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Chapter 6 Thermalhydraulic Network Simulation 

6.1 Introduction 

6. I. 1 Chapter Overview 

This chapter introduces some more advauced numerical algorithms for solving systems of ordinary 
differential equations such as found in the modelling of thermalhydraulic networks. Explicit tigorithms 
are simple to devise and program but they are resticted in time step so as to ensure stability. The more 
implicit the formulation, the more stable the sol;ltion in most instances. Larger time steps cao be used for 
implicit algorithms but the accompanying matrix manipulation is computationally costly. Herein, we 
explore the tradeoffs. 

G. 1.2 Leaming Outcomes 

Objective 6.1 The student should be able to apply the various numerical methodologies (fully 
explicit to fully implicit) to special cases of the thermalbydraulic system equations. 

Condition Workshop or projedt based investigation. 

Standard 75%. 

Related The various numerical methods. 
ccjncept(s) 

.-. 
j Classification Knowledge Comprehension Application Analysis Synthesis Evaluation 

Weight a a a 

t- Classification 
L 

1 Weight 

The student should be able to produce a general node-Iii code based on the 
cumulative concepts presented in this course. 

Workshop or project based investigation. A skeleton code is to be supplied. 

75%. The code may be written in the computer language of choice. 

The integral form of the conservation equations. 
The rate form of the equation of state. 
The water properties. 
The numerical algorithms. 
computer progaolmiog. 

Knowledge Comprehension App!ication Analysis Synthesis Evaluation 

a a a a 
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I Objective 6.3 The student should be able to evaluate the efficacy of the various numerical 
2lgOlithiS. I 

condition 

Standard 

Workshop or project based investigation. 

75%. 

Related 
concept(s) 

Classification Knowledge Comprehension Application Analysis Syn+&esis Evaluation 

Weieht a a a a 

6.1.3 Chapter Layout 

Porcsching’s method is explored to show the methodology and its limitations. Then the rate form of the 
equation of state is used with the conservation equations to deveiop a generalized fully implicit (at least 
in terms of the mair variables) formalism. Porsching’s me’hod is a special case of the general method. 
The chapter concludes with some programtig notes. 

6.2 Porsching’s Method 

One of the more successful algorithms for thermalhydwdic simulation is based on thy work of Porsching 
[pOR69, POR71]. This algorithm, icvolving the Jacobian (derivative of the system state matrix), is used 
originally in the computer program FLASH-4 [pOR69] and subsequently in the Ontario Hydra program 
SOPHT [CHA77] and evolved into forms osed in RETRAN [AGE82]. 

The strength of Porsching’s approach lies in its recognition of flow as the most important dependent 
parameter and, hence, its fully implicit treatment of flow. This leads to excellent numerically stability, 
consistency and convergence. Further. the Jacobian permits a generalized approach to the linearization of 
nonlinear systems. This allows the development of a system state matrix which contains all the system 
dynamics in terms of the dependent parameters of mass, energy and flow. Back substitution finally gives 
a matrix rate equation in terms of the system flow (the unknown) and the system derivatives. While this 
approach is certainly a proven and successful one, it has some disadvantages. The matrix rate equation 
involving the Jacobian is as complicated as it is general. The resulting expressions are somewhat obtuse 
and it is difficult to obtain an intuitive feel for the system. This complexity also hinders implementation 
in a simulation code and makes error tracking a tedious process. The pervasiveness and obtuseness of the 
algorithm begs a revisit so as to distil the salient featores, leaving them exposed for pedagogy and further 
scrutiny. 

Chapter 5 discussed the use of the Rate Form of the equation of state. This work showed that by casting 
the equtior. of state in the form of a rate equation rather than the normal algebraic form, the system state 
matrix can be more logically formed from the normal conservation rate equations for mass, energy and 
momentum plus the pressure rate equation. These form the four cornerstone equations in 
thermalhydraulic systems analysis (figure 6.1). Numerical implementation of the rate form proved to be 
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very successful, leading to roughly a factor of 10 improvement over the algebraic form of the equation of 
state, largely due to the iterative nature of the algebraic form. Incorporating the implicit pressure 
dependency in the numerical method also drastically improved the numerical stability. 

Since Porsching’s method also carried the pressure dependency implicitly (via the Jacobian), the question 
arises as to how the Rate form compares the Porsching’s method. This chapter is devoted to an 
explanatory derivation of the fully-implicit back-substituted form (FIBS), which is a more general than 
the Rate form. It is show that the Porsching form is identical to the Rate form and is a subset of the 
folly-implicit back-substituted form and is easily derived t?om it [GAR87b, reproduced as appendix 61. 
The FIBS form thus offers an alternative to Porscbing, is found to be of some pedagogical usefulness and 
is far more intuitive and easier to code. 

6.3 Derivation of FIBS 

Following Porsching IpOR7 11, the general form of system equations can be written 
i = f( t, u) 

where u is the vector of dependent mass, total enthalpy and flow variables {h4+ &, W,} for all codes 
i=l..N and all liis, j=l..L. Equation 1 is linearized, assuming no expiicit t dependence to give: 

6=f’+AtJ6 

Au = 4t f’ + At J Au 

to give 
[I-AtJlAu=Atf’ 

where J is the systems Jacobian, composed of elements Jf, /Jo,. 

For typical thermalhydraulic systems using the node-link notation’: 
dW. A; -2=llp +s 

dt L,‘” 
,+,+,AP” - P. - S..-AP,\ + kc fi 

G wr “, , ,tVj + SwAWjr + b Y 

Jji 
At 

Typically b, = (A$,) (4pjg + AP,,,) where b3 = height. 

’ Ponching actually uses U. total energy rather than H, total enthalpy in a hybrid form: 

u, = ; (Hj’Mj, Wj - c (HjMj, W, + Qi 
ivu 

(1) 

(2) 

(3) 

(4) 

(5) 
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2 =z (W, + S,, AWj) - c (W, + SW’ AWj, = 2 
J-Q 

(6) 

(7) 

APi = 2 AMi 
ap. 

+ --! AHi + - Air; 

‘AM. 

;;, 

+ CZi !$ 

avi 
AP. 

or -2 = qi 2 for constant volume. 
At At 

(8) 

where j indicates a sum over all liis for which the node i is z downstream (d) or ups&e~%II (u) node. 

Switches, S, are used to provide user control over the degree of implicitness: 
0 = explicit 
1 = implicit. 

The system unknowns to be solved for are AW, AM, AH and AP using equations 5,6,7 and 8. The 
general strategy is to reduce the number of unknowns so that the size of the matrices to be inverted in the 
simultaneous solution of these equations is reduced. The mass equation 6 is simple and is used to 
eliminate AM in terms of AW. Flow is chosen as the prime variable since it is the main actor in 
thermalhydratdic systems. The entblpy equation poses a problem as it is too complex t@ permit a simple 
substitution. Porsching surmounts this by setting S, = Sm = 0, ie makbig the solutior? explicit in 
specific enthalpy. However. we need not make thii assumption; by casting the equations in matrix 
notation, the full implicitness can be retained while still ailowing the back substitutions to be made. 

Proceeding then. using matrix notation: 
AM = At Aww’+S,, A\V] 

where, for a 4 node - 5 link example (Figure 6.2): 
liis - 

(9) 

‘-1 0 0 1 0’ 

AMW 1 -1 0 0 1 nodes = 
0 I -1 0 0 B 

\ 0 0 1 -1 -l/ 

(10) 
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This matrix contains the total system geomeky. It is constructed by the following procedure: 
For ezich column (Iii), insert -1 for the upstream node and +l for the downstram node for that 
Iii since the link supplies (adds) flow to the downstream node and takes it away from the 
upsmean node. Flow reversal is handled automatically since the sign of W wiil take care of mass 
accounting properly. 

The form of other matrices in the following are derivable kom Aw. This can be used to advantage in 
coding. The input data for each link need only contain pointers to the upstream node and the downstream 
node for that link. This allows AMW to be created. In short, the upstxeam node and downstream node for 
each link completely defines the geometry and this can be used to programming advantage. 

The flow equatiori is: 
AW = At{Aw[P’+SwAP] +AW\VIW’+2SwAW]+BWI\ (11) 

Where: 

I  

-k,lW,l o 

AWW = -klW,l 

0 -k,lWJ 

I 44 -A$, 0 0 

0 4k2 -44 0 
AWP = 0 0 44 -A& 

-A4/L, 0 0 V-4 

I O -A&, 0 A& 

note that Aw is formed easily kom AMW by the following procedure: 
First multiply AMW by (-A,&, -A&, . -A,&}-’ 
Then transpose the resulting matrix to give Aw. 

(12) 

(13) 

(14) 

AH = At(A~Wt+SHWAW]+SmAm.AH’ - S,Am*AM*+BH) (15) 

where AH’ and AM’ refer to the enthalpy and mass associated with upstrez%n properties of the liis (ie 
the transported properties). Thus 
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I 
4 

\ / 
AM, 

\ 

AH2 AM, 
AH’=*H, , AM’ = AM, (1’5) 

AH4 AM4 
\ A%, \ 4, 

For eech link, the elements of the column are formed l?om the link flow, Wj and the upstream properties 
(H and M). Each link has a sink and source node. 

Similarly 
I -W,/M, 0 0 +W,lM, 0 ’ 

*HH. = 

I 

W!W -WjM, 0 +w5w 

0 wJh$ -W,M, 0 0 

0 0 we4 -wPfa - W54) 

(18) 

(- W,H,IM,’ 0 0 W,HJM4’ 0 1 
W,H,h$ - W2H+f2’ 0 0 W,H,/M4’ 

0 W*H,W -W,H,IMj 
(19) 

0 0 

\ 0 0 W,H;lM; -W,HJM; -W,H,IM: 

We -wish to wire the matrix cquationr eliminating the * parameters, ie convert AH’ to AH, AM’ to AM. 
To do this we introduce a transfer matrix, IL” SC that 

AH * = [ iNAH (20) 

where 
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nodes - 
‘1 0 0 0’ 

0 I 0 0 

ILN = 0 0 1 0 links (21) 
u 

0 0 0 I 

(0 0 0 I/ 

where ILN is formed by entering I for the node that is the upstream or source node for each link. Now, 
we can defule: 

and Am’ AM’ = Am’ ILN AM (23) 

s Am AM. 

Thus 
AH = At {A”“’ (W’ + Sw AW) + S, AHH AH - S,, AHM AM + B”} (23) 

Substituting in the mass equation 9: 

AH = At { A”” (W + S,, AW) + S, A’=’ AH - At S, AHM AMW (W + WMW AW) + BH } (25) 

i 
.-c*. Solving for AH: 

AH = At[I - At S,, Am]-’ {AHW (W’ + S,, AW) - At S, AHM AMW(W” + S,, AW) + BH} (26) 

So now we have AM ar,d AH in terms of AW. Recaliing equation 8, in matrix notation, we have: 

AP=C,AM+C?AH, (27) 

‘Cl, \ 

c,* 0 c, = 
Cl3 

0 54, 

(28) 

Similarly for C2. 

We can back-substitute AM and AH into equation 8 and the result into the flow equation to leave a 
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matrix equation in AW only, which can be solved by traditional numeric means. Hence, 

l+ .+, AP = At C, Aw (IV’ + S, AW) + At C2 [I - At S, Am]-’ [Aw (W’+ S, AW) 

-AtS,AHMAMW(W+S,.,,a,AW)+BH] 

rAtAPW’W+AtA-AW+AtBP (29) 

where : A”‘,’ = C, AMw + C, [I - At S, AHHI-’ [Aw - At S, AHM Am] (30) 

Apw2 = S, C, .4w i- C2 [I - At S, A”“]-’ [S, Aw -At S, S, AHM AMW] (31) 

BP = C, [I - At S, Am]-’ B” (32) 

Ths: 

AW = At (A* [p’ + At S, (Apw’ W + APw AW -I- BP)] + Aw [W’ + 2S,, A- Aw] f BW ) (33) 

Collecting terms in AW: 

[I - At(2 S,.,,., Awx + At S, A” AP”)] AW 

(34) 

which is of the form 

AAW=B 

which can be solved by conventional means to yield AW. Then we can directly calculate AM, AH and 
AP using equations 9, 15 (or 24), and 27. Associated changes in temperature can be obtained as for 
pressure, using the appropriate equation of state coefficients. 

6.4 Special Cases 

To summarize, the general solution is given by the following equations: 

Apw’ = C, Am + C, [I - At S, Am]-’ [A”” - At SHhl A=” Awl 

Apw’ = S, C, Am + C, [I - At S, AmY’ [S, AHW -At S, S,, AHM AM’“] 

BP = C, [I - At S, AmY1 BH 

(35) 

(36) 

(37) 

[I - At(2 SW A”“” + At S, A” A”-)] AW 
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=At{[A- +AtSw~AWPAPW’]W+B”‘+Aw[pl+AtS,BP]} 

6-9 

(38) 

AM=AtAMWw+SwAWj 

AH=At(Aw(W’+SwAW)+SmAwAH-S,,,.,AmAM+BH] 

AP=C,AM+C,AH 

Special cases of this general algorithm are as foliows: 

6.4.1 Fully explicit: all S’s = 0 

Aw’=C,AMW+C2A”‘” 

AFw2 = ,, 

BP=C2 B” 

:. AW=At{A-W+BW+AwPP’} 

AM=4tAwW’ 

AH=At{AHWW+BH) 

AP=C,AM+C$AH. 

as expected. 

6.4.2 Porscbing’s semi-implicit (s, = o and S, = 0, all other S’s = 1) 

Arw’ = C, AMW + C2 Aw 

Apw2 = C, AMW + C, Aw 

BP=CIBH 

[I - At(2 A- + At Aw Apw2)] AW 

=At{[Aw+AtAWPAPW’]W’+Bw+Aw[P’+AtBP]} 

AM=AtAwm+AW] 

AH=At(Aw(W’+AW)+B”} 

AP=C,AM+C?AH 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 
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6.4.3 Folly Implicit: All S’s = 1 

Apw’ = C, Aw + C, [I - At A==]-’ [A”‘” - At A”‘.’ AM”] 

Apw = C, Aw + C2 [I - At AHHI-’ [A”‘” - At AtM AM”] 

BP = Cz [I - At AIM]-’ BH 

[I - At(2 Aw + At Aw A’“)] AW 

= At ( [Aw +AtAwAPW’]W’+Bw+Aw[P~+AtBP]) 

AM=AtAMWm+AW] 

AH=At{A”‘“(W’+AW)+AHHAH-AmAM+BH} 

AP=C,AM+C,AA 

(56) 

(57) 

(58) 

(53) 

VW 

051) 

62) 

6.5 Programming Notes 

It should be noted that the 111 system geometry is contained in Ahtw. a other matrices are derived fkoom 
this matrix and node/k& properties. Programming is thus very straightforward. In additioo- the 

,,,‘, 
switches, S. can be varied at will to control the degree of implications of the system variables, W, M, H 
and P. 

The fully-implicit method is more complicated than the semi-implicit method in that it requires the 
addition and multiplication of more matrices as well as a matrix inversion. The effect of these additional 
operations is quite costly, especially when a large number of nodes is needed. In one case study 
[HOS89], for 9 nodes and Iii, the cost is a 50% increase in iteration time. But this becomes a 250% 
increase as one approaches the 36 node/link case. By handling the matrix operati&s as efficiently as 
possible, some increase in speed should be attainable for both models. Using eflicient assembly routines 
(rather than FORTRAN) for the matrix operations yielded a 10 to 20% reduction (increasing from 9 
nodes to 36 nodes) in the time per iteration for the semi-implicit method and a 15 to 25% reduction in the 
folly-implicit case. 

Usually the matrices contain mostly zeros and, in the case of a circular loop, may be diagonally dominant 
in nature (i.e. non-zero elements occupy one, two or three stripes through the matrix). By writing routines 
specific to the nodal layout for handling the matrix operaticns, significant gains in speed may be 
possible. However, the simulator will no longer be general in nature and the routines may have to be 
changed if the nodal layout is altered. 

If the multiplication of hvo large matrices is desired, say NxN in dimension, the time to carry out the 
operation (N’ multiplications and N’ additions) can be very significant. However, it is possible to reduce 
the number of individual operations without losing the generality of the method. Take, for example, the 
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multiplication of Aw and Apw. The rows in the former term pertain to links and the columns to nodes. 
Each row will only contain two terms located in the columns correspondimg to the upstream and 
downstream nodes of that particular link. Thus, knowing which are the upstream and downstream nodes 
for every lii, it is only necessary to do two multiplications and one addition to obtain each element of 
the product m&x (2N’ multiplications and N* additions). By taking advantage of having only two 
elements in each row of the former term or only two elements ir. each column of the latter term wherever 
possible, significant savings in time may be observed. With this improvement in the code, a cut in time 
by a factor of two for 18 nodes and by a factor of three for 36 nodes, regardless of the method (semi- or 
folly-implicit) was obtained. The cost of the fully-implicit method is reduced slightly to a 32% increase 
in iteration time over the semi-implicit method when 9 nodes and 9 links are used. Tbis becomes a 214% 
increase as one approaches the 36 node case. 

Since the foc3o.s of this chapter is to provide a iess obtuse and more general derivation of thermalhydraulic 
system equations than Porsching’s method, a full comparison of the performance of the fully- and semi- 
implicit methods will not be made. Suffice it to say that, in general, the semi-implicit method has a 
Coorant lit on the maximum time step that can be taken in order to ensure stability. The fully-implicit 
method does not have this limitation. As the Courant time step limit is determined by the oodal residence 
time, the time step lit is dependant on the node sizes and tbe flows through the nodes. Practical 
s&xdations have a further time step constraints such as: the tracking of movement of valves, the 
maintenance of accuracy, synchronizing of report times, etc. Thus, the choice behveen the semi- or fully- 
implicit method depends on the time per iteration multiplied by the number of iterations required to reach 
the largest time step permitted by the simulation problem. For example, for a 9 node case, the semi- 
implicit method required 0.10 seconds per iteration and required 2 iterations to meet toe report time of 
1.0 seconds. The folly-implicit method meet the report time in one iteration which took 0.14 seconds. At 
36 nodes however, the semi-implicit method took 2 x 0.71 seconds while the folly-‘mplicit method took 
2.12 seconds. Clearly, one method is not st~perior to the other in all cases. 

Pressure determination involves the use ofproperty derivatives. To avoid the numerical problems 
associated with discontinuities, smooth functions for properties must be used, such as those derived by 
[GAR88, GAR89 and GAR92]. These functions and routioes permit the quick and fast evaluation of AP 
and AT given AM and AH for all water phases. Automatic adjustment is provided to prevent P and T 
drift i?om values consistent with current M and H values. These routines are non-iterative, essential for 
real-time simulation. 

6.6 Conclusion 

The FIBS approach for thermalhydraulic system simulation has been compared to the classic work of 
Porsching. Porschings algorithm is derived as a subset of the fully implicit approach. Focusing on the 
system Jacobian, as Porsching did, focuses on the perturbation of the system as a whole. Although 
general, it tends to obscure the interaction of the main players in typical thermalhydraulic systems: flow 
and pressure. The FIBS form is shown to be more general than Porsching’s method, yet less obtuse. The 
interplay of flow and pressure is clarified and coding is simplified. 
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6.7 Exercises 

J 1, Rewrite the conservation equations for the 4 node, 5 link case with various explicit / implicit 
switches set for the following cases: 

folly explicit 
;: diagonally implicit 
C. semi-implicit solution scheme (implicit in flow and pressure, explicit in mass and 

enthalpy ) 
d. Illy-implicit solution scheme (implicit in flow and pressure, mass and enthalpy). 

2. Build a simulation code that solves the thermalhydraulic equations for a general node-link 
network for the explicit case using the supplied skeleton code as a starting point. Use the node- 
link diagrams and equatiom as developed in chapter 3, the water property routines as developed 
in chapter 4, the rate form of the equation of state as developed in chapter 5 and *he exp!icit 
solution as developed in this chapter. 

3. Improve upon your solution to question 2 by implementing a diagonally implicit solution 
procedure. Is the solution more stable? Is therz a cost penalty? 

4. lmplemcnt a semi-implicit solution scheme (implicit in flow and pressure, explicit in mass and 
enthalpy). Is the solution more stable? Is there a cost penalty? 

5. Implement a fully-implicit solution scheme (implicit in flow and pressure, mass and enthalpy). Is 
the solution more stable? Is there a cost penalty? 
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EQUATION 
OF STATE 

pre,*ur. -f. wsr. Llswn 

1 

Figure 6.1 The four cornertone equatioo~s for thermalhydraulic system simulation and 
the flow of information between them. 

Figure 6.2 The simple 4 node - 5 link example. 

.’ 
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