
CREASES AS WE GET CLOSER TO THE WALL. 
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CONVECTION - BOUNDARY LAYER 
c . 

l BASED ON THE ABOVE OBSERVATION, PRANDLT 

- FOR SMALL VISCOSITY FLUIDS, AND 
- LARGE VELOCITIES 

DIVIDED THE FLOW ON THE WALL INTO TWO 
REGIONS: 

) A VERY THIN LAYER (BOUNDARY LAYER ) IN THE IMME- 
DIATE NEIGHBOR OF THE WALL IN WHICH THE VELOCITY 
INCREASES RAPIDLY WITH THE DISTANCE TO THE WALL, 
i.e., THERE ARE: 

- HIGH GRADIENTS 
- HIGH SHEAR STRESSES. 

) A POTENTIAL FLOW REGION, OUTSIDE OF THE BOUN- 
DARY LAYER, WHERE THERE IS ALMOST NO VELOCITY 
GRADIENT, i.e., NO VISCOUS STRESS. 

l THE LIMIT OF THE BOUNDARY LAYER (BOUNDARY 
LAYER THICKNESS, DENOTED BY 6) IS 

“THE DISTANCE FROM THE WALL WHERE THE FLOW 
VELOCITY REACHES 99% OF THE FREE STREAM 
VELOCITY.” 

l A BOUNDARY LAYER CAN BE: 

t LAMlNAR,OR 

) TURBU!!ENT. 
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CONVECTION - LAMINAR BOUNDARY LAYER 
. 

LAMMAR BOUNDARY LAYER 

- FLOW IN THE BOUNDARY LAYER IS LAMINAR WHEN 
THE FLUID PARTICLES MOVE ALONG THE STREAM 
LINES IN AN ORDERLY MANNER. 

- THE CRITERION FOR A FLOW OVER A FLAT PLATE TO 
BE LAMINAR IS: 

PUX Re, =- <5x10s 
P 

- THE ANALYSIS OF THE BOUNDARY LAYER CAN BE 
CONDUCTED BY USING: 

1. LOCAL MASS, MOMENTUM AND ENERGY CONSER- 
VATION EQUATIONS, OR 

2. AN APPROXIMATE METHOD BASED ON THE INTEG- 
RAL CONSERVATION EQUATIONS OF MASS, MO- 
MENTUM AND ENERGY. 
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CONVECTION - LAMINAR BOUNDARY LAYER - CONSERVATION EQUATIONS 

LAMINAR BOUNDARY LAYER CONSERVATION 
EQUATIONS - LOCAL FORMULATION 

l MASS AND MOMENTUM EQUATION 

CONSIDER THE FLOW (AND HEAT TRANSFER) ON A 
FLAT PLATE ILLUSTRATED BELOW: 

U(x), 
Pm (XL 

Potential flow region Velocitv 

- - - - -  7--A 

Thermal 
f boundary layer 

\ 
1 ~. 

\- 7” 
Y 

Control volume 

Figure 4.8 Velocity and thermal boundary layers in a laminar tlow on a flat plate 
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CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EQS. 
l . 

MASS AND MOMENTUM CONSERVATION 
EQUATIONS FOR A LAMINAR FLOW 

t STEADY STATE FLOW. 

c TWO DIhtENSIONAL FLOW 
(NO VELOCITY AND TEMPE- b 
IUTIJRE GRADIENTS I-N THE 
z-DIRECTION. 

c NO BODY FORCES. 

r 
a”+av =o -- 
ax dy 

l AN ORDER OF MAGNITUDE 
ANALYSIS SHOWS THAT: 

8~ av a~ --- 
vau2’uax’ 5y 
v a2v v a2v -- 

a2 ay* 
ARE VERY Sh4ALL AND CAN 
BE IGNORED; 
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CONVECTION - LAh-BNAR BOUNDARY LAYER - LOCAL CONSERVATION EQS. 

MASS AND MOMENTUh4 CONSERVAllON I 
+ 

I 
au+av o -= 
ax ay 

au + v du 1 ap + v d2U -=---- 
% ay pax 3y2 

l+?-, --- 

P 3Y 

BOUNDARY CONDITIONS 

y=o u=v=o b 

y=co 24=U(x) 

THE SOLUTION OF THE ABOVE 
SYSTEM OF EQUPnONS YIELDS THE 
VELOCITY DISTRIBUTION AND THE 
BOUNDARY LAYER THICKNESS 

SHOWS THAT, AT A GIVEN x, THE PRESSURE IS CONSTANT 
IN THE y-DIRECTION, i.e., IT IS INDEPENDENT OF y. 

THE SOLUTION OF THIS SYSTEM OF EQUATIONS IS 
BEYOND THE SCOPE OF THIS COURSE. 

CERbI-N PARTICULARITIES OF THESE EQUATIONS WILL 
BE tiSED LAmR TO DISCUSS THE THICKNESS OF THE 
VELOCITY BOUNDARY LAYER. 

PAGE 4.29 



CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVKCION EQS. 

c BERNOULLI EQUATION FOR THE POTENTIAL FLOW 
REGION 

au+y au 1 ap + v d2u 

%x dy=-- p ax .~ dy2 

IN THE POTENTIAL REGION: 

w4 .u(x) ax =-;g 
I I 

l-NTEGRATION e 

v 

TH&5 IS THE BERNOULLI EQUATION. 
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CONVECTION - LAMINAR BOUNDARY LAYER - LOCAL CONSERVATION EOS. 

r 

l ENERGY CONSERVATION EQUATION 

c- IF tw # t, A THERMAL BOUNDARY LAYER FORMS ON THE 
PLATE. 

t THROUGH THIS LAYER, l-HE FLUID TEMPERATURE MAKES 
THE TRANSITION FROM THE WALL TEMPERATURE, t, , TO 
THE FREE STREAM TEMPERATURE, t, 

. THE LiMIT OF THE THERMAL BOUNDARY LAYER (BOUN- 
DARY LAYER THICKNESS, 6, ) IS THE DISTANCE FROM 
THE WALL WHERE THE FLOW TEMPERATURE REACHES 
99% OF THE FREE STREAM TEMPERATURE. 

c THE THICKNESS OF THE THERMAL BOUNDARY LAYER IS 
INTHE SAME ORDER OF MAGNITUDE OF THE THICKNESS 
OF THE VELOCITY BOUNDARY LAYER. 

. HOWEVER, THEY ARE NOT NECESSARILY EQUAL. 
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CONVBCTION - MAR BOUNDARY LAYER - LOCAL CONSERVATION EQS. 
c . 

ENERGY CONSERVATION EQUATION 

at at at at 
pcp ds+“ax+v- ( aY +wZ = I ( k a9 + a9 + a9 -- 

ax2 ay2 - +I4 az2 i 

* TWO DIMENSIONAL 
FLOW. 

I 
I 

b STEADY STATE FLOW. 
I 

b VISCOUS DISSIPATION 
NEGLECTED COMPARED 
TO THE WALL HEAT 
FLUX: 

. AN ORDER OF MAGNI- 
TUDE ANALYSIS SHOWS 
THAT 

a2t 

ax2 

IS SMALL AND CAN BE 
IGNORED. 

v 
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CONVECTION LAMINAR BOUNDARY LAYER LOCAL CONSERVATION EOS. -~- _-.~-~ .-. 
4 

:NERGY CONSERVATION EQUATION 

at at a2t 

t BOUNDARY CONDI- 
TIONS FOR A CONS- 
TANT WALL TEMPE- 
IWIXJRE: 

* 

THE INTEGRATION OF THIS EQUAl-ION IN CONJUNCTION 
WlTHMASSANDMOMENTUM EQUATIONS YIELDS THE? 
TEMPERATURE DISTRIBUTION AND THE THICKNJZSS OF 
THE THERMAL BOUNDARY LAYER. 

PAGE 4.33 



CONSERVATION EQUATIONS - INTEGRAL FORMULATION 

l THE OBJECTIVE OF TJ3E STUDY OF A BOUNDARY 
LAYER IS TO DETERMINE ON THE WALL: 

. THE SHEAR FORCES, AND 

. THE HEAT TRANSFER COEFFICIENT. 

l THE SOLUTION OF THE GOVERNING EQUATIONS WE 
HAVE JUST DISCUSSED TO OBTAIN THE ABOVE 
QU-S IS QUITE DIFFICULT AND IS NOT WITHIN 
THE SCOPE OF THIS COURSE. 

l WE WILL DISCUSS NOW A SIMPLE APPROACH CALL- 
ED “THE INTEGRAL METHOD:” 

) TO ANALYZE THE BOUNDARY LAYER, AND 

) TO DETERMINE THE SHEAR STRESSES AND THE 
HEAT TRANSFER COEFFICIENT. 

l THIS METHOD WAS INTRODUCED BY ” von KARMAN” 
IN 1947. 

l INTEGRAL METHOD CONSISTS OF FIXING THE 
A?TENTION ON THE OVER-ALL BEHAVIOR OF TJ3E 
BOUNDARY LAYER INSTEAD OF THE LOCAL BEHAV- 
IOR OF THE SAME LAYER. 

e TO DERIVE THE INTEGRAL BOUNDARY LAYER 
EQUATIONS, THE INTEGRAL CONSERVATION EQUA- 
TIONS (CHAPTER 2) WILL BE APPLIED: 

. TO &IX CONTROL VOLUME 

. UNDER STEADY STATE CONDITIONS. 
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CONSERVATION EQUATIONS - INTEGRAL FORMULATION 

l BOUNDARY LAYER INTEGRAL MASS CONSERVATION 
EQUATION. 

1 

Potential flow 

Y 

_i 
J 

X 

Figure 4.9 Control volume for approximate analysis of the velocity boundary 
layer 
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CONVECTION - LAMINAR BOUNDARY LAYER 
. 

MASS CONSERVATiON EQUATION - INTEGRAL FORMULATION 

-g J pm=- jTi.p(m5)dA 

V(r) 4~) 

J A 
n’.pikL4=0 

APPLICATION TO 
THE SELECTED I 

riz, = 0 ,solid wall 
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' CONSERVATIONEQUATIONS - INTEGRALFOFLMULATION 

l BOUNDARY LAYER MOMENTUM CONSERVATION 
EQUATION 

$ J pv’cw=- J~.pqiu)ci~- Jii.&i 
V(r) A(r) 4~) 

+ n’.:dA+ J J p$fdV 4%) V(T) 
k STEADY STATE 

b G=O B- 

e GRAVITY NEGLECTED 

v 

I I I 
t NO PRESSURE VARIATION 

I-N THE y-DIRECTION. 

b p IS CONSTANT. 

b STRESS FORCES ACTING ON 
ALL FACES EXCEPT THE 
FACE da ARENEGLIGIBLE. 

P 
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MOMENTUM CONJERVKI’ION EQUATION - INTEGRAL FORMULMION 

Xi 

KNOWING THAT 

z&i = -1 
* 

Z,.i=l 

V 

ADDING AND SUBTRACTING 
TO THE LEFT SIDE 

b 
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CONVECTION - LAMINAR BOUNDARY LAYER 

MOMENTUM CONSERVATION EQUATION - INTEGRAL FORMULATION 

USING THE BERNOULLI 
EQUATION: 

p(x) +$u2(x) = const. 

b 

7 

THIS IS THhNTEGRAL MOMENTUM EQUATION OF A STEADY, 
LAMlNAR AND INCOMPRESSIBLE BOUNDARY LAYER. 
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CONSERVATION EQUATION - INTEGRAL. FORMUTATION 

l BOUNDARY LAYER ENERGY COSERVATION 
EQUATION 

Figure 4.10 Control volume for integral conservation of energy 
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LUNVt2LIIUN - LAMINAK DUUNUAKI LAICK 
. 

ENERGY CONSERVKIION EQUATION - INTEGRAL FORMUJaMION 

F STE4DY STATE. 
b KINETIC ENERGY NEGLI- 

b POTENTIALENERGYNE- _ 

b VISCOUS EhTERGY NEGLI- 
GIBLE. 

b NO INTERNAL SOURCES. 
v 

- pu(ii.v’),dA- 
A 

.,h-p 
P 

I, Z phv’d4 + s, 6. q”d4 = 0 
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/ ENERGY CONSERVATION EQUATION - WTEGRAL FORMULATION ENERGY CONSERVATION EQUATION - LqTEGRAL FORMULATION 

Eob+E,+E,,+jA G,.~“dA=O 
* 

Ea, = I, fic,bp(q~ = -[ @&] 
1 E,, = iicdp(u~)hdid = J iJ 1 puhdy 

= [ jpuhdy ]= + $-[jo;uhdy ] ‘: 
I 

E,, = - [J 1 ‘puh,dy a!x 0 x 
J Zda. ,-‘,dA = iii,. q”dX 
=n 

-[ I, 

da’ 
-k dt 

‘duyl 

j&z@ & 

%=O 
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ENERGY CONSERVATION EQUHION - MTEiXAL FORhfULATI0N 

THIS IS THE INTEGRAL ENERGY EQUATION OF A STEADY, 
LAMINAR AND INCOMPRESSIBLE BOUNDARY LAYER. 
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CONVECTION - TURBULENT BOUNDARY LAYER 

f 

TURBULENTBOUNDARYLAYER 
a WE HAVE JUST DISCUSSED THE LAMINAR BOUNDARY 

LAYER. 

l HOWEVER, IN MANY ENGINEERING APPLICATIONS, 
THE BOUNDARY LAYER IS TURBULENT. 

l IN LAMINAR BOUNDARIES, MOMENTUM AND HEAT 
ARE TRANSPORTED ACROSS THE FLUID LAYERS ONLY 
BY iMOLECULAR DIFFUSION. 

l CONSEQUENTLY, THE CROSS FLOW OF PROPERTIES IS 
SMALL. 

l IN TURBULENT FLOWS, THE MIXING BETWEEN 
ADJACENT FLUID LAYERS IS SIMULTANEOUSLY 
GOVERNED BY TWO MECHANISMS: 

. MOLECULAR TRANSPORT, AND 

) MACROSCilPIC TRANSPORT DUE TO FLUID LUMPS (PARTI- 
CLES). 

l BECAUSE OF THE SECOND MECHANISM, MOMENTUM 
AND ENERGY TRANSPORT IS GREATLY ENHANCED. 

l TO DISCUSS THE BASIC FEATURES OF TURBULENT 
BOUNDARY LAYERS WE WILL ASSUME THAT THE 

! GOVERNING EQUATIONS CAN BE OBTAINED FROM 

I SIMPLIFIED LAMINAR BOUNDARY LAYER EQUATIONS. 
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u(x) = const. 
i.e., 
p = const. 

U=ii+d 
v=V+v’ m 
t=f+t’ 

aiz+av - -=o * 
I ax ay DERWATIOI 

&32 -aa a2a a - a - I --- -- p+$)= vay2 axu’2 ayu%’ 

ud’ -ar a7 a - a- --- ax+v---&="ay' axuftf--$w 

TURBULENT FLOW EQUATIONS OVER A FLAT PLATE. 

PAGE 4.46 



CONVECTION - TURBULENT BOUNDARY LAYER 
c . 

* DERIVATION OF THE TIME AVERAGED MASS CONSERVATION 
EQUATION 

ail dv 
- -=() 

ax+ay 

u=E+u’ 
v=V+v’ 

1 
-J 

-&+.- - az 1 dddT+ 1 ai$+ 1 J - _ J - dv’,=() 49 Az. ax A% AT. ax ATa AT. $Y A% J AT. @ 
or 

a ’ iidT+ a ’ u’dz+ a ’ VdT+ a ’ -- J -- J -- -- v’dz = 0 
dx AT, AT. ax ho A% J aiy AZ, A% J @ AZ, A% 

b 
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TUREiULENT FLOW - MOMENTUM ANJ3 ENERGY EQUATIONS 

p j3a a2i7 a - d- --- p+-$= vav2 axuf2 --$l’y’ 

p -di a a2i 3 - a- -u‘f --v’f 
ry= ay’ ax ay 

c NEGLECT: 

a- 
--u” and 

a- b 

ax 
-l/t’ 

ax 

-- 

p 3iQ a $3i d - 

ax+v 

l a T’--‘-~--;-i’ 

- - 

8Y P& ?Y 
-u'v'=-- - 
8Y pgyT~~-~yuv, 

..-....- --.^- .-...-..._ - 
~ ai di -- a2i 8 - 1 a 

i”’ ̂.-.-..-......._.-__..- / 
: a-4 

aX+“iYJJ 
--- -- - --=cIay2 ayv’f’=-pPCp ayq;\~ayv~t‘; 

i . . . . ...” I__.__.._ i 

REPRESENTS THE SHEAR STRESS DUE TO MOLECULAR 
TRANSPORT OF MOMENTUM. 

1 ’ ’ aY1 TRANSPORTOFHEAT 
q”= - k z REPRESENTS THE HEAT FLUX DUE TO MOLECULAR 
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CONVBCTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS 

l TO UNDERSTAND THE MEANING OF: 
a- a-- 

-u’v’ and -v’t’ 
3Y % 

CONSIDER THE TWO DIMENSIONAL FLOW IN WHICH 
THE MEAN VALUE OF THE VELOCITY IS PARALLEL TO 
THE x-DIRECTION. 

Y t ii 
l-----l ?T 

___..__ _‘_____._____._ . . ..-............- -@J- -...-. 1 

S V’ T 
I f \ 

* 
d 

ii 
!,! . . 2 

s 

0 

Figure 4.11 Turbulent momentum exchange in two 
dimensional flow. 

L / 
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CONVECTION - TURBULBNT BOUNDARY LAYER -TURBULENT SHEAR STRESS 

. . 

l BECAUSE OF T,XE TURBULENT NATURE OF THE 
FLOW, THE INSTANTANEOUS VELOCITY OF THE 
FLUID CHANGES CONTINUOUSLY: 

) IN DIRECTION, AN! 

+ INMAGNITUDE. 

Figure 4.12 Instantaneous turbulent velocities 

l THE INSTANTANEOUS VELOCITY COMPONENTS ARE: 

u=iicu’ 

v = v’ 
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SI-IEAR STRESS 
. 4 

l WHILE DISCUSSING THE VISCOSITY, WE HAVE SEEN 
THAT: 

t AN EXCHANGE OF MOLECULES BETWEEN THE FLUID 
LAYERS ON EITHER SIDE OF THE PLANE SS PRODUCES A 
CHANGE IN THE x-DIRECTION MOMENTUM. 

b THIS CHANGE IS CAUSED BY THE EXISTENCE OF A GRA- 
DIENT IN THE x-DIRECTION VELOCITY 

e THEMOMENTUM CHANGE PRODUCES A SHEARING FORCE 
IN THE FLUID PARALLEL TO x-DIRECTION AND DENOTED 
BY Z, 

e IF TURBULENT FLOW VELOCITY FLUCTUATIONS 
OCCURBOTHIN x- AND y-DIRECTIONS (CASE 
STUDIED): 

) THE y-DIRECTION FLUCTUATIONS, v’, TRANSPORT FLUID 
LUMPS (LARGER THAN THE MOLECULAR TRANSPORT). 

) INSTANTANEOUS RAl-E OF MASS TRANSPORT PER UNIT 
AREA AND PER UNJT TIME ACROSS SS IS: 

PV’ 

b INSTANTANEOUS RATE OF TRANSFER IN THE y-DIREC- 
TION OF X-DIRECTION MOMENTUM PER UNIT AREA AND” 
TT~~EACR~SS ss 1s: 

-pv’(u + 24’) 
THE MEANING OF THE “MINUS” SIGN WILL BE DISCUSSED 
LATER. 

c 
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. . 

CVW’VFtCT~f’lN - TIJRBULENT BOUNDARY LAYER - TURBIJLEbiT SHEAR STRESS 

t THETIME AVERAGEOFTHE x-DIRECTION MOMENTUM 
TRANSFER CREATES A TURBULENT SHEAR STRESS OR 
REYNOLDS STRESS, 2, : 

-& (pv’)ii& = 0 e 

0 * 

v 

2, = -&J& (pv’)u’& = -(pv’)u’ 

0 * 

b v’u’ ISTHETlMEAVERAGEOFTHEPRODUCTOF Z./AND V’; 
IT IS DIFFERENT FROM ZERO. 
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS 

l TO UNDERSTAND THE REASON FOR THE MINUS SIGN 
CONSIDER THE FOLLOWING FIGURE: 

Y 

z 1 , a( y - z j /’ 
I li’ 

. . ..i.” j . 

dy 

Figure 4.13 Mixing length for momentum transfer in turbulent flow 

w THEFLUIDLUMPSWHICHTR~VELUPWARD(V’>() )AR- 
RIVEINALAjlERMTHEFLUIDWI-IERETHEMEANVELO- 
Cl-l-Y f’j IS LARGER THAN THE VELOCITY OF THE LAYER 
FROM WHICH THEY COME. 

w WE WILL ASSUME TI-bQ THESE LUMPS KEEP THEIR ORIGI- 
NAL VELOCITY ii DURMG THEIR MIGRATION. 

w THEY WILL, THEREFORE, TEND TO SLOW DOWN THE FLUID 
LUMPS EXISTING IN THEIR DESTINATION LAYER. 

w THEREBY, THEY WILL GIVE RISE TO A NEGATIVE U’ 

b CObjVERSELY IF V’ IS NEGATIVE 

w &OBSERVED VALUE OF U’ AT THE NEW DESTINATION 
WILL BE POSITIVE. 
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS 

. CONSEQUENTI+ ON THE AVERAGE: 
- A POSITIVE V IS ASSOCIATED WITH A NEGATIVE U’, AND 
- VICE VERSA. 

. THE TIME AVERAGE OF V ‘U’ IS NOT ZERO BUT A NEGA- 
TIVE QUANTITY. 

p -ait Id a- 
ax'" 

-- ay=pu" ayu'v' 

I I 

IT = T, + z, (IS CALLED TOTAL SHEAR STRESS IN TURBULENT FLOW. 
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS 

l THE TURBULENT MOMENTUM TRANSPORT CAN BE 
RELATED TO THE TIME-AVERAGE VELOCITY GRADI- 
ENT: aii 

ti 
BY USING THE “MEAN FREE PATH” CONCEPT INTRO- 
DUCED DURING THE STUDY OF THE MOLECULAR 
MOMENTUM TRANSPORT. 

+ IN TURBULENT FLOWS, THk DISTANCE ” I” TRAVELED 
BY THE FLUID LUMPS IN THE DIRECTION NORMAL TO THE 
MEANFLOWWHILE-MAINTAININGTHEIRIDENTITYAND 
PHYSICAL PROPERTIES IS CALLED “MIXING LENGTH.” 

b CONSIDER A FLUID LUMP LOCATED AT A DISTANCE ” I” 
ABOVE AND BELOW THE SURFACE SS. 

Y 

I 1 , iJs(Y) / 

,.... /’ .,,t y ’ b 

. ./ 
ii y+l 

. . . / .-“- .&.--.-.. 
~~ / 

,..... Y+l 

s y 
iJs(Y) 

l qy - I) /..." 

y.gydii y-* ~~ 

s VI 
4- u’ 

- ,... . . ..- J I fJ 

;! , a( y - I) 
/ ” 

r/l 
l-7 

. . . . . . ..’ 
-I 

Figixe 4.13 Mixing length for momentum transfer in turbulent flow. 
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CONVECTION -TURBULENT BOUNDARY LAYER-TURBULENT SHEAR STRESS 

t AFTER DEVELOPING IN TAYLOR SERIES, THE VELOCITY 
OFALUMPAT(y+I) IS: 

6% 
z7(y + Z) z a(y) + z- 

?JJ 

WHEREAS AT ( y - I) 

u(y-I) a(y)-zz 

) IFTJ3EFLUTDLUMPMOVESFROMLAYER (y-z)TOTHE 
LAYER 

rr 
UNDER THE INFLUENCE OF A POSITIVE V ’ , ITS 

VELOC Y PARALLEL TO x-DIRECTION WILL BE SMALLER 
THANTHE VELOCITY PREVAILING INTHJZ LAYER y BY AH 
AMOUNT: 

b SIMILARLY, IF A LUMP OF FLUID ARRIVES TO THE LAYER y 
FROM LAYER (y + I) UNDER TH.E INFLUENCE OF A NEGA- 
TIVE v’ ITS VELOCITY WILL BE HIGHER BY AN AMOUNT: 

b THESEDLFFEREN CES IN ii -VELOCITIES CONSTITUTE THE 
BASIS OF 24’ FLUCTUA~ONS: 

PAGE 4.56 



CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT SHEAR STRESS 
. 4 

c TURBULENT SHEAR STFU%S. 

-i?a 
r-l 
Tt = -pv’l- 

Ej, 
I 
I DEFINING “APPARENT 

KINEh4ATIC VISCOSITY” 

I AS: 
Em=3 

b TOTAL, SHEAR STRESS: 

1 ! I 

I 
v,14. 

P 
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CONVECTION - TURBULENl- BOUNDARY LAYER - TURBULENT SHEAR STRESS 

w USUALLY V’ IS OF THE SAME ORDER AS 2.4’. 

b E, IS NOT A PHYSICAL PROPERTY AS V 

t Em DEPENDS ON THE MOTION OF THE FLUID, Re-NUMBER, 
etc. 

t Em VARIES FROM POINT TO POINT IN THE FLOW; IT 
VANISHES NEARTHE WALL. 

+ En, / V CAN GO AS HIGH AS 500. 

t v CAN, THEREFORE BE IGNORED l-N COMPARISON WITH 

&“, ’ 

& m : APPARENT KINEMATIC vIscosITY 

. . 
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TRANSFER OF ENERGY 

l THE TRANSFER OF ENERGY IN A TURBULENT FLOW 
CAN BE MODELED IN A WAY SIMILAR TO THAT OF 
THE MOMENTUM. 

.df 

.__.________..._ 

t 
4, (+I 

x,t 

Figure 4.14 Mixing length for energy transfer in turbulent flow. 

) INSTANTANEOUS ENERGY TRANSPORT PER LXVIT AREA 
AND UNIT TIME IN THJ3 y-DIRECTION: 

Pqw 
WHERE: 

t=f+t’ 

i.e., ; 

pcpv’(f + t’) 
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b THE TIME AVERAGE OF TURBULENT HEAT TRANSFER: 

q;‘= pc, v’t’ 

b ENERGY EQUAnON FOR A lWRBULE%T FLOW 

p -a a’r a - 
ax+vay=” ?Y2 -ayv’t’ = 

18 &;;ii; --- 
PC, ?y 

6’- ay 

I 

qy= pc,v t 
“l----4 

q” = q;‘+ q:’ : TOTAL HEAT FLUX IN A TURBULENT FLOW. 
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CONVECTION - TURBULENT BOUNDARY LAYER - TURBULENT ENERGY TRANSFER 

t USING THE CONCEPT OF MIXING LENGTH WE CAN WRITE 
THAT: 

b V ‘t ’ IS POSJTIVE IN THE AVERAGE. 

t THE MINUS SIGN IS INTRODUCED TO RESPECT THE CON- 
VENTION THAT HEAT FLOW IS POSITIVE IN THE DIREC- 
TIONOF y POSITIVE. 

) THEREFORE, THE SECOND LAW OF THERhJODYNAMICS IS 
SATISFIED. 

. TURBULENT HEAT TRANSFER IS THEN WRITTEN AS: 
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b TOTAL HEAT TRANSFER 

or 

q” 
z 

= -c&x + Eh) - 
?Y 

kf a=- . MOLECULAR DIFFUSIVITY OF I-IEAT 

CpP . 

Eh : EDDY DIFFUSIVITY OF HEAT 
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FORCED CONVECTION OVER A FLAT PLATE 

I FORCED CONVECTION OVER A FLAT PLATE 

OBJECTIVES: DETERMINE THE WALL FRICTION AND HEAT 
TRANSFER COEFFICIENTS IN LAMINAR AND 
TURBULENT BOUNDARY LAYERS. 

IN ORDER TO REACH RAPIDLY THE OBJECTIVES 
“XNTEGRAL MOMENTUM AND ENERGY CONSERVATION 
EQUATIONS” 

WILL BE USED. 

I ~LAMXNARBOUNDARYLAYER~ 
I 

l IN LAMlNAR BOUNDARY LAYER, THE FLUID MOTION 
IS VERY ORDERLY 

l THE FLUID MOTION ALONG A STREAMLINE HAS VELO- 
CITY COMPONENTS IN x AND y DIRECTIONS (u AND v). 

l THE VELOCITY COMPONENT v, NORMAL TO THE 
WALL, CONTRIBUTES SIGNIFICANTLY TO MOMENTUM 
AND ENERGY TRANSFER THROUGH THE BOUNDARY 

l FLUID MOTION NORMAL TO THE WALL IS BROUGHT 
ABOUT BY THE BOUNDARY LAYER GROWTH IN THE 
x-DIRECTION. 
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FORCED CONVECTION OVER A FLAT PLATE 

I 
LAMINAR BOUNDARY LAYER. 

l CONSIDER A FLAT PLATE OF CONSTANT TEMPERA- 
TURE PLACED PARALLEL TO THE INCIDENT FLOW AS 
ILLUSTRATED l?d THE FOLLOWING FIGURE. 

p = const. 
t, = const. 
u = const. 

w 
* 

“UaaJ 
I 

dp=o Velocity bow-A-- 
dx u layer 

* 

Thermal boundary’ 

I 
layer 

- 
/ I 

t 

Figure 4.15 Velocity and thermal boundary layers for a laminar flow past a 
flat plate. 

) u(x) = const. = u 
w p(x) = con&.= p 

F PHYSICAL. PROPERmS ARE CONSTANT. 
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UKL;EV L”N “EL I ,“,Y ““CR Z-I r ~tu I-LPU E 

MMAR BOUNDARY LAYER. 

ELOCITY BOUNDARY LAYER- BOUNDARY LAYER 
HICKNESS. 

PHYSICAL PROPERTIES ARE 
CONSTANT. 

4% Y) = 44 + WY + 44Y’ + WY’ 

IOUNTMRY CONDITIONS 

y=o u=o 

y=6 u=u 

y=a au,0 
ay 

y=o 20 
w 

t 

a=(), b=+F, c=O, d=-!-- 

t 
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FORCED CONVECTION OVER A FLAT PLATE 
b 
LAMINAR BOUNDARY LAYER - VELOCITY BOUNDARY LAYER 

INTEGRATION 

or 

&&40p ’ & --- 
13 pu 

x=0 6=0 

i.e., con&.= 0 

'.' 
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FORCED CONVECTION OVER A FLAT PLME 

TLAh41NAR BOUNDARY LAYER - VELOCITY BOUNDARf LAYER 

VELOCITY BOUNDARY LAYER- FRICTION COEFFICIENT 

* 

1 
I 

2, =0.323 pu2 
Rex”’ 

c, = 0.646 LOCAL FRICTION 

Al- Rex 
COEFFICIENT 1 

AVERAGE FRICTION 
COEFFICIENT 

c = 1.292 AVERAGE FRICTIOI 

/ 
Al-- Rex 

COEFFICIENT 
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FORCED CONVECTION OVER A FLAT PLATB 

LAMINAR BOUNDARY LAYER. 

THERMAL BOUNDARY LAYER- BOUNDARY LAYER 
THICKNESS. 

1, = const. 

u = const. 

Velocity boundary 

Figure 4.15 Velocity and thermal boundary layers for a laminar flow past a 
flat plate. 

l TEMPElUiTURE OF THE PLATE IS CONSTANT. 
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LAMINAR BOUNDARY LAYER - THERMAL BOUNDARY LAYER TKUXNESS 

d AX) 
P 

dt 

20 
c,pu(t/ - t)dy = k,- 

aL,=o , 

1 

I I 

(0, =t,-~1 

t(x, y) = a(x) + b(x)y + C(J4Y’ + @)Y’ 

BOUNDARY CONDITIONS 

y=o t=t, 

y=6, t=t, 

yq $0 

FORCED CONVECTION OVER A FLAT PLATE 

0 3y 1y’ -=---- - 

0, 26, 0 2 6, 

\ 

de 
-8)dy=k - 

/ dY y=o 
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FORCED CONVECTION OVER A FLAT PLATE 

LAMINAR BOUNDARY LAYER-THERMAL. BOUNDARY 4AYER THICKNZSS 

d9 
~$k-,pu(Ow -0)dy = k,- 

dy y=o 

AND INTEGRATION 
c 

‘I 

L 
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LAh4lNAR BOUNDARY LAYER -‘THERMAL BOUNDARY LAYER THICKNESS 

IGNORE 

p= 140 P 1 --- 
dx 13 pu 

d 
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LAMINAR BOUNDARY LAYER - THBRMAL BOUNDARY LAYER THICKNESS 

CpP P PC&7 _ CL 1 pr=-=----- 

k, P kr pa 

3r 

5’ +!,dy 
3 dx 1 

-13 l 
14 Pr 

4 dy 131 
Y+?X-&=Gpr 

13 1 3 

-- + cp 
Y=iiPr 

or 
13 1 3 

5' = --_ 
+ cc-" 

14 Pr 
v 
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FORCED CONVECTION OVER A FLAT PLATE 

LAMTNAR BOUNDARY LAYER - TH?XMAL BOUNDARY LAYER THICKNESS 

I 
13 1 3 y=-- + CL” 
14Pr 

Wb-1 
13 1 

/ 
+-- 

14 Pr 

b WEASSUMED’THAT:~~1 

. THIS ASSUMPTION IS VALID FOR: Pr 2 0.7 
c MOST OF THE GASES AND LIQUIDS HAVE Pr - NUMBERS 

HIGHER THAN 0.7. 

b LIQUID METALS CONSTITUTE AN EXCEPTION; THEIR Pr - 
NUMBERS ARE IN THE ORDER OF MAGNITUDE OF 0.01. 

. CONSEQUENTLY, THE ABOVE ANALYSIS CANNOT BE 
APPLIED TO LIQUID METALS. 
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FORCED CONVECTION OVER A FLAT PLATE 

LAMINAR BOUNDARY LAYER -LOCAL HEK TRANSFER COEFFICIENT. 

MERMAL BOUNDARY LAYER - LOCAL HEAT TRANSFER 
COEFFICIENT Ic 

8 = t - t,, 

8, =t/-tw 

ha = 
0, 

8 3y ly’ -=---- - 
8, 2 6, 2 6, 0, 
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FORCED CONVECTION OVER A FLAT PLATE 

LAMINAR BOUNDARY LAYER -LOCAL HEAT TRANSFER COEFFICIJSJT 

AVERAGE COEFFICIEbiT 

mcALliEAr 
TFZANSFFR 
coEmCIENr Nux 

=k Re, = F 
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-LAMlNAR BOUNDARY LAYER -LOCAL HEAT TRAXSFBR COEFFICIENT 

b IN THE ABOVE DISCUSSION, IT IS ASSUMED THAT THE 
FLUID PROPERTIES ARE CONSTANT. 

b IF THERE IS A SUBSTANTIAL DIFFERENCE BETWEEN THE 
WALL AND FREE STREAM TEMPERATURES, THE FLUID 
PROPERTIES ARE CALCULATED AT THE “MEAN FILM 
TEMPERATURE. ” 

tm = 
I, -i- t, 

2 

b LOCAL AND AVERAGE CONVECTION HEAT TRANSFER 
COEFFICIENT DERIVED ABOVE ARE VALID FOR: 

Pr 2 0.7 

Rexi5x105 

b FOR A CONSTANT SURFACE HEAT FLUX, THE CONVEC- 
TION HEAT TRANSFER COEFFICIENT IS GIVEN BY 

Nu, = 0.453 Re:/2 Prin 
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FORCED CONVECTION OVER A FLAT PLATE 

TURBULENTBOUNDARYLAYER 

l A TURBULENT BOUNDARY LAYER IS CHARACTERIZED 
BY VELOCITY FLUCTUATIONS. 

l THESE FLUCTUATIONS ENHANCE CONSIDERABLY THE 
MOMENTUM AND ENERGY TRANSFER, i.e., INCREASE: 

k SURFACE FRICTION, ANJI 

b HEALl- TRANSFER COEFFICIENT. 

l TURBULENT BOUNDARY LAYER DOES NOT START 
DEVELOPING WITH THE LEADING EDGE OF THE 
PLATE. 

A 
Y 

-4)-- 
-c---D L4mtlul&~ 

ffilfllffitf!ititii:iiffltll!iiiiliilli i;;illl;;l;;ijjijiji;i;;;;;lllltillllllt . . . . . 

Figure 4.16 The development of lam&u and turbulent layers on a flat plate 

l THE BOUNDARY LAYER IS INITIALLY LAMINAR. 

l AT SOhfE DISTANCE FROM THE LEADING EDGE, LA- 
MINAR FLOW BECOMES UNSTABLE. 

l A GRADUAL TRANSITION TO TURBULENT FLOW 
OCCURS. 

PAGE 4.71 



FORCED CONVECTION OVER A FLAT PLATE 

r 
TURBtiENT BOUNDARY LAYER 

b u 
Y 

J e 
X,U ............................................ ............................................ .............................. ............. 

Lam&r &l*ycr 

Figure 4.16 The development of laminar and turbulent layers on a flat plate 

l THE TURBULENT REGION IS CHARACTERIZED BY A 
HIGHLY RANDOM, THREE DIMENSIONAL MOTION OF 
FLUID LUMPS. 

l THE TRANSITION TO TURBULENCE IS ACCOMPANIED 
BY AN INCREASE OF: 

t THE BOUNDARY LAYER THKKNESS, 

) THE WALL sHEARsTREss, AND 

b THE CONVECTION HEN TRANSFER COEFFICIENT. 

l IN THE TURBULENT BOUNDARY LAYER THREE 
REGIONS EXISTS: 

w LAMINAR SUBLAYER WHERE: 
- DIFFUSION DOMINATES PROPERTY TRANSPORT, AND 
- THE VELOCITY AND TEMPERATURE PROFILES ARE 

LINEAR. 

b BUFFER ZONE WHERE MOLECULAR DIFFUSION AND 
m,ULENT MIXING ARE COMPARABLE. 

b TURBULENT ZONE WI-IERE THE PROPERTY TRANSPORT IS 
DOMINATED BY TURBULENT MIXING. 
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FORCED CONVECTION OVER A FLAT PLATE 

fkRBULENT BOUNDARY LAYER 

a DESPITE THE PRESENCE OF A TRANSITION ZONE, IT IS 
CUSTOMARY TO ASSUME THAT THE TRANSITION 

4 FROM LAMINAR TO TURBULENT BOUNDARY LAYER 
OCCURS SUDDENLY 

e THE TRANSITION LOCATION X, IS TIED TO REYNOLDS 
NUMBER: 

&, =pux 
Ii 

e IF Rex 2 5 x 10’) THE BOUNDARY LAYER IS TURBU- 
LENT. 

e ANALYTICAL STUDY OF THE TURBULENT BOUNDARY 
LAYER IS COMPLEX: 

b THIS IS DUE TO THE FACT THAT Em IS NOT A PROPERTY OF 
THE FLuID. 

l HERE, BY USING A SIMPLE APPROACH, WE WILL 
DISCUSS FOR A TURBULENT BOUNDARY LAYER: 

1. THE THICKNESS, 
2. THE FRICTION COEFFICIENT; AND 
3. THE HEAT TRANSFER COEFFICIENT. 
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FORCED CONVECTION OVER A FLAT PLATE 

‘TURBULENT BOUNDARY LAYER 

VELOCITY BOUNDARY LAYER - BOUNDARY LAYER 
THICKNESS 

l THE GENERAL CHARACTERISTICS OF A TURBULENT 
BOUNDARY LAYER RESEMBLE TO THOSE OF THE 
LAMINAR BOUNDARY LAYER. 

l THE TIME AVERAGE VELOCITY VARIES RAPIDLY FROM 
ZERO AT THE WALL TO THE UNIFORM VALUE OF THE 
POTENTIAL CORE. 

l BECAUSE OF THE TRANSVERSE FLUCTUATIONS, THE 
VELOCITY DISTRIBUTION IS MUCH MORE CURVED 
NEAR THE WALL THAN THAT IN THE LAMINAR FLOW. 

l HOWEVER, THIS DISTRIBUTION IS MORE UNIFORM AT 
THE OUTER EDGE OF THE BOUNDARY LAYER THi+N 
THE LAMINAR COUNTERPART. 

e EXPERIMENTS HAVE SHOWN THAT THE VELOCITY 
DISTRIBUTION IN A TURBULENT BOUNDARY LAYER 
CAN BE ADEQUATELY DESCRIBED BY 

ONE SEVENTH LAW 

l THISLAWISVALIDFOR 5x10’ <Rex ~10’ . 

l FROM”NOW ON, THE BAR WILL BE REMOVED FROM ij , 
KNOWING THAT ALL TURBULENT VELOCITIES ARE 
TIME AVERAGED. 
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FnRCEn CONVFCT~~N c-WER A Fl .AT Pl.ATE 

KJRBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER 

a ALTHOUGH THE “ONE SEVENTH LAW” DESCRIBES 
WELL THE VELOCITY DISTRIBUTION, IT DOES NOT 
YIELD THE SHEAR STRESS ON THE WALL: 

du 1U 1 -=--- 
dy 7 6”7 y6’7 

THIS IS PHYSICALLY NOT ACCEPTABLE. 

b IN REALITY “ONE SEVENTH LAW” IS ON&.Y VALID IN THE 
BUFFER AND TURBULENT ZONE. 

) INTHELAMINARSUBLAYJ2R,lTISASSUMEDTHATTHE 
IQiulaTY vARIEs LINEARLY 

) THE SLOP OF THIS VARIATION IS SELECTED SUCH THAT IT 
YIELDS THE WALL SHEAR STRESS OBTAINED EXPERIMEN- 
TALLY BY BLASIUS FOR TURBULENT FLOWS ON SMOOTH 
PLATES: 

l/4 

T, = 0.0228pU2 

) THE VELOCITY &-IUBUTION IN THE LAMINAR SUBLAYER 
JOINS TO THAT IN THE TURBULENT REGION AT A DISTAN- 
CE 6,, . 

b 6, IS CALLED THE THICKNESS OF THE LAMINAR 
SUBLAYER. 
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FORCED CONVECTION OVER A FLAX’ PLATE 
. 
TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER 

b THE RESULTING VELOCITY PROFILE IS SKETC-HED IN THE 
FOLLOWTNG FIGURE: 

Y 
u I 

Figure 4.17 Velocity profiles in the turbulent zone and laminar sub-layer. 
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TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER 

l TO DETERMINE THE THICKNESS OF THE VELOCITY 
BOUNDARY LAYER WE WILL USE INTEGRAL MOMEN- 
TUM CONSERVATION EQUATION: 

U(x) = const. = u 

p(x) = const. = p 

PHYSICAL PROPERTIES ARE 
CONSTANT. 
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TURBULENT BOUNDARY LAYER -VELOCiTY BOWARY LAYER 

pu~~~(~~[~-(~~]d~~o.o228pu2(~~ - 

7 d6 l/J 

--= 
72 dx 

or 
l/4 

6"'4dti = 0.235 dx 

IN7EGRATION m 
1 
l/S 

6 = 0.376 x4" + const. 

ASSUMING: 
x=0 6= 
(APPROXMATION) 

const. = 0 

6 0.376 -= = 0.376 Re;"' 



FORCED CONVECTION OVER A FLAT PLATE 
. 3 
TURBULENT BOUNDARY LAYER -VELOCITY BOUNDARY LAYER 

TURBULENT BOUNDARY LAYER - FRICTION COEJFICIENT 

* 
7 

-l/E 
U 
-C = 1.878 
u 
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FORCED CONVECTION OVER A FLAT PLATE 

TURBULENT VELOCITY BOUNDARY LAYER-FRICTION COEFFICIENT 

6 Om3 76 _ _ - = 0 376 Re-l’5 

* x x - 
I ( 1 

0.1 
u 
“z2.12 L = 

2.12 

u PUX Rez.’ 

I 6, _ 194 ----- 
1 ;5 Rei’? 
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FORCED CONVECTION OVER A FLAT PLATE 

TURBULENT VELOCITY BOUNDARY LAYEPdXICTION COEFFICIENT 

WALL SHEAR STRESS: 
u 

Tw=pL 
6s 

I I 

i- 

6 0.376 -= = 0.376Re;'" 
x c 

-- 

!-- 
2.12 
Re,O“ 

l 

A= 194 I 6 
l 

I I 

I 
0.0296 

2, = pu2 &0.2 
x 

LOCAL WALL FRICTION COEFFICIENT 
c =0.0592 

/ Ref.' 
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FORCED CONVECTION OVER A FLAT PLATE 

hRBULENT BOUNDARY LAYER - LOCAL HEM TRANSFER COEFFICIENT 

TURBULENTBOUNDARYLAYER-HEATTRANSFER 
COEFFICIENT 

l REYNOLDS’ ANALOGY 

b LAMINAR BOUNDARY LAYER 

I SHEAR STRESS AND HEAT 
FLUX IN A PLANE AT y. I 

du 

T=pdY 

q” =-k du - 
f dY 

qfr k, df -=-- 
?; PCc, ” du 

P Pr “k” 
L 

=- 

/ 

cl” 1 dt 
-- = -.- c -- 

z Pr “du 
g- Pr=l 

9” _ dt 

-=-“du T 
t 1 
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FORCED CONVECTION OVER A FLAT PLATE 

‘TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSF’?R COBFFRXENT 

q” dt 
-=-c - 

’ du 

I INTEGRATION 1-D 
I I 

I 

J 

/ 
q: vp 

*Iv -t, =u 

k = +Jc,c, 



FORCED CONVECTION OVER A FLAT PLATE 

TURBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT 
. 

\ 

DMENSIONLESS STAIRdENT 
OF REYNOIDS ANAUXY FOR 
L.AMINARFLow. 

c = 0.646 
/ Rer( 

) .+ ;~ yr.uFy-. c; :%?a 

v 

Nux = 0.332 Rer( 

c J 
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FORCED CONVJXTION OVER A FLAT PLATE 

- IT SEEMS THAT THE EFFECT OF THE PRANDLT NUMBER 
DIFFERING FROM UNITY CAN BE EXPRESSED BY A FACTOR 
Pr “3 . 

- THIS FACT IS SOMETIMES APPLDED TO CASES WHERE 
EXACT SOLUTION TO THE THERMAL BOUNDARY CANNOT 
BE OBTAINED; EXPE RIMENTAL SKIN FRICTION MEA- 
SUREMENTS ARE USED TO PREDICT HEAT TRANSFER 
COEFFICIENTS. 
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FORCED CONVECTION OVER A FLAT PLATE 

f+URBULENT BOUNDARY LAYER . LOCAL HEAT TRANSFER. COEFFICIENT 

l REYNOLDS’ ANALOGY 

ä TURBULENT BOUNDARY LAYER. 

q” = --cp(a + Eh) -. ay 
r 

v KINEh4HICVISCOSITy; RE- 
LATED TO DIFFUSIVITY OF 
MOMENTUM. 

ASSUMPTION: 

ENTIRE FLOW IN 
THE BOUNDARY 
LAYER IS TURBU- b 

iz2.zD~~~ 

v <<Em ; a <<E, 

E, = E, = E 
t 

Em EDDY DIFFUSIVITY OF MO- 
htENTUM. (APPARENT 
IuNEMKrIC VISCOSITY). 

CX MOLECULAR DIFFUSIVITY OF 
HEKr. 

& ,, EDDY DIFFUSIVITY OF HEAT. 
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FORCED CONVECTION OVER A FLAT PLm 

l PRANDLT’S MODIFICATION TO REYNOLDS’ ANALOGY 

t PRANDLT ASSUME3 THAT THETURBULENT BOUNDARY 
LAYER CONSISTS OF TWO LAYERS: 

1. A VISCOUS LAYER WHERE MOLECULAR DIFFUSIVITY 
IS DOMINm 

V>>Em and a>>&, 
2. A TURJ3ULl3T ZONE WHERE TURBULENT DIFFUSIVITY 

IS DOMINANT: 

E,>>V and E, >>a 
t FURTHERMORE, PRANDLT ASSUMES THAT: 

E, = E, = E 

w IN THIS APPROACH Pr - NUMBER IS NOT NECESSARILY 
EQUAL TO 1. 

) THE VARIATION OF VELOCITY ANJ3 TEMPERATURE IN THE 
TWO-REGION BOUNDARY LAYER IS SKETCHED IN THE 
FOLLOWING FIGURE: 
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FORCED CONVECTION OVER A FLAT PLATE 

Y 

-- ____-__--- ____-__--- _______-__------- __________------- __-. __-. u u 
5 5 

-Temperature -Temperature 

Velocity 

K 
Velocity 

Figure 4.18 Turbulent boundary layer consisting of two zones - Prandlt approach. 
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FORCED CONVECTION OVER A FLAT PLATE 

TURBULENT BOUNDARY LAYER - LOCAL HIXI TTUNSFJZR COEFFICIENT 
. 

b LAMlNAR SWBLAYER - PRANDLT MODIFICATION 

I-NTEGRATION I 

du= k/ -- I 
‘*I dt 

P I- 
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FORCED CONVECTION OVER A FLAT PLATE 

t TURBULENT REGION - PRANDLT MODIFICATION 

j t=t,, t0 t=t, j 1 
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FORCED CONVECTION OVER A FLAT PLATE 

i-URBULENT BOUNDARY LAYER - LOCAL H%W TRANSFER COEFFICIENT 
T 

PRANDLT MODIFICATION 

ELIMINATE t,, 

LAMINAR SUBLAYER 

TURBULENT REGION 

Yvcp 

h= u 

l+$(Pr-1) 

THIS IS THE STATEMENT 
OF PRANDLTS MODIFY- 
CATION TO REYNOLDS 
ANALOGY 
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FORCED CONVECTION OVER A FLAT PLtU’J3 FORCED CONVECTION OVER A FLAT PLtU’J3 

%JRBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT %JRBULENT BOUNDARY LAYER - LOCAL HEAT TRANSFER COEFFICIENT % % 

PWWDLT MODl.FICATION PWWDLT MODl.FICATION 

1+p-1) 
I 

5 Pr Rex 

Nu. = 
x 

l+p+-1) 

Nu, = 
i C, Pr Rex 

l+$r-1) I I 

s 2.12 and c = 0.0592 s 2.12 and c = 0.0592 u u 

U = Rez.' U = Rez.' 
D- D- 

J J ReE" ReE" T T 
5: 5: 

Nux = Nux = 0.0292 Rei.* Pr 0.0292 Rei.* Pr 
1+2.12 ReT.'(Pr-1) 1+2.12 ReT.‘(Pr-1) 

c c M M 
PAGE 4.98 PAGE 4.98 



FORCED CONVECTION OVER A FLAT PL.Al-B 

6URBULENT BOUNDARY LAYJX - LOCAL HEM TRANSFER COEFFICIENT 
. 

Nu, = 
0.0292 Re:’ Pr 

1 + 2.12 Re:“( Pr- 1) 

) THIS IS THE CONVECTION HEAT TRANSFER CORRELA- 
TION FOR A TURBULENT FLOW OVER A FLAT PLATE. 

b APPLICATION CONDITIONS: 

- FLUID PROPERTIES MUST BE EVALUATED AT THE 
MEAN BOUNDARY LAYERTEMPERATURE. 

t, = 
t, + f, 

? 

- PrGl 
& 

b THE ABOVE CORRELATION IS DIFFICULT TO INTEGRATE. 

b THE FOLLOWING CORRELATION GIVE GOOD RESULTS: 

Nu, = 0.0292 Re!f Prv3 

b 

T 

62 = iO.0292 Prv3 
I 1 
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FORCED CONVECTION OVER A FLAT PLATE 

TLRBULENT BOUNDARY LAYER - LOCAL HEAT TFWNSFER COEFFICIENT 

Nu, = “,” c = 0.036 Re,0’* Pt.‘/3 
/ 

w THE ABOVE CORRELAmON ASSUMES THAT THE BOUN- 
DARY LAYER IS TURBULENT STARTING FROM THE LEAD- 
ING EDGE OF THE PLATE. 

b HOWEVER, WE KNOW THAT A PORTION OF THE PLATE IS 
OCCUPIED BY A LAMINAR BOUNDARY LAYER; THE REST 
BY TURBULENT BOUNDARY LAYER. 

w THE? AVERAGE HEAT TRANSFER COEFFICIENT INCLUDING 
BOTH REGIONS IS THAN GIVEN BY: 

Nu, = 0.332 Rer Prln 

Nu, = 0.0292 Rez.8 Prln 

:, = ‘.^ .c 
t .-i 

v 

4 
Nu, = 0.036 Prln [ Rey - Ret* + 18.44 Refly] 

'[ReF.*-23,100] 



FORCED CONVECTION INSIDE DUCTS 

f 
. 

FORCEDCONVECTIONINSIDEDUCTS 

l HEATING AND COOLING OF FLUIDS FLOWING INSIDE A 
DUCT CONSTITUTE ONE OF THE MOST FREQUENTLY 
ENCOUNTERED ENGINEERING PROBLEMS. 

e FLOW INSIDE A DUCT CAN BE: 

b LAMINAR,OR 

b TURBULENT. 

l TURBULENT FLOWS ARE THE MOST WIDELY ENCOUN- 
TERED TYPE IN THE INDUSTRIAL APPLICATIONS. 

a WHEN A FLUID WITH UNIFORM VELOCITY ENTERS A 
STRAIGHT PIPE A VELOCITY BOUNDARY LAYER 
STARTSDEVELOPING. 

PO1 tential core Boundary layer 

- 
-. 

- 
I- 

Completely developed 

* Entrance length c 

Figure 4.19 Flow in the entrance region of a pipe. 

J 
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FORCED CONVECTION INSIDE DUCTS 

PO ‘tential core Boundary layer Completely developed 

Entrance length w 

Figure 4.19 Flow in the entrance region of a pipe. 

0 AS WE PROCEED ALONG THE TUBE IN THE ENTRANCE 
REGION, THE PORTION OF THE TUBE OCCUPIED 

t BY THE BOUNDARY LAYER MXEASES, AND 

t THAT OCCUPIED BY THE FOTENTlAL FLOW DECREASES. 

l CONSEQUENTLY, TO SATISFY THE MASS CONSERVA- 
TION PRINCIPLE, i.e., CONSTANT AVERAGE VELOCITY, 

w THEVEL.OCITYOFTHEPOTENT~AL CORE SHOULD 
INCREASE. 

l THJ3 TRANSITION FROM LAMINAR FLOW TO TURBU- 
LENT FLOW IS LIKELY TO OCCUR IN THE ENTRANCE 
LENGTH. 

0 IF THE:BOUNDARY IS LAMINAR UNTIL IT FILLS THE 
TUBE,“THE FLOW IN THE FULL DEVELOPED REGION 
WILL BE LAMINAR WITH A PARABOLIC VELOCITY 
PROFILE. 
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FORCED CONVECTION INSIDE DUCTS 

fLAh5lNAR FLOWS iN DUCTS - VELOCITY DISTRIBUTION 

LAMINAR FLOWINDUCTS-VELOCITYDISTRIBU- 
TIONINFULLYDEVELOPEDREGION 

l THE VELOCITY DISTRIBUTION CAN EASILY DETER- 
h4lNED FOR A STEADY STATE LAMINAR FLOW IN THE 
FULLY DEVELOPED REGION. 

l IN THIS REGION, VELOCITY PROFILE DOES NOT 
CHANGE ALONG THE TUBE. 

l IT DEPENDS ONLY ON THE RADIUS, i.e., u = u(r). 

Figure 4.2 1 C.mtrol volume in a laminar, lily developed flow in a circular tube 
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FORCED CONVECTION INSIDE DUCTS 
r . 

L-AR FLOWS IN DUCTS - VELOCITY DISTRIBUTI0N 47) 
b STEADY STATE 

b i5=0 b 

b GRAVITY NEGLECTED 

- ii.piFdA- 
I I 

ii.pTdA+ 
I 

ii.;dA=O 
A A A 

5 n’.pi%dA = 0 * 
A 

I-lii.pidA+jii.;dA=O 
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LAMINAR FLOWS I-N DUCTS - VELOCITY DISTRIBUTION 

f I f 1 * ii.;d A = -2lcrdrc, 

r dP -- 2&=-Y ‘Y 
cfy=-drl i ! 

du c 
z, =-P-& T 

(dp / dx) INDEPENDENT 
OFr. 

INTEGRATION 

-- 

l dp r’+C u=--- - 
( 1 4P G!x 
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FORCED CONVECTION INSIDE DUCTS 

pLAMMR FLOWS IN DUCTS - VELOCITY DISTRlBUTION 

t 
r 

= R” 4 & -- - _ 
0 

4 
spdi 2” 

t 
I 

u=2u, 1-f 
( 1 R2 

- 
Q Urn=2 

Q: VOLUMEFLOWR4TE. 

A : FLOWSECTION 
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,AMINAR FLOW I-N DUCTS - PRESSURE DROP AND 
‘RICTION FACTOR 

l CONSIDER NOW A CONTROL VOLUME BOUNDED BY 
THE TUBE WALL AND TWO PLANES PERPENDICULAR 
TO THE AXIS AND A DISTANCE du APART. 

SELECTED CONTROL 
VOLUME 

w DIVIDEBY 

+ DEFINEFRICTION 
FACTOR AS: 

R dP 
zz = -TR 

or 

dP 4TR -=-- 

dx D 
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FORCED CONVECTION INSIDE DUCTS 
L . 
LAMlNAR FLOWS IN DUCTS - PRESSURE DROP AND FRICTION FACTOR 

b FRICTION FACTOR 

r2 
u=2u,, l-- ( I., R2 

&, 4um= 8um 
dr R D 

d 
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-%MlNAR FLOWS IN DUCTS - PRESSURE DROP AND FRICTION FACTOR 

l TOTAL PRESSUXE DROP IN A TUBE OF LENGTH L. 

INTEGRATION 
BETWEENTHE * 
ENTRANCE AND EXIT 
OFTHETUBE 

‘I 
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FORCED CONVJXTION INSIDE DUCTS 

BULK TEMPERATURE 

, 

l FOR FLOW OVER A FLAT PLATE, THE CONVECTION 
HEAT TRANSFER COEFFICIENT WAS DEFINED AS: 

h, = q” 
L -t/ 

f, IS THE POTENTIAL STREAM TEMPERATURE. 

l IN A TUBE FLOW, THERE IS NO DISCERNIBLE FREE 
STREAM CONDITION. 

l THE CENTERLINE TEMPERATURE OF ATUBE FLOW 
IS NOT EASILY DETERhdINABLE. 

l CONSEQUh3TLY, FOR A FULLY DEVELOPED PIPE 
FLOW IT IS CUSTOMARY TO DEFINE A “BULK TEM- 
PERATURE” AS: 

t, = J ;c, tu2n;rdr 
OR 

J 0 
pcp2xrdr 

) THE NUMERATOR REPRESENTS THE TOTAL ENERGY 
FLOW THROUGH THE PIPE. 

b THE DENOMINATOR REPRESENTS THE PRODUCT OF THE 
MASS FLOW AND THJ3 SPECIFIC HEAT INTEGRATED OVER 
THE FLOW AREA. 
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FORCED CONVECTION INSIDE DUCTS 

’ LAMINAR FLOWS IN DUCTS - BULK TEMPEhU’URE 

l WITH THE DEFINITION OF THE “BULK TEMPERATURE” 
THE LOCAL HEAT TRANSFER COEFFICIENT IN A PIPE 
FLOW IS GIVEN BY: 

h, = q” 
*Iv -*b 

e IN PRACTICE, IN A HEATED TUBE, AN ENERGY BALAN- 
CE MAY BE USED TO DETERMINE THE BULK TEMPE- 
RATURE AND ITS VARIATION ALONG THE TUBE. 

l TWO CASES WILL BE CONSIDERED: 
I 

1. CONSTANT SURFACE HEAT FLUX. 
2. CONSTANT SURFACE TEMPERATURE. 
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FORCED CONVECTION INSIDE DUCTS 

LAMINAR FLOWS IN DUCTS - DETERMIN ATION OF THE BULK TEMPERArUm 

l DETERMINATION OF THE BULK TEMPERATURE BY 
ENERGY BALANCE. 

) CONSTANT SURFACE HEAT FLUX 

/ 4:’ 1 
I 

I 
1 ! 

I 
Ti2 

i 

Control volume 
/ 

___._._._._,_._.....~.~.~.~.~.....~.~ _._._._..._._._._.__-.-.-.-...-, 

1 

._._.-._._._._._._._.-.-.-.-.-.-.-.- 

4 

/ 

t- 

. 

x 
&----t 

0 x x+dX 

h+dh -dx 
dx 

Figure 4.22 Control volume for internal flow in a tube. 

Ijz:MAssFLowRArE 

ti : INLET TEMPERATURE 

hi : INL~ ENTHALPY 

- KINETIC END POTENTIAL ENERGIES, VISCOUS DISSIPATION 
AND AXIAL HEAT CONDUCTION ARE NEGLIGIBLE. 
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FORCED CONVECTION INSIDE DUCTS 

LAMlNAR FLOWS IN DUCiS - DETERMINATION OF THE BULK TEMPERATURE 
. 

+ (CONSTANT SURFACE HEAT FLUX) 

I, n’. phv’dl4 -I- I, ii. ipc4 = 0 pE&q 

SELECTED CONTROL 
VOLUME M THE m 
ABOVE FIGURE 

t 

qpDdx=ri2 h+ 
( 

g&-h 

&=gq"& 
ti 

INTEGRAT'IONI 

h=h, and h=h b 

x=0 and x=x v 

)-hi =%q;x 

“t(x) - hi = cp(tb(x) - ti) e 

t,(x) = ti “--q;x 
7CD 
tq 
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b CONSTANT SURFACE TEMPERATURE 

dh = cpdt 

dt nD& =-- 
t/-t*(x) riz c, 

a!x 

FORCED CONVECTION INSIDE DUCTS 

‘LAMlNAR FLOWS IN DUCTS - DETERhflNATION OF THE BULK TEMPERHURE 

INTEGRATION 

ln(t, -t*(x)) = -- lrD rh,dx+C’ I rilq .O 

L 1 ( gj:h&) - tb (x) = expC’ . exp - 



t (CONSTANT SURFACE TEMF’ERM-URE) 

d 

t Iv 
- t,(x) = Cexp ( gJ:h&) - 

,ouNDARY CONLXTIONS 

c = 0 t, - tb = tw - ti 

7 = tw - ti 

1 

tlv - 4 (4 
-t. =exP(-?!$vq 

tlv I 

3EFMING:) I 

FORCED CONVECTION INSIDE DUCTS 

I I 
TEMPERATURE Ai- THE 
EXIT OF THE TUBE: 

x=L I 

fw - te _ 
t, - ti - exp 
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FORCED CONVECTION INSIDE DUCTS 

cLAMINAR FLOWS IN DUCTS - DETERhQNXI’ION OF THE BULK TEMPERATURE 
. 

- IF h CANBETAKENASC 
DETlkMINATION OF tb (X 

NSTANTALONGTHETUBE,THE 

7 IS STRAIGHT FORWARD. 

- IF NOT, ITEFUTIONS ARE REQUIRED TO DETERhfINE THE 
VALUE OF THE BULK TEh4PEhYTURE. 

l BULK TEMPERATURE CONCEPT INTRODUCED HERE IS 
APPLICABLE TO BOTH LAMINAR AND TURBULENT 
FLOWS. 
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FORCED CONVJXTION INSIDE DUCTS 

pLAMTNAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT 
. 

I 

LAMMARFLOWMDUCTS-HEATTRANSFER 
COEFFICIENT 

l CONTRARILY TO VELOCITY DISTRIBUTION, ANALY- 
TICAL INVESTIGATION OF THE TEMPERATURE DISTRI- 
BUTION AND ,CONSEQUENTLY, THE CONVECTION 
HEAT TRANSFER COEFFICIENT IS COMPLEX. 

o IN A CIRCULAR TUBE WITH UNIFORM WALL HEAT FLUX 
AND FULLY DEVELOPED LAMINAR FLOW, IT IS ANALY- 
TICALLY FOUND THAT: 

Nu, =h’D=4.364 
k, 

J 

i.e., Nu, IS INDEPENDENT OF Re, , f’r AND AXIAL 
LOCATION. 

b M THIS ANALYSIS, IT IS ASSUMED THAT THE VELOCITY 
DISTRlBUl-ION IS GIVEN BY THAT CORRESPONDING TO 
ISOTHERMAL FLUID FLOWS. 

l FOR CONSTANT WALL TEMPERATURE CONDITION, IT IS 
FOUND THAT: 

Nu, =?=3.66 
/ 

t AGAIN ISOTHERMAL FLUID FLOW VELOCITY DISTRIBUTION 
IS USED. 

\ 
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FORCED CONVECTION INSIDE DUCTS 

LAMINAR FLOWS IN DUCTS - HEN TRANSFER’COEFFICIENT 
. 

l THE USE OF A VELOCITY DISTRIBUTION CORRES- 
PONDING TO ISOTHERMAL FLUID FLOW CONDITION 
IS ONLY VALID FOR SMALL TEMPERATURE 
DIFFERENCE BETWEEN THE FLUID AND WALL 
TEMPERATURE. 

l FOR LARGE TEMPERATURE DIFFERENCES, THE FLUID 
VELOCITY IS INFLUENCED BY THESE DIFFERENCES 
AS SKETCHED IN THE 3LLOWING FIGURE: 

Figure 4.23 Influence of large temperature differences on velocity distribution 
inatube 
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FORCED CONVJXTION INSIDE DUCTS 

LAMINAR FLOWS IN DUCTS - HEM TRANSFER COEFFICIENT 
. 

b CURVE (b) IS THE VELOCITY DISTRIBUTION FOR AN ISO- 
THERhfAL OR SMALL TEMPERATURE DIFFERENCE FLOW. 

w CURVE (a) IS THE VELOCITY DISTRIBUTION WHEN THE 
WALL HEATS A LIQUID OR COOLS A GAS. 

b CURVE (c) IS TE-IE VELOCITY DISTRIBUTION WHEN THE 
WALL COOLS A LIQUID OR HEATS A GAS. 

l THE ABOVE PRESENTED HEAT TRANSFER CORRELA- 
TIONS ARE ENTICING BY THEIR SIMPLICITY 

a HOWEVER, BECAUSE OF THE VELOCITY PROFILE 
CHANGES DUE TO HEATING OR COOLING THEY ARE 
NOT ACCURATE. 

l THESE CORRELATIONS ARE ONLY APPLICABLE TO 
FULLY DEVELOPED FLOWS. 

l HOWEVER, THE LENGTH OF THE ENTRANCE REGION 
IN A LAMINAR FLOW IS SUBSTANTIAL; IT MAY EVEN 
OCCUPY THE ENTIRE LENGTH OF THE TUBE. 

l THE FOLLOWTNG CORRELATION PREDICTS THE CON- 
VECTION HEAT TRANSFER COEFFICIENT IN THE EN- 
TRANCE REGION. 

m %.D = c = 3.66+ O.O668(D/L)Re,Pr 
D 

k/ 1+0.04[( D/L)Re, I+]"~ 
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FORCED CONVECTION INSIDE DUCTS 

LAMINAR FLOWS IN DUCTS - HEAT TRANSFER COEFFICIEE;T 
. 

Nu, 
ED ="-=3.66+ 

O.O668(D/L)Re,Pr 

4 1 + 0.04[( D / L) Re, Pr]"' 

t Nu, IS THE AVERAGE NUSSELT NUMBER. 

w AS THE PIPE LENGTH INCREASES, THIS CORRELATION 
TENDS TO 3.66. 

b FLUID PROPERTIES ARE CALCULATED AT THE BULK 
TEh4PERATURE. 

b THIS CORRBLATION IS VALID FOR: 

l A BETTER CORRELATION FOR LAMINAR FLOWS 
(SIEDER AND TATE) IS: 

0.14 

WI = 1&3Reb/) pr’” 
I 

b FLUID PROPERTIES (EXCEPT p w ) ARE EVALUATED AT THE 
BULK TEMPERATURE 

b jri, IS EVALU+‘ED AT THE WALL TEMPERATURE. 

l THETERM ~ THE j30s’&y TAKES INTO ACCOUNT THE FACT 
ARY LAYER AT THE WALL IS STRONGLY 

INFLUENCED BY THE TEMPERAlWRE DEPENDENCE OF THE 
vIscosITY 

p (I& 4-Lr4 APPLIES FOR HEATlNG AND COOLING CASES. 

t THEb’FECTOFTHE ENTRANCE LENGTH IS INCLUDED IN 

THETERM (D/Ly3 . 
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FORCED CONVECTION INSIDE DUCTS 
L 
LAh4lNAR FL,OWS IN DUCTS -HEAT TRANSFER COEFFICIENT 

w THE RANGE OF APPLICABILITY 

0.48 < Pr < 16,700 

0.0044& 
I-L 

< 9.75 
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TUREKJLENTFLOWSl-NDUCTS. 

l IT IS EXPERIMENTALLY VERIFIED THAT: 

u 
* ONE SEVEN-RI LAW: - = 

u 

l/4 

b BLASIUS RELATION: zw = 0.0228pU’ 

.!L 6 RATIO: s= 1 
6 6 0.0228 

u 
s RATIO:’ u b s = 1.878 
u u 

ESTABLISHED FOR A TURBULENT BOUNDARY LAYER ON 
A FLAT PLATE CAN BE EXTENDED TO FULLY DEVELOP- 
ED TURBULENT FLOWS IN SMOOTH TUBES. 
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FORCED CONVECTION INSIDE DUCTS 

TURBULENT FLaOWS IN DUCTS 



FORCED CONVJXTION INSIDE DUCTS 
L 
TUREULENT FLOWS IN DUCTS - VELOCITY DISTRIJ3UTION 

T 

TURBULENTFLOWINDUCTS-VELOCITY 
DISTRIBUTIONINFULLYDEVELOPEDFU3GION 

ONE SEVENTH LAW FOR 
A TURBULENT FLOW 
OVER A FLAT PLATE 
- 

L 

y-9 R-r 
6-+RorD/2, 

I.4 -= 
u mm 

* 
R c 2n:rudr 

lJ, = JO 
I ir 

7LR2 
I 

dr = 0.8 17U,,,, 
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FORCED CONVECTION INSIDE DUCTS 

l-URBUL.J3’iT FLOWS IN DUCTS - FRICTION FACTOR AND PRESSURE GRADIENT - 

IIJREKJLENTFLOWINADUCTS-FRICTIONFACTOR 
KNDFRICTIONALPRESSUREGRADIENT 

e FRICTION FACTOR 

pjiEp&q 

l/4 

zw = 0.0228pU’ 

L -I 

I y4 

7, = 0.039pq v 

j-z 14=R 

.( 1 u,D 

,PC 

c 

L c 
b VALIDFOR: 

104< ReD<5x104 0.3 12 0.3 12 

) IF 0.312 IS REPLACED BY 0.316 
1/4 = Re; 

THE CORRELATION IS THEN 
VALID FOR: 

lo4 < Re, < 10’ I 
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o OTHER FRICTION CORRELATIONS 

w PRANDLT CORRELATION: 

FORCED CONVECTION INSIDE DUCTS 
. 

- TURFKJLEN? FLOWS IN DUCTS - FRICTION’FACTOR AND PRESSURE GRADlENT 

I =2,Olog(Refi)-0.8 
47 

3,000~ Re, <3.4x lo6 

b VON KARMAN CORRELATION: 

1 
2.01og 0 g 1.74 

D 1 
- 
47 

= + > 0.01 
& ~Re*J7 

& IS TJ3E RUGOSITY OF THE TUBE WALL. 

l FRICTIONAL PRESSUliE DROP GRADIENT: 
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’ TURBULENT FLOWS IN DUCTS - HEM TRANSFER COEFFICIENT TURBULENT FLOWS IN DUCTS - HEM TRANSFER COEFFIbENT \ 

TURBULENTFLOWSINDUCTS-CONVECTIONHEAT TURBULENTFLOWSINDUCTS-CONVECTIONHEAT 
TRANSFERCOEFFICIENT TRANSFERCOEFFICIENT 

o HEAT TRANSFER COEFFICIENT ESTABLISHED FOR A o HEAT TRANSFER COEFFICIENT ESTABLISHED FOR A 
FLAT PLATE: FLAT PLATE: 

TIvcI, Tvcp 

h= u-- h= u-- 

l+;(Pr-1) l+;(Pr-1) 

WILL BE APPLIED TO TURBULENT FLOWS IN PIPES WILL BE APPLIED TO TURBULENT FLOWS IN PIPES 
WITH SOME MODIFICATIONS. WITH SOME MODIFICATIONS. 

/ 
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FORCED CONVECTION INSIDE DUCTS 

rTIJRJ3ULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT 
. 

(CONVECTION HEAT TRANSFER COEFFICIENT) 

h= u 
1+pr-1) 

$ = 1.878 

u + KtaK u + KtaK 
u um u um 

* * 
“‘==0.817 ! “‘==0.817 ! 

b 1 
l/S 

u 
S = 2.44 
urn 

or 
t,! L = 2.44 u 

U, Re: 

c 



r”RbLiY b”L. “EbII”,. .I.LILyY ““b&U 

L 

TURBULENT FLOWS lN DUCI’S - HEAT TRANSFER COEFFICIENT 

(CONVECTION HEAT TRANSFER COEFFICIENT) 

f= 
0.3 16 

c 
Rei*’ 

7 

Re -punt* 
D- 

CL 

Nu, = 
0.0396 Rer Pr 

1 + 2.44 Re,“* (Pr- 1) 
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FORCED CONVECTION INSIDE DUCTS 

(CONVECTION HEAT TRANSFER COEFFICIENT) 

Nu = 0.0396 R$“ PC 
’ 1 + 2.44 Re;"'( Pr- 1) 

l THIS CORRELATION WORKS REASONABLY WELL. 

e IT IS BETTER TO REPLACE: 

i.e., 

2.44 by 1.5 Prw1j6 

Nu, = 
0.0396 R$“ Pr 

1 + 1.5 Pr-1'6 Re;"' (Pr - 1) 

b FLUID PROPERTIES ARE DETERMTNED AT THE BULK 
FLUID TEMPERATURE. 

t Pr NUMBER SHOULD BE CLOSE TO 1. 
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FORCED CONVECTION INSIDE DUCTS 

TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT 
4 

l OTHER CONVECTION HEAT TRANSFER CORRELA- 
TIONS FOR TURBULENT FLOWS IN PIPES. 

b IF (t, -tb) ISLESSTHAN 6°CFORLIQUlDSOR600C 
FOR GASES, USE THE FOLLOWING DITTIUS-BOELTER 
CORRELATION: 

Nu, = 0.023Rei8 Pr” 

n = 0.4 FOR HEATING, 

n = 0.3 FORCOOLING. 

- FLUID PROPERTIES ARE DETERMINED AlI- THE BULK 
TEMPERATURE. 

- RANGE OF APPLICABILITY 

0.7-c Pr< 160 
Re, >lO,OOO 

560 
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FORCED CONVECTION INSIDE DUCTS 

TURBULENT FLOWS IN DUCTS - HEAT TRANSFER COEFFICIENT 

l OTHER CONVECTION HEAT TRANSFER CORRELA- 
TIONS FOR TURE3ULENT FLOWS IN PIPES. 

b IF k - tb ) IS HIGHER TlL4N 6 “C FOR LIQUIDS OR 60 “C 
FOR GASES, USE: 

Nu, = 0.027 Rek’ Pr”’ 

- ALL FLUID PROPERTIES ARE CALCULATED AT THE BULK 
FLUIDTEh4PERMURE , EXCEPT p wWHICH IS EVALUATED 
ATTHEWALLTEMPERATURE. 

” RANGE OF APPLICABILITY 

0.7 < Pr < 16,700 

Re, > 10,000 

560 
!D 
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l OTHER CONVECTION HEAT TRANSFER CORRELA- 
TIONS FOR TURBULENT FLOWS lN PIPES. 

p THE FOLLOWING CORRELATION APPLIES TO ROUGH WALL 
PIPES (QUITE ACCW): 

Nu, = 

l/2 

X=l.07+12.7(Pr2"-1) 

- FOR LIQUIDS: 

n = 0.11 FOR-G 

n = 0.25 FOR COOLING. 

- FORGASES: n=O. 

- RANGE OF APPLICABILITY: 

lo4 <'Re, < 5.~10~ 
2<Pr<140 -5% Error 

0.5<Pr<2,000 - 10% Error 

0.08<&40 
Plv 

- ALL PHYSICAL PROPERTIES, EXCEPT p ,&U3 EVALUAT- 
Ep AT THE FLUID BULK TEMPERATURE. 

- jJ,IS EVALUATED AT THE WALL TEMPERATURE. 

-f IS DETERMINED BY USING AN AD HOC CORRELATION. 



l THE CORRELATIONS OBTAINED FOR CIRCULAR 
TUBES ON: 

- FRICTION FACTORS, 
- FRICTIONAL PRESSURE GRADIENT, AND 
- CONVECTION HEAT TRANSFER COEFFICIENT 

CAN BE APPLIED TO NON CIRCULAR TUBES BY REP- 
LACING THE DIAMETER (0) APPEARING IN THESE 
CORRELATIONS BY THE HYDRAULIC DIAMETER DE- 
FINED AS: 

4 x FLOW SECTION 4A 
D,, = =-- 

WETTED PERIMETER P 

w FOR EXAMPLE, THE HYDRAULIC DIAMETER OF AN ANNU- 
LAR FLOW SECTION WITH INNER DIAMETE RD,ANDOUT- 
ER DIAMETER 0, IS: 

Dh = 
43D; -D;) 

aA + 0,) 
=D,-D, 

END CONVECTION 

c 
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