Course Overview

11.5

Chapter 1 Course Overview

1.1 Introduction

This course is concerned with thermal hydraulic <u>analysis</u> of the nuclear heat transport system (HTS).

Thermal hydraulic <u>design</u> of the process systems is covered in a separate course.

Design and analysis are tightly coupled.

The heat transport system (HTS) is of central importance since it is the interface between the heat source and the heat sink.

Good HTS performance is essential to reactor integrity, plant performance and safety.

Herein, the scope is limited to the modelling tools used in thermal hydraulic analysis of the HTS.

D://TEACI//Thai-IJTSZ/Overhead/over1-wp8 = January 19, 1998 [19-18]

This course is a systems level course, not a components level one.

Component modelling is limited to approximate models that are appropriate for systems analysis.

Figure 1.1 provides an overview of the main concepts covered in this course and the relationships between these concepts.

This course is primarily about the interplay the two main actors in hydraulic systems: flow and pressure.

Local density and enthalpy determine the pressure.

Hence, thermal hydraulic system behaviour is largely determined by the simultaneous solution of the equations that govern these four variables (flow, pressure, density and enthalpy).

ेत<u>ुः</u> चार्तम

1.2 Learning Outcomes

In each chapter the course objectives (learning outcomes) are set down.

The outcomes are meant to be a guide for the student and teacher alike.

The classifications in the objective statements refer to Bloom's taxonomy [BLO71] for the cognitive domain as given in figure 1.2.

The weight of each classification is

indicating the importance of the objective to the understanding of the overall course.

1-3

1-4

Course Overview

The overall objectives for the course are as follows:

Objective 1.1	and relate th	should be able to e roles played by aulic simulation.				
Condition	Closed book written or oral examination.					
Standard	100% on definition and units, answer may be given using word descriptions, diagrams or graphs as appropriate.					
Related concept(s)	Overall cond	cept map for the c	ourse			
Classification	Knowledge	Comprehension	Application	Analysis	Synthesis	Evalu ation
Weight	a	а	а			

.

Objective 1.2	equations, a	should be able to nd develop a flow aulic system simu	diagram and	pseudo-co	de for a	verning
Condition	Open book.					
Standard	100% on flow diagram and pseudo-code.					
Related concept(s)						
Classification	Knowledge	Comprehension	Application	Analysis	Synthesis	Evalu ation
Weight	a	a	a	a		a

:

.

1-5

D:\TEACH/Thai-HTS2\Overhead\over1.wp8 January 19, 1998 19.18

Objective 1.3	The student from first pr	should be able to inciples.	build a therm	alhydrauli	c system sin	nulator
Condition	Workshop or project based investigation.					
Standard	The code should work. Any programming language is acceptable.					
Related concept(s)						
Classification	Knowledge	Comprehension	Application	Analysis	Synthesis	Evalu ation
Weight	a	a	a			

,

1.3 The Course Layout

Chapter 2 presents the general mass, energy and momentum conservation equations in very general terms and proceeds to derive the common approximate forms used in systems modelling.

Chapter 3 shows how to model hydraulic piping networks as a system of nodes connected by links and elaborates on the appropriate equation forms for these node-link approximations.

Chapter 4, the equation of state is explored with particular emphasis on implementation.

Chapters 5 and 6 cover numerical considerations.

Chapter 7 completes the picture by providing rudimentary heat transfer and hydraulic correlations that are needed for the simulations.

Chapter 8 provides closure with a general look at some codes used by the industry.

<u>د</u> د - ۱

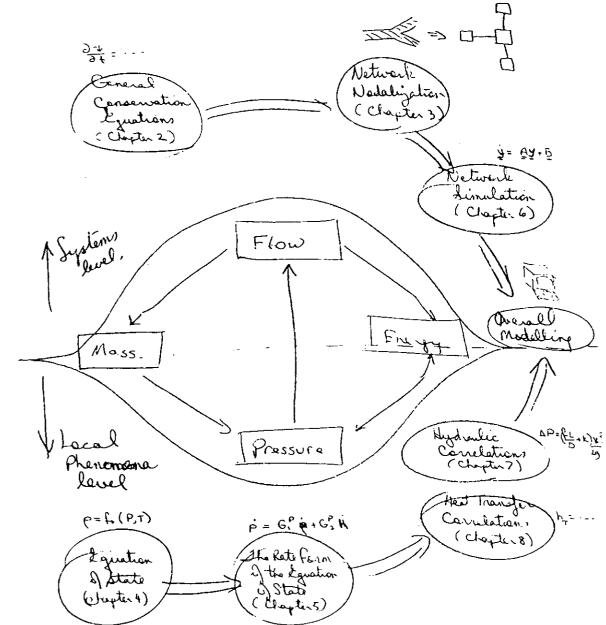


Figure 1.1 Concept map for the course

Course Overview

Handout Master 12.5 Objectives in the Cognitive Domain

Taxanomic Cutegories	Verbs to Use in Objectives	Examples of Appropriate Content in Objectives
1.00 Knowledge	Define	Vocabulary words
1.1 Knowledge of specifics	Distinguish	Definitions
1.2 Knowledge of ways and	Acquire	Focts
means of dealing with	identity	Examples
specifics	Recall	Ccuses
1.3 Knowledge of universals and	Recognize	Relationships
	Recourses	Principles
dostrocitoris		Theories
2.00 Comprehension	Transicite	Meaninas
2.1 Translation	Give in one's own	Samples
		Canclusions
2.2 interpretation	words	Consequences
2.3 Exhapolation	Nustrate	Implications
	Change	Effects
	Restate	Different Views
	Explain	
	Demonstrate	Definitions
	Sstimate	Theories
·····	Conclude	Methods
3.00 Application	Apply	Principles
	Generalize	Lows
	Relate	Conclusions
	Choose	Methods
	Develop	Theories
	Organize	Abstractions
	Use	Generalizations
	Restructure	Procedures
1.00 Analysis	Categorize	Statements
4.1 Analysis of elements	Obtincuish	Hypotheses
4.2 Analysis of relationships	Identify	Assumptions
4.3 Analysis of organizational	Recognize	Arcuments
principles	Deduce	Themas
	Analyze	Patterns
	Compare	Bicases
i.00 Synthesis	Document	Positions
5.1 Production of a unique idea	Write	Products
5.2 Production of a plan	Tell	Designs
5.3 Derivation of a set of abstract	Produce	Pices
reigtions	Originate	Objectives
	Modify	Solutions
	Plan	Cancepts
	Develop	Hypotheses
	Ferraukote	Discoveries
00 Evaluation	Justity	Opinion:
6.1 Judgments in terms of internal	.jujge	Accuracies
evidence	Argue	Consistencies
6.2 Judgments in terms of external	Assess	Precisions
criteria	Decide	Courses of action
	Appraise	Standards

Adapted from N. S. Metfessel, W. Michael, and D. Kinner, instrumentation of Bioom's and Krothwahi's taxonomies for writing educational abjectives. Psychology in the Schools, 1969, 6, 227-231.

Figure 1.2 The cognitive domain.

D:\TEACH\Thai-HTS2\Overhead\over1.wp8 January 19, 1998 19:18

<u>ja</u>

1-9