
Chapter 4 Equation of State 

+B 4.1 Introduction 

4.1.1 Chapter Content 

As discussed i? chapters 2 and 3, the momentmn equation gives an update on the flows or velocities l?om 
one node to another, or f?om one grid point to another, based on a given pressure, flow, mass and rnthalpy 
distribution. The updated flows are used by the mass and enthalpy equations to update the mass and enthalpy 
contents at each location. This information is given to the equation of state fo update the pressure 
distibution which, along with the new densities and enthalpies is used by the momenmm equation, and so 
on. In this manner, a time history of the tluid evolution is obtained. Of course, only the maii variables ue 
noted. T&e numerous and diverse empirical correlations require updates on the main variables and many 
secondary variables. This inormation also “flows” around the calculation. 

This chapter explores how to get the pressure given information !?om the governing consenation equatiorx. 

4.1.2 Learning Outcomes 

Objective 4.1 The student shouid be able to calculate zny dependent thermodynamic property given 
any two independent state variables using (a) the steam tables. tb) supplied codes, (c) 
supplied curve fits to the steam tables. 

Cotaion Open book written examination. 

Standard 100%. 

Related Water properties. 
concept(s) 

Classification Knowledge Comprehension Application Analysis S:-nthesis Evaluation 

Weieht a a a 

Objective 4.2 The student should be able to develop a flow diagram and pseudo-code for the 
calculation of P and T given density and enthalpy. 

Condition Open book \\titten examination. 

Standard 100%. 

Related The rate form of the equation of state. 
concept(s) 

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation 

Wei& a a ‘a 



Objective 4.3 The student should be able to explain the pressure and temperature response of a 
volume of fluid to perturbations given the F and G functions. 

Condition Open book written examination. 

Standard 100%. 

Related The rate form of the eqttation of state. 
concept(s) 
- 
Classification Knowledge Comprehension Application Analysis Synthesis Eva!uation 

Weight a a 

4. I .3 Chapter Layout 

Tine exploraticn of the appropriate forms of the equation of state to use for systems analysis begins by 
reflecting on the thermodynamics and the iterative method of fmding pressure. Next a non-iterative method 
is offered as an improvement. This leads naturally to the water property evaluation. Fast, accurate curve firs 
are presented. 

..~,.j 

4.2 Thermodynamic Properties 

From a thermodynamics viewpoint (see, for instance Sears [SEA75], the equation of state of a substance is 
a relationship between any four thermodynamic properties of the substance. three ofwhich are independent. 
An example of the equation of state involves pressure P, volume V. temperature T and mass of system: 

n (P, V, T. M) = 0 (1) 

If any three of the four properties are fixed, the fourth is determined. 

The equation of state can also be written in a form which depends only on the nature of the system and not 
on how much of the substance is present, hence all extensive properties are replaced by their corresponding 
specific values. Thus 

n (P, v, T) = 0 (2) 

is the specific value form of the above equation of state, where vis the specific volume. If any two of the 
thermodynamic properties are fixed. the third is determined. 

From a thermodynamic point ofview, the appropriate way to present water properties is by tables or formula 
for each property expressed as a function of the independent parameters P and T, as per Meyer [MEY67 or 
Haar [HARg4] (figure 4. I). Thus given values of pressure and temperature. the calculation of other 
thermodynamic properties is usually straightforward. On the other hand, the determination of pressure from 
know values of other thermodynamic properties is not direct since interpolation and iteration is required. 
Unfortunately, T and P are rarely the independent parameters in system dynamics since the numerical 
solution of the conservation equations yield mass and energy as a function of time. Hence, 6om the point 
of view of the equation of state, it is mass and energy which are the independent parameters. Consequently, 
system codes are hampered by the form of water property data commonly available. 

A key point to note is that the conservation equations are all cast as @ eauations whereas the equation of 
state is typically written as an algebraic equation. This arises horn the basic assumption that, although the 
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properties of mass, momentum and energy must be traced or solved as a limcticn of time and space, the 
corresponding local pressure is a pure function of the local state of the fluid. Process dynamics are not 
considered. This is the essence of the equilibrium assumption (in a like manner, of course, we invariably use 
steady state heat transfer coefficients, etc. in dynanic processes). Historically, this mixture of form arose 
because thermodynamics endeavours were concerned with equilibrium states and not with system processes. 
System modellers, on the other hand, emphasized system dynamics and used what was available for 
constitotive relations. System modellers are more concerned with numerical problems. 

But the decisive role of the equation of state in detem&ing system dynamics was recognized early. Paynier 
[PAY601 identifies the power throughput as being the most important parameter for system dyramics. Power 
is ccmposed of’he product of etKxt (i.e. force or pressure) and flow. Porsching pOR7 l] correctly identifies 
the important role of flow in his work and by keying the formulation of node-h& networks to flow, stable. 
efficient and cccumte solution schemes result. However, the role ofpressure has not received the equivalent 
acknowledgement. Although the system dynamics are captured in Pcrsching’s Jacobian, the essence ofthe 
system &ynamics is not apparent. Nahavandi &GUO] comes much closer to recognizing the role ofpressure 
and explicitly casts the equation of sta!e in rate form Unfortunately, the system essence is again not 
apparent because Nahavandi’s form is very case specific. 

Most other popular schemes. foi instance, Agee [AGE83], use the algebraic form of the equation of state. 
This treatment puts the pressure determination on the same level as heat transfer co&icients. Thus, althou& 
numerical ‘solution of the resulting equation sets give correct answers (to within the accuracy of the 
assumption), intuition is not generated and tie ccnsuming iterations must be performed to get a pressure 
consistent with the !ocal state parameters. 

We look iirst at such an iterative scheme and then consider a more efficient alternative (the rate method). 

4.3 The Iterative Method 

Given the densiry sod enthalpy of a volume of water, the task at hand is to find the associated values of 
pressure and temperature. Fi-me 4.2 shows qualitatively the relation between density, p. and enthalpy, h. 
for a given P. At low enthalpy, the fluid is single phase liquid and the density is high. As heat is added and 
the fluid reaches saturation tezuperature. vapour is generated to form a two-phase mixture and the density 
approaches the vapour density. The curve is well behaved and continuous making it a suitable candidate for 
numerical search routines. 

We stat the iteration procedure by guessing a pressure. Usually in system transient simulation codes. the 
value of P at a previous time step is a good choice. Given P we calculate hl,, and hpC, the saturation 
enthalpies for the liquid and vapour phases, respectively. Ifh < h,, then tie fiuid is single phase liquid. If 
h z h, then the fluid is single phase vapour. Otherwise the fluid is a hvo-phase mixtore with a quality. x 
E [O,l]. 

The case of two-phase equilibrium is considered first. Subsequently, the equations are extended to cover 
single phase and two-phase non-equilibrium fluid. 

4.3.1 Two-Phase Equilibrium Fluid 

For two-phase fluid, the density and enthalpy are functions of the pressure and quality. Since we know the 
density, p. we can estimate the quality (x.,) for the guessed P (assuming~ a homogeneous mixture) since: 
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v = 1 = v&P) + SC%, v,(P) 
P 
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(3) 

and thus calculate the enthalpy based on the guessed P: 
h <St = h@‘) + yes, h,(P) (4) 

l’bis estimated value ofh will differ from the known value ofh. This difference is used to drive the iteration. 
ie, to update the guessed pressure as illustrated in figure 4.3: 

Ap = Ah 
wwp (3 

The dewminator in equation 5 must be evaluated numei.cally if analytical expressions are not available. 
The presswe is updated via: 

P = P + AP (6) 

and the iteration is repeated until the pressure has converged to some tolerance. The temperature is just the 
temperature of saturated fluid at that pressure. 

4.3.2 Single-Phase Sub-cooled and Superheated Fluid 

For sing!e phase fluid. tie density and entbalpj are functions of P and T_ ie: 
p = p(P, T) and h = h(P, T) (7) 

For a guessed P and T, p and h can be found directly from the water propertj~ tables. But this is just an 
estimate since. P and T are guessed. The true values of p and h lie some distance away md, to a first 
approximation, the true values and the estimated values are related by a Taylor’s series expansion: 

or, more compactly. 

Defining Ap = p - pet, and Ah = h - k,,, we solve for AP and AT: 

(11) 

AP = G,, Ap + G,, Ah 

AT = c-,, Ap + G,, Ah 
i .., 



The G functions are summarized in table 4.2. The derivatives must be evaluated numerically if analytical 
expressions are not available. 

The pressure and temperzhlre are updated via: 
?=P+AP and T=T+AT (14) 

and the iteration is repeated until the pressure and temperature have converged :o some tolerance, 

4.4 The Rate Method 

We next consider a scheme (called the Rate Method) that elimkates the need for iteration with no loss in 
accuracy. The case of hvo-phase equilibrium is considered first in order to illustrate the method. 
Subsequently, the equations are extended to cover single phase and two-phase non-eqvilibriun fluid. 

4.4.1 Two-Phase Equilibrium 

For a two-phsse homogeneous mixture we have: 
v = VI + XV@ 

h = h, + xhfg 

where v~* - vs- v,and hf, : tt-h, 

(1% 

(16) 

We wish to relate rates of change of pressure to rates of change in p and h. Specifically, we desire: 

dP = G,dp + G,dh or g=G &+G e 
dt ’ dt ’ dt 

(17) 

since dp/dt and dh/dt (or equivalently, dM/dt and dH,/dt) are available horn the mass and enthalpy 
conservation equations. Fkst concentrating on the cnse of constant p (or v), to obtain G,, we differentiate 
equation (16) to gives: ’ 

Usicg equation (15), holding vconstant (i.e., p = constant): 

(19) 

Substituting this in~to equation (18) gives: 

or equally: 

(20) 

(2i) 

“k 
{DENOMMATOR] % = G2 Z. 

This gives the pressure rate response due to an enthalpy rate change, holding p constant. 



If we repeat the above but holding h constant we find: 
,-~ 
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dP -= - hfg hg 9 
dt {DENOMINATOR) % = {DENOMINATOR) t 

dP =G A!!!, 
’ dt 

(22) 

Note that G, and G, ke functions that depend only on the local saturation fluid properties and their slopes 
a: the local pressure. 

Combining equations 21 and 22 to get the total pressure rate response when both h and p are varying: 
dP dp - = G, (P, x) lit + G, (P, x) ;+ 
dt (23) 

This is the rate form of the equation of state for two-phase equilibrium fluid in terms of the intensive rate 
properties, dp/dt and dh/dt, which are obtained f?om the continuity equations. 

Equation 23 cau be cast in the extensive form by noting that, since p = M/V and h = H/M, 
dp _ 1 dM M dV -- --- -- 
dt v dt v2 dt (24) 

and 
dh 1 dH H dM -=-----, 
dt M d! M2 dt 

Sbstirxing into equation 23 and collectiag terms: 

After some sleplification anh rearrangement we find: 

F dM ,F dH+F !!! 
dP ‘t ’ dt ’ dt 

1 -= 
Li ~/’ dt MsFa + M,F, 

\VheFC: 
F, = h,vi - hfvs 
F, = vg - vI 

F, = h, - hz 

(25) 

(27) 

Ms 5 xM 
M, - (I x)M 

The F functions are smooth. slowly varying functions ofpressure (see appendix 4) provided good curve fits 
are used. The latest steam tables [HAA84] were used to fit saturated properties to less than l/4% accurac) 
using low order polynomials and exponentials [GAR88]. Considerable effort was spent on obtaining 
accuracy gnJ ccntinuous derivatives over the 111 pressure range. The fact that good fits are available means 
that the F functions are well behaved which in hum makes the rate form of the equation of state extremeI> 
well behaved, as shown !ater. 

The G functions are also well behaved for the same reasons. 



(38) 

which is the intensive form xve desire. 

The extensive form is obtaked as for the hvo-phase equilibrium case. Equations (24) and (25) are 
substihlred into equations (37) and (38) and after rearrangement we find: 

F dM + F 
IP dt 

dH + F dV 
dP 2p t ‘p 77 -= (39) 
dt Mv F,, + M,FsP 

F 
dM dH d\’ 

dT 
,T - + F,, - + F,, - 

dt dt dt -= (4Oj 

dt M,F,., + M,FsT 

where 

F,~=P~)~-~~]~ 

F ZP = 
a 

-t 
P 

F = 3P 
-g *I 

3-r) 

F JP = 0 for subcloled, = $1, g],. - g), s), for superheated 

for subcooled = 0 for superheated 
T 

F 2T = 
a 

-x 1 T 
F 

Jh 
3T = -pdT T ! 

F 47 = - Fe 

F IT = -F,, 

Mv = mass of vapour phase = 0 for subcooled, = M for superheated 

M, = mass of liquid phase = M for subcooled = 0 for superheated 

(41) 

-l.4.3 Two-Phase Non-Equilibrium 
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The rate form for the equation of state for the two- phase non-equilibrium case is a simple extension of the 
single-phase non-equilibrium case. The liquid and vapour phases are treated independently to give: 

dP, 
- 
dt 

= G,; 2 + G,“p 2 (42) 

dT, k dp, dh~ 
- 

dt = % dr - + G,; -wi 
- dt 

(43) 

where k represents either P or v for the liquid or vapour phases respectively. in general, the 6 equation mode! 
(3 continuity equations for each phase) would be used for the general unequal temperature, unequal velocity, 
unequal pressure situation. Thus dpJdt and dhJdt are available to the rate form of the equation of state. 

The expressions for the F and G fuuctions are summarized in tables 4.1 am! 4.1. These expressions cover 
the ,%ii range from sub-cooled liquid to superheated steam. 

4.5 H,O Property Fits 

To facilitate the calculation of water properties, the 1984 standard tables were accurately curve fitted as 
discussed in detail in appendix 4. These fitted functions are supplied in the files H20PROP.FOR and 
H20PROP.C for user convenience. These FORTRAN and C functions cover a wide range ofpressures and 
temperatures and sholuld be sufficient for most nuclear reactor simulations, with the exception of severe 
accidents that generate extreme conditions. These functions are fast and more than accurate enough given 
the other emcs in system simulation {GARSS, GAR89. GAR92]. 

The basic overali approach taken in tbe curve fitting task was that, since the more difficult region to fit was 
the transition fiotu single to two-phase and since most power plants operate at or near this region, careful 
attention would be paid zhe phase uansition region at the expense of accuracy away from the saturation line. 
if necessary. Thus, the first major step was to accurately fit the saturation lines. Then, since density. 
enthalpy and other properties vary more suoEgly with T than with P (as shown in figure 4.4), the property 
in question, say density, would be calculated based on the deviation from the saturation value at the given 
T. ie: 

PV’,-O = p,,,(T) + s 
I 

T(p - P,,,(T)! 

Figure 4.5 illustrates the strategy. It should be obvious by now that not only the properties need to be fitted 
but the slopes are ceeded as well. Both the properties and the slopes of the properties must be free of 
discontinuities if numerical searches are to converge. 

The supplied code is divided into 3 levels: 
- Level 1: the fitted functions 
- Level 2: derived functions and collections of functions (for convenience) 
- Level 3: logic sorter and manager 

Details on these routines are given at the end of appendix 4. It is instructive to study appendix 4 in 
conjunction with the supplied code (WATERAJOR, PROPA.FOR, HZOPROP.FOR). 

Having derived the desired rate forms for the equation of state. we proceed to chapter 5 to illustrate the utility 
of the approach, as indicated in the Introduction. 
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4.6 Exercises 

I. Using the spread sheet macros for Microsoft Excel supplied by G.R. McGee (as per the memo at the 
end of this chapter, calculate and plot the density, enthalpy, quality and void 6action for a range of 
pressures ( 1 to 100 atmospheres) and temperaties(50 “C to 350 ‘C). Make sure you cover the 
subcooled, saturated and superheated ranges. 

2. 

3. 

Using the supplied code, WATERA.EXE: 
a. Calculate p and h for P=lO MPa and T=3Otl “C. Increase the temperature in steps to see the 

approach to two-phase. 
b. Using p and h slightly different than that found in (a), calculate P and 1‘. 
C. Practice calculating p given h and P. 

Using the supplied skeleton code N0DE.C: 
a. Fill in the missing code required to caiculate P and T given p and h. 
b. Use the code to calculate AP and AT when a node experiences a AM, a AH or a AV. 

Compare your answers to WATERA.EXE. 
C. Use the code to calculate AP and AT when a node experiences a Ap and a Ah. Compare 

your answers to WATEPJ.EXE. 

‘1 . , 



Eyudm of S/o/e 4-11 - 

,bje 4.1 summary of the I: func1ior.s fir the rate form of lhc equation of state 

hse F, F2 h F, F, 

241 equilibrium 
(all derivatives 
along saturation 

ha vt - h[ Yg "k! h rg 
3 av 
JP 

Yea - -1 h& Jh, av, 

JP 
- Vf& - I$; 
dl’ JP 

line) - 
l@ non- 0 subcooled 

equilibrium 
pressure P “:.I, -bglp - g],, 

+ ;;I,, g], gp _ g], !igtl.r ~~;c;o+‘l. f% 

superheated 0 superheated 

14 non- 
equilibrium p$],/h$$ -$j, -P’$]~ -Fe - F,,. 
temperature 

Table 4.2 Summary of the G functions for the rate form of the equation of state - -- 
Case (I, 

- 
G2 

24 equilibrium 2 
(all derivatives 
along saturation 

line) 
F[$ +x $:,,[i?$ +x $j/~;,Thfa,~ *x t$]i 

14 non-equilibrium 
pressure 

11$ non-equilibrium 
temperature 

- - _ . . _ ^ 
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Fkure 4.1 P-v-T surface for water. 

.%.::I Figure 4.2 Nmerical search for P @n p and h for a two-phase mixture, 



I 

P 
Figure 4.3 Error correction scheme for pressure in two-phase. 

Figure 4.4 Density vs. pressllre at various temperatures in subcooled water. 
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Figure 4.5 Basis for arve fitting in the subcooled region. 
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