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Chapter 2 %. Basic Equations for Thermalhydraulic Systems 
5 Analysis 

2.1 Introduction 

2.1.1 Chapter Content 

This chapter presents the basic mass, momenhun and energy equations used in typical computer codes for 
thermalhydraulic simulation. The equations are derived from first principles and the necessary 
approximations lead to the requirements for empirical correlations. Closure is obtaixd by the equation of 
state. 

The known teritoiy of the basic mass, energy and momenhlIli conservation equations (Bird et al [BJR60]) 
is explored, herein, from the perspective of thermalhydraulic systems analysis for nuclear reactors. 

Invariably in the modelling of fluids, the conservation equations are cast in one of two main forms (C*tie 
[CUR74]): integral or distributed approach, as illustrated in figure 2. ! The differential form sees intiequent 
ae in the analysis of thermalhydraulic systems since the cost sod co=plesiry of such a detailed analysis on 
even a single complex component of a system is enormous, which mekes this route to the analysis of systems 
of such complex components unrealizable. Recourse is generally made to the integral or lumped form so that 
inter-relationships of various components colupGng a system can be simulated. Necessarily, the models 
used for the individual coniponents are mush simpler than that ofthe detailed models based on the distributed 
approach. Great care must be taken to ensure that the simpler models of the integral approach are properI> 
formulated and not misused. 

~-3 ~_ ~;: 
It behooves us, then, to develop the models used in thermelhydraulic systems analysis from first principles. 
This will provide a tractable and verifiable methodology to aid development and validation of system codes. 
to elocidate the necessary assumptions made. to show pitfalls, to show the common roots and genealogy of 
specific tools like FLASH [POR69], SOPHT [CHA75a. CHA75b, CHA77a, CHA77b. SKE75, SKESO], 
RETRAN [AGE82], FIREBIRD [LIN79], CATHENA [HAN95]. etc.. and to help guide future development. 
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2.1.’ Learning Outcomes 

The overall objectives for this chapter are as follows: 

Objective 2. I The student should be able to idatie the terms and symbols used in 
thennalhydraulics. 

Condition Closed book written examination. 

Standard 100% on key terms and symbols. 

Related Fundamental hydraulic and heat transfer phenomena. 
concept(s) 

C!assitication Knowledge Comprehension Application Analysis Synthesis Evaluation 
--- 

Weight ‘3 a 

-- 
Objective 1.2 l---- t Condition 

1 Standard 

Related 
concept(s) 

The student should be abie io distinguish between the differential and integral form ’ 
and be able to choose. with justification. the correct form to we in wrious situations. 

Closed book written or ora! examination. 

100%. 

Mathematical forms of the conservation equation. 

Knowledge Comprehension Application Analysis Synthesis Evaluation 

a a I I 

Objective 2.3 The student should be able to recall typical values and units of parameters. 

Condition Closed book >witten o: oral examination. 

Standard 100% on key terms and symbols. 

Related 
concept(s) 

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation 
- 

Weight 3 I-3 



Objective 2.4 The student should be able to recognize key physical phenomena. 

Open book witten or oral examination. 

Standard 

Related 
conceotfs~ 

100% on key items. supporting material used only as memos triggers. 

El”“““‘“’ 1 Conlpre‘nmsion / Application 1 Analysis 1 Synthesis 1 Evaluation 1 

- 

Objective 2.5 The student shou!d be able to recogr,ize the cotipling between mass. momentum. 
energy and pressure in thennalhydraulic systems. 

Condition Closed book v.Titten or oral examination. 

Standard 

t 

100%. 

Related 
concept(s) ~.-- 
Classification 1 Kno\vledge Comprehension Application Analysis Synthesis Evaluation. 

Weight a 

Objective 2.6 

Condition 
- 

Standard 

Reiated 
concevt(s) 

Classification 

Weipht 

-- 

The stu+nt should be able to choose approximations as appropriate (* of dimesions. 
transient or steady state, averagin,. D spatial resolution. rtc.) with justification. 

Open book \\Titten or oral examination. 

75%: 

Knowledge Comprehension Application Analysis Synthesis Evaluation 

a a a a a 

?.I.3 The Chapter Layout 

The exploration proceeds by tirst establishing and discussing the general principle of conservation. Nest. 
this general principle is applied in turn to mass, momentum and energy to arrive at the specific forms 
commonly seen in the systems approach. Closure is then given via the equation of state and by supporting 
empirical correlations. Finally. the ideas developed are codified in a diagrammatical representation to aid 
in the physical interpretation of these systems of equations and to provide a summary of the main 
characteristics of lluid systems. 



2.2 Conservation 

We start. both historically and pedagogically. with a basic experimental observation: 
“CONSERVATION”. 

This was. and is. most easily understood in terms of mass: 
“WK4T GOES IN MUST COME OUT UNLESS IT STAYS THERE 

OR IS GENERATED OR LOST SOMEHOW”. 
Although this should be self-evident. it is important to realize that this is an esoerinwntal observation. 

If we tiher assume that \ve have a continuum. we can mathematically recast our basic experimental 
observation for any field variable. $: 

$dV = /Is rdV + j”./ S.nds 
” s 

where 
D/Dt = substantial derivative’ = change due to time variations plus change due to movement in 

space at the velocity of the tield variable. Q. 
V = xbitrary tluid vohune. 
r = net sum of local sources and local sinks cfthe field uriable. Jr. within the volume V. 

* = field veriable such as mass. momentum: energy, etc., 
t = time, 
s = surface bounding the volume. V. 

ii 
= unit vector normal to the surface. and 
= net sum of local sources and locai sinks of the fluid variable. $. on the surface s. 

We can now use Reynold‘s Transport Theorem (a xoathematical identity discussed in detail in appendix 2): 

\vhere 
a/at = local time derivative. and 
” = velocin. of the tield variable, 

to gi\:e 

In words, this states that the change in the conserved field variable J, in the volume V is due to surface flus 
plus sources mir.us sinks. \Ve can wise another mathematical identiv (Gauss‘ Divergence Theorem): 

’ For 3 lucid discussion of the three time derivatives. $. g, $. see [BIR60. pp 73-711. 



i 

,rs A,nds = 

JJC v’AdV. 
(4) 

5 

where 
A = any vector. such as velocity, and 
0 = Del operator (eg. V = d/as i + a/Sy j + . ..) 

Thus equation 3 can be rewitten: I 

,i[ 2 d” = -I[[ V.@vdV - ,i[ I-d” * ,,I V.SdV. , 5’) 

It’ we aswme that this satemen! is universally tru. i.e. for any volume within the sysrem Iunder 
consideration. then the folio-xing identity must hold at each point in space: 

$=-v$lv + r + V.S. r,6) 

This is the distributed or microscopic form. Equation 3 is the lumped or macroscopic form. They are 
equivalent and one can move freely back and forth beP.x ecn the two forms as long as the fie!d variables are 
continuous. 

The above derivation path is not unique. One could start with an incremental voiume and derive t I) via (6:. 
It is largely a question of personal choice and the ad use. One school ot’ thought. attended b:i most 
scieatists. applied mathematiciar,s and academics, since they usually deal with the loca! or microscopic 
approach, focuses on the conversion of the surface integrals to volume integrals usins Gauss’ Theorem. The 
volume intezrals are then dropped gix4r.g the partial differential or :nicroscopic form. This path xorks well 
when a detailed analysis is desired. such as subchannel flow in fuel bundles. moderator circulation in the 
cnlandria. etc. 

The second school. which sees more favol;r among engineers. panicularl>~ in the chemical industry. e~aluatrs 
the surface integrals as they stand without cowerting to volume integra!s. This leads to a lumped or 
ntacroscopic approach useful for network analysis. distillation towers. etc. 

~There exists a very large number of possible derivations. each xvith its own advantages and disadvantases. 
As more and more detail is picked up in each class of models, numerical means have to be used. In the limit 
of large numbers of nodes or mesh points. etc.. both methods converge to the same solution. 

Since the above equations 3~ basic to galJ subsequent modelliny of thermalhydradic systems. one should 
keep in mind the basis for these equations: 
I) Consenxtion as an experimental observation. 

This is usually taken for granted. However, when the conservation equations for separate phases in 
a mixture arc under consideration, the various sinks and sources of mass. momentum and energ are 
not entirely !aown ar.d the interpretation of experimental data can be difficult because of the 
complexity. It helps to keep in mind the distinctly diffaenr roles that \ve have historically assigned 
to the players in the conservation process: 
=) ihe local time derivative, @jat. 
b) the advection tan (flus), V$v. 



C) the local sinks and sources, r, within a volume and 

> 4 the local sinks and sources, S. on the surface of a volume. 
If a clarity of form is adopted by establishing and maintaining a one-to-one correspondence 
behveen the form and the physical processes. then a substantial pedagogical tool will have been 
achieved. This proves invaluable in experimental design (to zero in on a particular process or 
parameter). model formulation and interpretation. data analysis and presentation. correlation 
development. etc. A model cwld lose its generality because. for instance, fluxes across interfaces 
are written as a tenn in I’. thus making the interfacial flux a local phenomena rather than a boundary 
phenomena. This may be acceptable for a single geometry but causes the model to break down when 
applied to diverse geometries. 

1) The field iGables are continuous within the volume V. 
This is also u=xall~~ taken for granted. But care must be exercised in multiphase t!ow where dis- 
continuities abound. A conm~on approach, taken to simplify the complexity of multiphase tlow is 
to average the terms in the conservation equations across the cross-sectional area ofthe tlow path. 
One could speculate that the error introduced in this tnanner could separate the model from realit? 
enough to make the solutions be “unreal”, i.e. complex nzmbers, singularities. etc. Further. 
fluctuating parameters are often smoothed by averaging over an appropriate At. These averaged 
parameters and products of parameters are used in models and compared to experiments. But there 
is no guaraotee that. for instance. 

Thus the use of time averaged parameters can lead to additional errors. Indeed. because of :he 
possibility of error due to space and time discontinuities, several investigators have offered rigorous 
treatments for the distributed approach (see, for example. Delhaye [DEL8 I]). Tb~ere is no reason 
why these treatments could not be applied to the lumped apprcach. as well. But. at this time. there 
is little incentil-e to do so since grid coarseness and experimental data are larger sources of error. 
As always, the operative rule is - BUYER BEWARE. 
We now proceed to treat the mass. momentum and energy equations in turn. 

2.3 Conservation of Mass 

Historically. mass was the first variable observed to be conserved: 

where 
PI = densit)- of phase k (I = liquid. 2 = vapo~lr), 
YL = ~~olrune fraction of phase. k. in volume V. and 
rk. S, = phase sinks and sources, including chemicai and nuclear effect;. 

The average density is defined as: 

(7) 

P = Y, P, + Yz P> = (1 - a)p, + a& 9 (8) 
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P = .~~ average density. and 
;\ a Y void fraction. 

,%& 

Adding both phases together. equation 7 becomes: 

(9) 

In our case. r, = -r: (liquid boils or vapour condenses) sod S, = 0 (no mass sources or sinks a; surfaces 1. 
Therefore: 

(IO) 

PV = (I - a)p,v, + ap,v,. _ _ (II) 

Ifwe apply Gauss‘ ‘fheorem and drop the integrals we have: 

(12) 

* a &I V.[(l - a)p,v, + aplV2] = 0. (15) 

.This is the distributed iorm useful for modelling detailed flow patterns such as in the calandria. \-rssels. 
stean generators and headers. Component codes such as THIRST [CAR8Ia] and COBRA [BNW76] use 
this z~pproach. 

In contrast. system codes such as SOPHT [CHA77aj. based on Porschine’s work [PGR71]. use the lumped 
equations. .These codes represent a hydraulic network of pipes by nodes yoined by link. discussed in detail 
in chapter 3. hlass. pressure nnd energy changes occur at the nodes. ~Momentum changes occu in the links. 
Thus the netuvrk is treated on a macroscopic scale requiring an integral approach to the fundamental 
equations. Flow details in pipes are pot considered. Ther is, diffusion. dispersion, advection. flow regimes. 
tlow protiles. etc. are not fundamentally accwmed for bul are covered by empirical correlations. Averaging 
techniques. conunonl)~ used in the distributed approach are not used in the lumped approach mainly because 
!herr is litt!e incentiw to do so. The main sources of error lie elsewhere. mainly in the coarseness of the 
discretizztion in the direction of flow (i e. node size) and in fi-iction factors and heat transfer coefficients. 

Now. I jj pd\’ is the nx~ss. .\I:. in :he volume. V,. ofthe ith node. .4iso. for our case. the surface integral can 
be \\ritten as surface integrals over the individual tlow paths into and OLU of the volume or node. That is. 



-I[ Pv’nds = 7 Pjvj A;. (14) 

where j represents inflow and ourflow links with v, > 0 for inflow and ~0 for outflow. Inherent in equation 
I I is the xsumption that the integral. P v 

J‘[ 
o ds can be replaced by the simple product Pi vj A,. This 

implies !clwwn or aswmed (usually uniform) velocity and density profiles across the face of the link (or 
pipe). 

(15) 

where \\; is the nxss How. This is the typical representation in system codes. Thus for the node- lin!i f)pe 
equations. we must add two more assumptions: 
i) nodalization, and 
ii) assumed ./elocity and density profile across the cross-section of a pipe. 

These assumptions have far reaching ramitications ths: may not be immediately obvious. This is discussed 
in more detail in chapter 3. 

To conclude our pro-gressive simplification, we note the steady state form of equation 15: 

c pj vj “: - c w, = 0. 
J 

(16) 

For a simple circular tlon loop. the mass tlo\v rate at steady state is a constant at any point in the loop. Local 
;wea and densit)~ variations thus sive rise :o velocity uriations around the loop. 

Local veluciQ then is: 

\! =w. 
PA 

(17) 

1.1 Conservation of Momentum 

Se\\torn observed that mon~eo~tum is conseKed. i.e. a body moguls in 2 straisht line unless w  to do 
otherwise. This is equivalent to a force ba!ance ifthe inerticll force (a momentum sink of sons) is recogized. 
In the integral sense. the rnte of change of momentum is equal to the forces acting on the fluid. Thus: 

Where 
o is the stress tensor (i.e.. short range or surface effects including pressure. viscosity. etc.). 
f is the long rnn_ee or body force (i.e.. graviv), 

and 



M is the momentum interchange function eccouming for phase change effects 
Using Reynold’s Transport Theorem. we get: 

j-i{ i (vr PI v,)dV - j”[ (YL PI vk)(vk. n)ds 

n ds + fl’/ YI PI f, dV 7 M, d\’ 
v 

Addinp. both phases together as per the mass equation, ne find: 

(191 

TO get the microscopic form \ve use Gauss’s theorem and drop the \O!LIIIW integral ;1s brfote to icave: 

@ i 
is 

,pv) + F.pvv = r.cr i pf. (21) 

The stress tensor. a. can be split into the normal and shear components: 

0 = -PI + 7. (22) 

xvhere P is the pressure. I is rhe unity tensor al:d c is the shear stress tensor. This enahlrs the esplicit WC oC 
yreswre and helps maintain our tenuous link with reality Of course. it can equally hc introduced it1 the 
mtegral form. equation 212. or as a separate pressure for each phase in eqxtion !9. At any rate. equation 2 I 
becomes: 

$ (pv) + v.pvv = -VP i n., + pf. (73) 

This is the form commonly seen in the literature. useful for distributed modelling as per the mass 
conservation equnrion. The term. v.r. is usually replaced by an empirical relation. For the system codes 
using the node-link str~cturc. we s\vitch back to the macroscopic form. Equation 20. 

If‘the surface integral for the Jd\ective term is performed over the inlet and outlet areas of the pipe (Ii&h in 
question. then: 

over the aAs. the.” 

pv(v.n)ds = ,‘./ pv(v.n)ds + I’ f pvjv.n)ds, 

.4\1 
(2-I) 10LT 

where .4,, LS the tlo\;. inlet xea and A,,~, is the tlon outlet arex If we ass~unc tlw properties are constant 

Alternatively we could perform a cross-sectional average of each term. usually denoted by < >. \vhere 
<( )> = I!;\ /[ ( ) ds. Ifwe assume the properties. V. p and A are constant along the lengh of the pipe. 



then the second and third terms cancel. 

Equation 3 can be rewitten as: 

(26) 

where g is the gravitational constant. g is the acceleration due to gravity and where I--I and pf evaluated b> 
empirical correlations (the standard fricticn factor) plus an e!evation change term (0 is the angle w.r.t. the 
horizontal). Note that is A,, f A, then, even for constant pressure. there is a net force on the volume 
causing it to accelerate if it were not restrained. In a restrained system such as HTS piping, the piping 
supports exert an equal and opposite force on the volume. Thcs wvben the area differences are explicitI> 
modelied. the appropriax body forces must be included. Generally. it is simpler to use an average or 
representative area for the !N and OUT surfaces and to add entrance and exit frictional losses explicit& in 
the (tllD+k) term. 

Assuming one dimensional tlow and defining the mass tlow as W 5 pVA. and L as the pipe length. equation 
26 becomes: 

aw - 
at 

- .4p gig, sin(e) (‘7) 

which is the form typically used in system codes. 

Ifcircumstances require. <urn terms can be added. For instance. ifa pump is presen! this can be considered 
to be an external force acting through head. AP,,,, Equation 77 would then become: 

L aw - 
at 

= A,,, P,,n- - .4,, P,, - .4A Ppulnp + (2SI 

The momentum tlus terms (Apv’) in equation 75 could also be added if large area or propeq~ changes were 
present or the effect could be included in the friction term. 

In the steady state. for a constant area pipe :wth no pump and no elevation change: 

(2% 

.\s a tinal note. the assumptions made for the mixture momentum equation are thus similar to those made 
for the mixture mass equation and the same comments apply. One cannot hope to accurately model such 
phenomena as void propagation and other two phase transient tlow effects using lumped single phase 
equations cnlrs~ a large number of nodes and links are used. 

./?’ 
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2.5 Conservation of Energy 

By the early 1800’s, philosophical jumps were made in recognizing that heat was not a substance and in the 
emergence of electromagnetic theory. The concep: of energy as we now think of it was formulated and it 
was found that energy. too. was conserved. as long as we carefully ident+ d the different forms of energ\ 
(kinetic. chemical. potential. nuclear. internal electromagnetic. . ..). 

The mathemxical statement of the conservation of energy is: 

* jj[ y,P,f;v,dV + j[ (o;n).v,ds. 

where 

e, = internal ener,~ of phase k. 
% = surface heat flux for phase k, and 
E, = internal heat sources and sinks of phase k, 

l’he left hand side is the subsantial dcrivaive of the internal plus kinetic enew::. The right hand side tams 
are. respectively: 
1) surface heat flus. 
2) internal sources and sinks, 
3) work due to long rsnge body forces (gravi?. etc.). 
-I) work due to short range forces (surface :ension, pressure. etc.). 

Using Rs:;noid‘s Transport Theorem again: 

Sunwing over k. the mixture equation becomes: 

where 
p= = YIP,=, - Y~P?C? and E = E,+E,. etc 

Csing G3uss Theorem to change some of the surface inte@s to \~oltune integrnls: 

(32) 



,jl $ [pe 7 ; pvjd” + I‘[ pe v,nds + jj-“i V.1; pv’ v]d” 

+ jj[ EdV -si,~ pf.vd” + ;.jj V.(o.v)d”. 
” 

(33) 

Since 
o=-PI-;r, 

jj[ ‘?~(a~./) dV = I/-[ [V.(T.\.) - V.(Pv)j dV. 

This is the totai energ equarion, composed of thermal terms and mecnanical terms. We can separate the nvo 
by first generating the mecha.nical terms from the momentum equation (equation 20). Fotming the dot 
product with velocity we get: 

j/j $ (pv),vdV + /-/-/ v.(V’pvv)dV = I/-j- v.(V.r) dV 
v v 

- /-I/- v.GPdV + /.I/- pf-vd”” 

Now 

v.(V-r) = V(T.V) - r: vv, 

v.VP = V.(PV) - PV.v. 

“.(p.p”“) = v. 1. pv’v 
l 1 2 

Using these identities and subtracting equation 34 from equation 33. we get: 

,,i; ; (pe)dV + I/- pev.uds = -fl q.nds 

- l‘i[ EdV + jji r:Vvd” ,il‘PV.vd”. 

(34) 

(35) 

(3% 

(37) 

(38) 

(39) 

‘This is the thermal form ofrhe energy equatioo. This form of the energy equation can be used to generate 
the thermal conductance equation for solids. Ey set@ tiuid velocity :o zero and converting surface integrals 
to volume integrals we get the distributed form: 
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$ (pr) = -v.q + E. (40) 

where E is the intern4 energy generation rate term. 

From thermodynamics. for solids. we have: 

(-12) 

and using Fourier’s la*.\- for heat conduction: 

q = -kVT. 

we ha+e the classica! form of the heat condwtion equation: 

p C,, c : V,kVT + E 
St 

= kV’T T E for space independent k (13) 

fhis is u&id for detenining the temperature distributions in boiler tube walls. piping walls and reactor I&I 
pencils. To generate the code-link foms we now turn back to the integral fym of equation 39. If we 
assume that the density and enthalpy are uniform over the node (the volume in question), then 

where 

U : Vpe = LApe. 

The integral of the rransporr Penn can be \\Titten over the 110~ surfaces: 

(45) 

where &. .A:. etc.. 31-e the pipe flow cross-sectional areas. For intlow. vn is negative. For outflow. v’n is 
positive. Assuming unifornl wlociF, enrhnlpy and densit) xross fhe link (pipe) c~ross-section gives: 

The heat tlus and generation tern~s ofthe thenal energy equation caa be iumped into a loose!y defined heat 
source for the volume. 

Therefore. the thermal energy equation becomes: 



W,,,.,. e,,., + Q + /j[ r:‘i’vdV - jj[ PV.v d\‘. CJ9, 

Some system codes track enthalpy rather than internal energy. Cetining: 

h=enrhalpy-=e+P/p and H = V p h (50) 

we can rewrite equation. 39 2s f3llo~w: 

jj[ ‘@it- ‘) d\’ ~- j[ (ph - P)vnds = -j[ q.nds 

- jjj EdV + jj[ r:VvdV - [ PV.vdV 

Collecting the pressure terms and simplifying yields: 

jjl’ 5 (ph)dV + jj phv.ods = -j[q.nds -~ jj[ EdV 

+ jj[ r:Vv + j;[ z dV + j[ Pv.nds - jj[ PV.vdV 

The surface integral cn’er P can be transformed into a VO~IXIX integral using Gauss‘ theorem and combined 
with :he last term to give: 

Pv.nds -. jjj 
v 

PV.vdV = jj[ V.(Pv)d\’ jj[ PV-\dV 

(531 
= jj[ v.VPdV 

.Tbe enthnlpy tlus terxs ca:~ be evaluated in the same manner that the ener,~ flus terms were in eqxkms 
46-47. Thus. 

J’j p h v II ds = c ‘N,, h,, + c W,,,:., h:,,:~, 
5 

Finally. using equations -18. 50. 53-54, equation 52 becomes: 

a :-I 
- = + c W,, h, - c Wow ho,, + Q at 

+ jj[ r:VvdV +jj[[s +vVP)dV. 
(55) 

, 
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The integal term in:x4ving pressur. is often neglected since it is usually negligible compared to the other 
temw. For instance. the vpical C;\NDU Heat Transport System operates at a pressure of 10 iMPa_ a fluid 
velocity of-10 m/s, and a pressure gradient of less than 70 kPa/m. This translates into roughly IO kJ/ks 
vhile e is approximately 1000 kJ/kg. 

The turbulent heating term is usually approximated by addins pump heat as a specific form of Q. 
equation 35 in the steady state. neglwting turbulent heating and the pressure terms. is the familiar: 

Q = c W,,, hour c \+‘,s 1-1,~ (56) 

For a reactor or a boiler (one tlo\v in. one How out): 

Q = \v (ho,, - h,,) z W Cp(TouT - TIN) in single phase. (57) 

Another special case ofequation 55 is obta~ined by expanding the tsnn Q as per equaticn 1s: 

- j’j q n d s -/jj.“dV = Q. (48) 
s ” 

Using Sewton‘s Law ofcoalin!g for convection: 

q.n = h,(T - T,), 135) 

Where 

q.= = heat flus normrl to surface, s. 
T = Temperature of fluid 
T, = Temperature of surface (wall). and 

1 
h, = heat transfer coefficient. 

Equation 55. neglecting the pressure terms, beconxs: 

\vhich is useful for accounting for heat transfer between the tluid and the pipe or tube walls (es: boiler hc3t 
tmnsitr). 

The hea :mnsfer coefficient. h,. is supplied through empiricnl relations. The turbulat beating term 
T 

!‘J[ : 
V v dV generally can be neglected or added as a pump heat term. 

1.6 The Equation of State 

From the conservation equations. we have three equations for each phase (mass. momentun and energ)’ 
conservation) and four unknowns: 
II densin. p or mass. Vp. 
1) veloci~.~. v, or mass flow. W, or momentum. pv, 
3) eflerz. 5. or mthalpy, h = e + P/p, or temperature. ~I‘ = fn(e) or fn(h). and 
4) pressure. P. 

I> ~T,i..,C,, Il,.i.,,.~l~ A,+ \\,.\ mrc,,>hn 2” Id”, I I 
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The fourth equation required for closure is the equation of state: 

) P = fn(h,p) or p = fn(P.T) etc. (60, 
i ” Thennodyanlic equilibrium is usually assumed. For \\ater. I<,0 or D:O. tables of properties give the 

required functional relationship. Ofwn, a curve fit of the tables is used. This data is input to the computer 
codes and utilized in table lookup schemes or directly \.ia the parametric curve fits. 

The equation of state is discussed in detail in chapter 4. 

2.7 Empirical Correlations 

-\s prrAously discussrd. supporiing :ela:ions are required to provide the ~ecessar) inionnation for the 
consen’ntion and state equations. The primaq. areas where support is needed are: 
I) relationship between quality and void fractions. i.e.. slip velocities in two phase tlow (to Iirk !k,e 

mass and enthalpy via the state equation); 
2) the stress tensor. r (effects of wall shear, turbulence. flow regime and fluid properties on momentum 

or, in a word: friction); 
3) heat transfer coefficients (to give the heat enerz transfer for a given temperature distribution in heat 

exchangers. including steam generators and r<:actorsj: 
-1; 
5) 

thermod!namic properties for the equation of state: 
HOW regime maps to guide :he selection. ofcmpirica! correlxions appropriate to the tloxv regime in 
question: 

6) special component data for pumps, valves, steam drxns. pressurizers, bleed or degasser condensers. 
etc; and 

7) critical heat flus information (this is not needed for the solution of the process equations but a 
measure ofengineering limits is needed to guide the use ofthe solutions of the process equations as 
apphed to process design: 

The above list of correlations. large enough in its o\\n right. is but a s&se: of the full list thx would bc 
required were it not for a number of key simpli~ing assumptions made in the derivntion of the basic 
equations. The three major nssunptions made for the primar!. heat transport system are: 
I, one dimensional flow: 
1) thermal equilibrium (except for the pressurizer under insurgej; and 
3) one fluid model (i.;. mixture equations). 
These are required because of state of the art limitations ~,however. two :luid models ae being used 
increasingly in recent years.). Empirical correlations are discussed in more detail in chapter 7. 

2.s Solution Overview 

UCC:ILIS~ ol‘k complexity of solving the mass. mcmentum dnd energy equations plus supporting equations 
ol’stntc and empirical correlations all subject to initial and boundaIT conditions. it is quite easy to “not see 
the forest for the wcs”. A skeleton overview may help in this regard. Figure 2.2 illustrates the equations 
and the information links benveen them. In words. the momentum equation gives the tlows or velocities 
from one node to another. or from one grid point to another. based on a given pressure. tlow. mass and 
energy distributioa. .The updated tlows are used by the mass and energy equations LO update the mass and 
energy contents at each location. The new mass and energy are given to the equation of state to update the 
pressure distribution. The new pressure. along with the new densities and energies are used by the 
nwnu~~un~ equation. and so on. In this manner. a time histon oiths Huid evolution is obtained. Ofcourse. 
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only the main variables are noted. The numerous and diverse empirical correlations require updates on the 
main variables and many secondary variables. This infomkun also “flows” around the calculation. 

A further point to note on the solution overview is that eech phase in a multiphase tlov~ has a main 
infomkon tlow path as shown in figure 3. In the full UVUEUP (unequal velocity. energy and pressure) 
model. there are t\vo distinct phases: one for the vapour phase and one for the liquid phase. If a simplified 
model was imposed, this essentially means that the planes would touch at sane point. For instance. ifequal 
pressure in both phases was assumed. then figure _. 7 4 would resul:. Here, the equation of state is common 
to both planes. 

The HEM (homogeneous equilibrium model) is the fully collapsed cast where both planes collapse into one 
(figure Xi. You may find the?e images !o be usefu! in conceprualizing the basic equations and how the! 
tit together. 

The precise solution procedure that yor: might e:nplo) is case dependent. A: present. no genexl solution 
scheme exists because the nuances of specific problems are subtle and becaux one cannot usua!ly afford to 
ignore the efficiency and cost savings gained by tuning a method to a particular case. The economics oi 
using a case specific code are changing, however. with developments in the microcomputer field and xvith 
:he rea!ization that total design and analysis time can often be reduced by using a less efftcient but I~CR 
robust code. Cedes such as SOPHT and CATHENA [HAN951 are a direct result of this rea:iation. The 
near term evolution will likely be lffected mostly by microcomputer developme!lts. 
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2.9 Exercises -~ , 
i ,_L_ I. For a pool-type research reactor as shown in figure 2.5. which form of the mass. momentum and 

energy consenation equations are the appropriate ones to use for the following cases: 
a. Pipe connecting the pool to the Hold Up Tanli (HUT) 
b. Mixing within the HUT 

Pipe cxtnecting the HUT to the Heat Exchanger (IHX) 
2 The HX 
e. Flow through the fuel assemblies. 
f. The Pool 
For each case. write out the appropriate equations. 

7. For the same pool-ppc reactor: 
a. Derive the simple steady state “:wa!l reactor core heat balance equation relating the reac!“r 

power, core tlow and core AT. Defend your assumptions. 
b. Would the reactor coolant outlet AT change vev much when the reactor p”\ver changrs’? 

Explain. 
c. Derive the simple steady state equation to determine the Heat Transpcn System tlo\\~. 

Defend your assumptions. 
d. Would the reactor ccolant flow change very much when the reactor power or temperawe 

changes? Explain. 
e. Based on the above, in modelling which needs to be determined lilst. the heat transfer 

situation or the hydraulic situation? 

;. Referring to figure 2.2: 
3. Explain the inter-relationship between the mzss. ummentum and energy equations and the 

equation of state. 
b. For the integral form. devise a simple solution scheme for the transient equations. Go\\ 

what equations are being solved and how they are being solved. Flow chart your scheme. 
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MOMENTUM 
EQUATION 4 

+ I.C. + B.C. 
A 

+!.C. + B.C. t I.C. + B.C. 

(pressure =I, (Miss. Energy)) 

Figure 2.2 The four comcrsrcne single phase flow equations and the flow of information bet\ve-en them 



Figure 2.3 The four cornerstone equations for the 
full two-tluid mode!. 

Figure 2.4 The four cornerstone equations for the 
two-tluid model with equal pressure of the two 
phases. 

:,. j 



Figure 2.5 Simple pool-type research reactor 
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