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5.1 Introduction 

5.1.1 Chapter Overview 

In conjunction with the usual rate forms of the conservation equations, ‘he time derivative form of the 
Equation of State is investigated from a numerical consideration point of view. By recasting the equation 
of state in a form that is on equal footing with tbe system conservation equations, several advantages are 
found. The rate method is found to be more intuitive for system analysis, more appropriate for 
eigenvalues extraction, as well as easier to program and to implement. Numerically, ?he rate method is 
found [GAR87a] to be more efficient and as accurate than the traditional iterative method. 

5.1.2 Laming Ootcomes 

Objective 5.1 
I 

The student should be able to develop a flow diagram and pseudo-code for the rate 
method of the equation of state. I 

I COllditiOn ’ Open book writse.n examination. 

; Standard 100%. 

I Related The rate form of the equation of state. 
concept(s) I 

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation 

Weight a a a 

Objective 5.2 The student should be able to develop a computer code implementing the rate method 
of the equation of state. 

Condition Workshop or project based investigation. 

Standard 

Related 
conceot(si 

100%. Any computer language may be used. 

The rate form of the equation of stare. 

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation 

We&t a a a 
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Objective 5.3 The smdent should be able to model a simple thermalhydraulic network using the 
integral form of the conservation equations and the rate form of the equation of state. 
The student should be able to check for reasonableness of the answers. 

Condition Workshoo or uroiect based investigation. I 

1 Stan&7 1 100%. ~1 

Related 
concept(s) 

Integral form of the conservation equations. 
Node-link diagram. 
The rate form of the equation of state. 

Classification Knowledge Comprehension Application Anaiysis Synthesis Evaluation 

weight a a =A 

5.1.3 Chapter Layout 

Fist, the detivation of the rate form of the Equation of State is presented. Systematic comparison 
between the new method and the traditional iterative method is made by applying the methods to a simple 
flow problem. The comparison is then extended to a practical engineering problem requiring accurate 
prediction of pressure. 

5.2 The Rate Form 

Presently, the conservation equations are all cast as m euuations whereas the equation of state is 
typically written as an algebraic euuation [AGE83]. This arises l?om the basic assumption that, although 
the properties of mass, momentum and energy must be traced or solved as a function of time and space. 
the corresponding local pressure is a pure ftmctiol of the local srate of the fluid. Hence the equation of 
state is considered only as a constitutive equa:ion. This treatment puts the pressure determinations on the 
same level as heat transfer coefficients. Although numerical solution of the resulting equation sets give 
correct answers (to witi the accuracy of the assumption), intuition is not generated and time-consuming 
iterations most be performed to get a pressure consistent with the local state parameters. 

The time derivative form of the Equatiofi of State is investigated, herein, in conjunction with the usual 
rate forms of the conservation equations. This gives an equation set with two distinct advantages over 
the we of algebraic form of the Equation of State normally used. 

The first advantage is that the equation set used consists of four equations for each node or point in 
specs, characterizing the four main actors: mass, flow, energy and pressure. This consistent formulation 
permits the straight-forward extraction of the system eigenvalues (or characteristics) without having to 
solve the equations numerically. Theoretical analysis of this aspect is given in appendix 5. 

The second advantage is that the rate form of the Equation of State permits the numerical calculation of 
the pressure without iteration The calculation time for the pressure was found to be reduced by a factor 
of more than 20 in some cares (where the flow was rapidly varying) and, at worst, the rate form was no 
slower than the algebraic form. In addition, because the pressure can be explicitly expressed in terms of 

w,TUCMT)UrHTS2~pI,rpl -2s. 1w1 I*45 
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slowly varying system parameters and flow, an implicit numeric scheme is easily formulated and coded. 
This chapter will concentrate on this numerical aspect of the equation of state. 

The equation of state has been discussed in chapter 4 where we saw that the dete rmmation of pressure 
from known values of other thermodynamic properties is not direct. Interpolation and iteration is required 
because the independent (known) parameters are temperature, T, and pressure, P. Unfortunately, T and P 
are rarely the independent parameters in system dynamics since the numerical solution of the 
conservation equations yield mass and energy as a function of time. Hence, !Yom the point of view of the 
equation of state, it is mass and energy which are the independent parameters. Consequently, system 
codes are hampered by the fcrm of water property data. 

Having derived the desired rate forms for the equation of state in chapter 4, we proceed to illustrate the 
utility of the approach. 

5.3 Numerical Investigations: a Simple Case 

The simple two-node, one-l& system is (Figure 5.1) chosen to il!ustrate the effectiveness of the rate 
form of the equation of state in eliminatiig the inner iteration loop in thermalhydraulic simulatiorrs. In 
general, the task is to solve the matrix equation, 

over the time domain of interest. The key point that we wish to discuss is the difference in the normal 
method (where u = {M,, H,, W, M2, H,}) and the rate method (where u = {M,, H,, P,, W, M2, Hz, P2)). 
For simplicity and clarity, \ve first summarize work for a fixed time step Euler integration: 

u’+~’ = II’ + At[Au + b] (2) 

As we shall see, this is sufficient to generate some observations on the utility of the rate method. These 
observations then guide us in the use of more complicated and efficient algorithms. 

5.3.1 Norttul Method 

The nornxl method obtains the value of pressure at time, t+At, t?om an iteration (as discussed 
previously) on the equation of state using the vaiues of mass and enthalpy at time, t+At, i.e. +he new 
pressure must satisfy: 

pt.At = ~,(pt*“‘, h”A’) (3) 

where both p and h are pressure dependent functions. Any iteration requires a starting guess and a 
feedback mechanism. Here. the starting guess for pressure is the value at time, t: P’. Feedback in the 
Newton-Raphson scheme is generated by using an older value of pressure, P”“, to estimate slopes. Since 
the slope, &/aP, was readily available from the rate method, we chose to use this slope to guide 
feedback. Thus, in the comparison of methods, we have borrowed from the rate method to enhance the 
normal method. This provides a stronger test of the rate method. 

Thus we can now generate our next pressure guess from: 



- 
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h-h 
P “CL” =P gwrr + CI’*ADJ 

ah/ap (4) 

where his the known value of h at t+At and h, is the estimated h based on the guessed pressure as 
discueed in detail in chapter 4. ADJ is an adjostment factor E[O, 11, to allow experimentation with the 
amount of feedback. This iteration on pressure continues until a convergence criteria, P,, is satisfied. 
The converged pressure is used in the outer loop in the momentum equation and the time can be 
advanced one time step. Figure 5.2 summarizes the logic flow. 

5.3.2 Rate Method 

The rate method obtains the value of pressure at time, t+At, directly from the rate equation as is done for 
the conservation equations. Equation 27 of chapter 4, gives the rate of change of pressure which can be 
solved simultaneously with the conservation equations if substitutions for dM/dt and dH/dt are made, 
leading to: 

where I: = (M, H,. Pi, W, M> H,, PI} 
ThUS: 

p y = Pj + At[Au + b$ 

No inner iteration is reqoired. as show in Figure 5.3. 

(6) 

One problem with this approach is that tbc pressure may drift away from a value consistent with the mass 
1 and energy. This problem does not arise with the conservation equations because the equations are 

conservative in form, by design. It is not possible to cast the rate form of the equation of state in 
conservative form since pressure is simply not a conserved property. We can surmount the drift problem 
by using the feedback philosophy of the normal method. Thus the new pressure is given by: 

PIi**’ 
h-h 

= P; + At[Au + bli + e”*ADJ 
map 

This correction term uses only readily available information in a non-iterative manner. 

In essence, the main effective difference between the normal and rate method is that during the time step 
between t and t+At the normal method employs parameters such as density, quality etc. derived f?om the 
pressure at time. t+At. whereas the rate form employs parameters derived from the pressure and rate of 
change of pressure at time. t. The normal method is not necessarily more accurate, it is simply forcibly 
implicit in its treatment of pressure. The rate method can be implicit (as we shall see) but it need not be. 
Without experimentaiion it is not evident whether the necessity of iteration in the normal method is 
outweighed by the possible advantages of the implicit pressure treatment. 

The next sections tests these issues with numerical experiments. 

5.3.3 Comparison 
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The two node, one link numerical case under consideration is summarized in figure 5.1. Perhaps the most 
startling difference between the normal and rate methods is the difference in programming effort. The 
rate form was found to be extremely easy to implement since the equation form is the same as the 
continuity equations. The normal method took roughly twice the time to implement since separate 
control of the pressure logic is required. This arises directly from the treatment of pressure in the normal 
method: it is the odd man out. 

The second startling difference was ease of execution of the rate form compared to the normal form. The 
normal form required experimentation with both the pressure convergence tolerance, P,, and the 
adjustment factor, ADJ, since the solution was sensitive to both parameters. The rate method con*aius 
only the adjustment factor ADJ. The first few I-U of the rate method showed that since the correction 
term for drift (ix-&)/(ah/CJp) is always several orders of magnitude below the primary update term, At (A 
u + h}, the soiution was not ai all sensitive to the value of ADJ. Thus the rate method proved easier to 
program and easier to run than the normal method. 

We look at the number of iterations required for pressure convergence as a function of P, and ADJ for 
the normal method without regard to accuracy. For a At of O.Olsec, P,= 10.’ (tiaction of the full scale 
pressure of 10 MPa), the effect of ADJ is seen in figure 5.4. This result is typical: an adjustment factor of 
1 gives rapid convergence (one or two iterations) except where very large pressure changes occur. For 
the case of very rapid changes, the full feedback (AJIJ = 1) causes overshoot. Overall, however, the tints 
spent for pressure calculation is about the same, independent of ADJ. 

Allowing a larger pressure error had the expected result of reducing the number of iterations needed per 
routine call. But choosing a smaller time step (say ,001) did not have a drastic effect on the peak 
interations required. The rate method, of co‘urse, always used 1 iteration per routine call and the 
adjustment factor ADJ was found to be unimportant since the drift correction factor amounted to no more 
than 1% of the total pressure update term. 

The integrated error for both methods is shown in figure 5.5. Both methods converge rapidly to the 
benchmark. The value of P,, is not overcritical. A value of P, consistent with tolerances set for other 
simulation variables is recomrcended. The time spent per each iteration is roughly comparable for both 
methods. The main difference is that the rate method requires the eviluation of the F functions over and 
above the property calls common to both methods. This minor penalty is insignificant ir. all cases studied 
since the number of iterations / call domtited the calculation time. 

In summary, to this point, the rate method is easier to implement, more robust and is equal to the normal 
method at worst. more than 20 times faster under certain conditions. We now look at incorporating a 
variable time step to see how each method compares. 

Typical variable time step algorithms require some measure of the rate of change of the main variables to 
guide the At choice. The matrix equation, equation 1, provides the rates that we need. Since the rate 
method incorporated the pressure into the u vector, the rate of change of pressure is immediately 
available. For the normal method, the rate of change of pressure has to be estimated from previous 
history (which is n6 good for predicting the omet of rapid changes) or by trial and error. The trial and 
error method employed here is to calculate the At as the minimum of the time steps calculated Tom: 



The Rate Form of the Equation ofState 5-6 

At, = (t?actional tolerance)x(scale factor for ui) 

aqm (8) 

This restricts At so that no parameter changes more than the prescribed kaction for that parameter. this 
can be implemented in a non-iterative manner for the rate method. However, for the normal method. tbc 
above mikmum At based on u is used as the test At for the pressure routine and the rate of change of 
pressure is estimated as: 

ap p,*at _ p t 
-= 
at At iv 

The At is then scaled down if the pressure change is too large for that iteration. Then the new At is tested 
to ensure that it indeed satisfies the pressure change limit. This iteration loop has within it the o!d inner 
loop. 

It is expected then, that the. normal method will not perform as well as the rate method primarily because 
of the “loop witin a loop” inherent in the normal method as applied to typical system simulation codes. 

A number of cases were studied sod the results of the normal method were compared to the rate method. 
The figure of nerit was chosen as 

F.O.M. = 
10,000 - 

(iitegrated error)x(total pressure routine timejx(No. of adjustable parameters) (10) 

Thus, an accurate, fast and robust method achieves a high figure of merit. Some results are listed in 
table5.1. Derating a method with more adjustable parameters is deemed appropriate because of the figure 
of merit should reflect the effort involved in usiog that method. On average, about 6 runs of the normal 
method. with various P, and ADJ were needed to scope out the solution field compared to 1 run for the 
rate method. Thus a denting of 2 is not an inappropriate measure of robustness or effort required. 

The results indicate that the rate method is a consistently better method than the normaI method io terms 
of numerical perfomxmce. We see no reason why this improvement would not exist for any thermal 
hydraulic system in which pressure field determination is required. 

Next we briefly discuss implicit numerical schemes. 

The nod al equations are: 

dH 
--! = -h,W and % 

dt 
- = +$W 

dt 

(11) 

(12) 
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dM, dHi 
3 = F’ dt + F2x (13) 
dt MP, + VS ’ 

i = 1.2 

Considering just the flow and pressure rate equations. we have (after substituting in for dM/dt and 
dH/dt): 

dW - = ?(P,-PJ - +wlW 
dt (14) 

s= dPZ 
dt 

-x,W and - = +;12w 
dt 

where x, and x2 are > 0 2nd are given by: 
F, +E, 

’ = MsF, + M,FS 

evaluated a: the !ocal property values of nodes 1 and 2. 

Employing the folly implicit scheme, the difference equations are cast 
&‘t*At-VJ 1 

At 
P;‘A’) - tKI?V ‘I!‘/‘-” 

(15) 

(16) 

(17) 

p;‘Qi 

At 
= Q$p’ ,p;‘A’-pi’ = =X,W’*QJt 

Collecting terms and solving for the new flow: 

W’*hi = 
I 
1++/W’lAt +. ~(&ix~pt’~~ \V ’ + 

1 I 

(18) 

(19) 

This is the implic‘it time advancement algorithm employing the rate form of the equation of state. For the 
normal method. the pressure rate equation in terms of flow (i.e.. equation IS) is not available to allow an 
implicit formulation of the pressure. Consequently, the implicit time advancement algorithm for the 
normal method is: 

(20) 

To appreciate the difference between equations 19 and 20. consider the eigenvalues and vectors of 

duo = A(u,t)u(t) 
at (21) 

If we assume. over the time step under consideration, that A = constant and has distinct eigenvalues, then 
the solution to equation 21 can be written as: 
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where uI = eigenvectors 
ai = eigenvalues. 

It can be shown that for the explicit formalism, the numerical solution is equivalent to: 

uI+~’ = $ (1 +a,At)u, (2% 

while the implicit form is: 

“t*Qt = 2 5 

t-1 (1 -+t) (24) 

The eigenvalues can often be large and negative. Thus, at some At, the factor (l+a&) can go wgative in 
the explicit solution causing each subsequent evaluation of u to oscillate in sign ad go unstable. For the 
implicit method, the contributions due to iarge negative eignevalues decays away as At - -_ Thus the 
implict formalism tend to be very well behaved at large time steps. Positive eigenvalues, by a similar 
argument pose a threat to the implicit form. However, this is not a practical problem because a,At is kept 
<<I for accuracy reasons. Thus, as long as the sol&cm a!gorithm contains a check on the rate of growth 
or decay (effectively the do minant eigenvahies) then tile implicit form is well behaved. 

With this digression in mind. we see that the implicit rate formalism (equation 19) hzs more oftbe system 
behaviour represented implicirly than the normal method (equation 20). Thus. we might expect the rate 
firom to be more stable than the normal form. Indeed, this was found to be the case as shown in figure 
5.6. For a fixed and large time step (C.lsec.) the normal method showed the classic numerical instability 
due to the explicit pressure treatment. The rate form is well damped and very stable, showing that rbis 
method should permit the user to “calculate tbrougb” pressure spikes if they are not of interest. 

5.4 Numerical Investigations: a Practical Case 

The comparison between the normal and rate methods is extended to a practical application where a two 
node homogeneous model is used to simulate a transient of a small press&izer operating at near- 
atmospheric pressure. The procedure is briefly described in the following [SOLSS]. 

Figure 5.7 illustrates the problem. Steam and stratified liquid water in the pressurizer are schematically 
shown as two contra! volumes (nodes). The nodal fluids are assumed to be at saturated w-phase 
conditions corresponding to the pressure at their respective control volumes. The overall boundary 
conditions to the system are the steam bleed flow at the top of the pressurizer, the flow into and out of the 
pressurizer through the surge line, heat input from heaters at the bottom of the pressurizer and heat loss 
to pressurizer wall. 

The rate of change of mass, M, in the steam control volume and M, in the liquid control volume, can be 
expressed by the following: 

dM 
2 = -wsm-w,,-w,,+w,,+w,, 

dt 



ML 
- = WSR!” dt 

-w,,-w,,+WcD+wc, (26) 

where W,, is the steam bleed flow, W,, is the surge line inflow, W,, is the interface condensation rate 
at the liquid surface separating the steam control volume t?om the liquid control volume, W, is the 
interface evaporation rate at the same liquid surface, Wc, is the flow of condensate droplets (liquid 
phase) fkom rhe buik of the steam cone01 volume toward the liquid control volume, and W,, is the rising 
flow of bubbles (gas phase) from the bulk of liquid volume toward the steam volume. 

The rate of change of energy in the hvo control values tax be expressed by the rate of change in the 
total enthalpy, H, and H,, in the steam and liquid control volumes respectively: 

fis - 
dt 

= -~~,,h,,-W,,h,-Wc,~,s~+WF,~~,Q+WaRhyQ-Qws+Q~-(l +![(I -&)Q,,,+Q,,,] (27) 

ml. - 
dt = Ws~hsRi-Ws,hnQ-WaahBLF+Wc,h~T+WcDh~~-Q~+Q~~-Q~--P[(1-~)QCOND+QEWR (28) 

where h,, is the specific enthalpy of the fluid in the surge line, bssT and bT are respectively the 
satwatcd gas phase specific enthalpy and the sahuated liquid phase specific enthalpy in the steam control 
volume, tk-Q and Iho are respectively the sahxated gzw phase specitic enthalpy and the saturated liquid 
phase specific entba!py in the liquid control volume, Q,.,s aad QWL are the rate of heat loss to the wall in 
the steam contrcA volume and in the liquid control volume respectively, Qm is the heat transfer rate from 
the liquid control volume to the steam control volume due to any temperature gradient, excludiig those 
due IO interface evaporation and condensation; QcoND is the rate of energy released by the condensing 
steam to both the steam and liquid control volumes during the interface condensation process and QEvpR 
is rate of energy absorbed by the evapcjrating liquid from both the steam and liquid control volumes 
dtig the interface evaporation process. The constant, p, represents the kaction of these energies 
distributed to or contributed by the liquid control volume. The ratio 8 represents the pofiion of energy 
released during the interface condensation that is lost to the wail. 

The calculation of swelling and shrinking of control volumes is only done for the liquid control volume 
and the volume in the steam control volumes will be related to the volume in the liquid control volume, 
V,, as: 

dV, dV, 

dt -dt 
P-9) 

The swelling and shrLkiig of the liquid control volume as well as values of W,,, W,,, Wc,, WE,, Wc,, 
Wm. Qws. Qw.. Qm QPW, p and 8 are calculated using analytical or empirical constitutive equations. 
The majority of these parameters depend directly or indiiectly on pressure. Any inaccurate prediction of 
pressure during a numerical simulation will result in severe numerical instability. Hence the above 
problem is a good testing ground for comparing the performances of the two methods. 

During the test simulation. the pressurizer is initialiy at a quasi-steady state. The steam pressure is at 
96.3 kPa. The sleam bleed flow, W,,, heater power Q,, and heat losses Qa and Q,s are at their 
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quasi-steady values, maintaining the sahuation condition of the pressurizer. At time = 11 sec., the steam 
bleed valve is closed and Ws, drops to zero while Qpwn is imxeased to a fixed value of 300 Watts. At 
;ime = 16 S&L, the steam b!eed valve is reopened and its set point set at 80 kPa. 

Since the thermodynamic properties in the steam control volume and the liquid control volume are 
fuoctions of P, and P, (pressures of the respective control volumes), there are seven unknowns from 
equations 21 to 25, namely: Msz ML, Hs, HL, Vs (or V,), P, and P,. Adding two equations of state, one 
for each control volume, will complete the equation set: 

Ps = fil(psbs) = 

P, = fn(pL,h,) = 

Both the normal iterative method and the rate method kz tested ;o sol+, Equations 26 and 27. The 
following observations are made: 
1. Using the normal method, the choice of adjusting P to converge on h given p or converging on p 

given h is found to be very important in providing a stable numerical result. At time step = !O 
msec, no complete simolation result can be generated when p was the adjusted variable. Ao 
explanation of this can be given by referring to G,(P,x), or aP/ap, This factor is proportional to 
the square of [x v,(P) + (I-x)vXP)]. However, the direction of change io the saturated gas phase 
specific volume with pressure is opposite to that of saturated liquid phase specific volume: 

dv$dP > 0 
dvJdP<O 

2. 

Therefore, a fluctuation in the value of pressure doting an iteration process will amplify the 
5uch1ation in the value of predicted density when that method is used; 
Using enthalpy as the adjusted variable to converge on P, simulation results can be generated if 
an error tolerance E of less than 0.2% is used. The error tolerance is defined as: 

E= 
=N-h~,,,J 

x100% 
h 

3. 

Figure 5.8 shows the transient of P, and P, for E = 0.2%. Unstable solutions resolt for E higher 
than 0.2%. The average number of iteration is found to depend on the error tolerance as shown 
in figure 5.10. 
On the other hand, the perfoncance of the rzte method is much more convincing in both accuracy 
and efficiency. The transient of P, and P, predicted using the rate method is showo in Figure 5.9. 

5.5 Discussion And Conclusion 

The rate form is a cogent expression of the equation of state that is distinct from the normal algebraic 
form. The essential difference is that the rate form expresses the relationship between the rates of chance 
of the state variables, while the normal form relates the static values of the state variables. Although this 
is stating the obvious, the change in viewpoint is revealing. 

No barrier is perceived to applying the rate form to the multi-node/link case, to the distributed form of 
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the basic equations, and to eigenvalue extraction (numerical or analytical). 

Although we have not made use of it in tbis work, tbe non-equilibrium form (equations 4.42 and 4.43) is 
provocative. It entices one to view the non-equilibrium situaticn as the essentially dynamic situation that 
it is and helps to focus our attention on the thermal relaxation. Given the temperature rate. equations, the 
non-equilibrium situation should be easy to incorporate without a major code rewrite. 

We conclude by restating our major findings. The rate method offers many advantages: 
1) It is more intuitive for system work. It permits a proper focus on the two main actors, flow and 

pressure. 
2) T?x same form is appropriate for eigenvalue extraction as well as numerical simulation. Tbis 

extends the usefulness of coding. 

3) Programs are easier to implement. 

4) Programs are more robust and require less hand holding. 

5; Tie step control and detection of rapid changes (like phase changes) is improved. 

Overall the method is usually faster and more accurate. Time savings peaked at a ratio of 26 for the cases 
considered. 

i 
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5.6 Exercises 

1. Consider 2 connected volumes of water with conditions as shown in figure 5.1 Model this with 2 
nodes and 1 lii. Use the supplied code (2node.c) as a guide. 
a. Solve for the pressure and flow histories using the normal iterative method for the 

equati.on of state, 
b. Solve for the pressure and flow histories using the non-iterative rate method. 
C. Compare. the two solutions and comment. 

2. Vary the initial conditions of question 1 so as to caose void collapse in volume 2 during the 
transient. What problems can you anticipate? Solve this case by both methods. 

_,’ 



l7k Rate Form ofthe Equation of State 

Table 5.1 Figure of Merit Comparisons of the Normal and Rate Forms of the 
Fipation of state for various Convergence criteria (Simple Case). 

5-13 

CO”VWWlCC Presrure 
emrian lull se&) Lntegnl routine Rclalivc’ 

can Muhod over.11 Re.rurr A03 error time AP’ FOW FOM 

1 PTUO 0.01 0.5 ml.39 24 1 2.31 

2 P nom o.o* 0.01 0.5 597.6, 25 2 0.33 6.90 

3 Pmt.% 0.001 0.5 21.13 96 I 4.?3 

4 Pnorm 0.001 0.001 0.5 19.819 119 2 0.53 9.37 

5 PllOlYU 0.001 0.0ow1 1 22808 246 2 039 5.53 

6 PDoIa 0.001 0.0001 t 2?..751 22s 2 0.96 5.14 

, POOL% 0.001 0.001 1 22.761 140 2 1.57 3.14 

0 Pacrm O.cal 0.01 1 22.847 128 2 1.71 2.M 

9 Pnt4 0.0001 0.5 0.534 7x 1 25.44 

10 PnOm o.ooo1 0.0001 0.5 2.2x6 862 2 2.60 9.ll 

11 PnUW o.ooo1 0.@001 1 o.,wl n94 2 Iuo 2.23 
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OUTEI 
LOOF 

Update Section I 
h yt-cat= (J’+Llt (it+ a) 

Where v = {M,. H,, W. M, Hz} 

Figure 5.2 Program flow diagram for the normal method. 
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START 7 
Initialize 

Parameters 7 
c c 

P P 

I 

Update Section 
u’+*‘= vi+ At ($ + B) 

Where u = {M,, Hi, PI, W, Mz. H2, P2} 

NO NO - 

YES 

Figure 5.3 Program flow diagram for the. rate method. 
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iii 
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0 
0 0.2 0.4 0.6 0.8 1.0 

TIME (set) 

Figure 5.4 Number of iterations per pressure routine call for the tiomai 
method with a time step of 0.01 seconds and a pressure error rolerance of 
0.001 of full scale (10 mPa). 

I 

TIME STEP (set) 

Figure 5.5 Integrated flow error for the rate method and the normal method for 
various fixed time steps, convergence tolerances and adjustment factors. 
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FLOW VS TIME 
4 

-4 I 
d:S 

I I 1 I I 
0 0.4 1.2 1.0 2.0 2.4 2.8 

TIME (SEC) 

Figure 5.6 Flow 
method. 

vs. time for the implicit forms of the normal and rate 

Figure 5.7 Schematic of control volumes in the 
pressurizer. 
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Figure 5.8 Presswizer’s pressure transient for the ~CZIEII method with error tolerance of 0.2%. 
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Figure 5.9 Pressurizer’s pressure transient for the rate. method. 
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Figure 5.10 Averaged number of iterations per pressure routine call 
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