Equation of State 4-1

Chapter 4 Equation of State

4.1 Introduction
4.1.1 Chapter Content

This chapter explores how to get the pressure given information from the governing
conservation equations.
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Equation of State

4.3

Objective 4.2

The student should be able to develop a flow diagram and pseudo-code
for the calculation of P and T given density and enthalpy.

Condition Open book written examination.

Standard 100%.

Related The rate form of the equation of state.

concept(s)

Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evalu
ation

Weight a a a
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Equation of State

4-4

Objective 4.3 | The student should be able to explain the pressure and temperature
response of a volume of fluid to perturbations given the F and G
functions.

Condition Open book written examination.

Standard 100%.

Related The rate form of the equation of state.

concept(s)

Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evalu

| ation

Weight
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Equation of State 4-6

4.2 Thermodynamic Properties

From a thermodynamics viewpoint, the equation of state of a substance is a relationship
between any four thermodynamic properties of the substance, three of which are
independent.

EXTENSIVE FORM: An example of the equation of state involves pressure P, volume V,
temperature T and mass of system:

n (P, V, T, M=40 1)
If any three of the four properties are fixed, the fourth is determined.
INTENSIVE FORM: The equation of state can also be written in a form which depends
only on the nature of the system and not on how much of the substance is present, hence all
extensive properties are replaced by their corresponding specific values. Thus

T (P, v, T) = 6 )

is the specific value form of the above equation of state, where vis the specific volume.

If any two of the thermodynamic properties are fixed, the third is determined.
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Equation of State 4.7

From a thermodynamic point of view, the appropriate way to present water properties is by
tables or formula for each property expressed as a function of the independent parameters
P and T (figure 4.1).

Thus given values of pressure and temperature, the calculation of other thermodynamic
properties is usually straightforward.

Unfortunately, T and P are rarely the independernt parameters in system dynamics since the
numerical solution of the conservation equations yield mass and energy as a function of
time.

Hence, from the point of view of the equation of state, it is mass and energy which are the
independent parameters.

Consequently, system codes are hampered by the form of water property data commonly
available.
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Equation of State 4-8

A key point to note is that the conservation equations are all cast as rate equations whereas
the equation of state is typically written as an algebraic equation.

This arises from the basic assumption that, although the properties of mass, momentum and
energy must be traced or solved as a function of time and space, the corresponding local
pressure is a pure function of the local state of the fluid. Process dynamics are not
considered.

This is the essence of the equilibrium assumption (in a like manuer, of course, we invariably
use steady state heat transfer coefficients, etc. in dynamic processes).

Historically, this mixture of form arose because thermodynamics endeavours were
concerned with equilibrium states and not with system processes. System modellers, on the
other hand, emphasized system dynamics and used what was available for constitutive
relations. System modellers are more concerned with numerical problems.
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Equation of State T A9

Porsching [POR71] correctly identifies the important role of flow in his work and by keying
the formulation of node-link networks to flow, stable, efficient and accurate solution
schemes result.

However, the role of pressure has not received the equivalent acknowledgement.

Most other popular schemes, for instance, Agee [AGE83], use the aigebraic form of the
equation of state.

This treatment puts the pressure determination on the same level as heat transfer coefficients.

Thus, although numerical solution of the resulting equation sets give correct answers (to
within the accuracy of the assumption),
- intuition is not generated
- time consuming iterations must be performed to get a pressure consistent with the
local state parameters.

We look first at such an iterative scheme and then consider a more efficient alternative (the
rate method).
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Equation of State : 4-10

4.3 The Iterative Method

Given the density and enthalpy of a volume of water, the task at hand is to find the
associated values of pressure and temperature.

Figure 4.2 shows qualitatively the relation between density, p, and enthalpy, h, for a given
P.

At low enthalpy, the fluid is single phase liquid and the density is high.

As beat is added and the fluid reaches saturation temperature, vapour is generated to form
a two-phase mixture and the density approaches the vapour density.

The curve is well behaved and continucus making it a suitable candidate for numerical
search routines.
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Equation of State 4-11

We start the iteration procedure by guessing a pressure. Usually in system transient
simulation codes, the value of P at a previous time step is a good choice.

Given P we calculate hy,,, and h,,, the saturation enthalpies for the liquid and vapour phases,
respectively.

If h < hg,, then the fluid is single phase liquid.
Ifh> hy,, then the fluid is single phase vapour.
Otherwise the fluid is a two-phase mixture with a quality, x € [0,1].

The case of two-phase equilibrium is considered first. Subsequently, the equations are
extended to cover single phase and two-phase non-equilibrium fluid.
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Equation of State 4-12

4.3.1 Two-Phase Equilibrium Fluid

For two-phase fluid, the density and enthalpy are functions of the pressure and quality.
Since we know the density, p, we can estimate the quality (x.,) for the guessed P (assuming
a homogeneous mixture) since:

1

vV = E = vt(P) * Ky Vfg(P) (3)
and thus calculate the enthalpy based on the guessed P:

hest - hf(P) T Xest hfg(P) (4)

This estimated value of h will differ from the known value of h. This difference is used to

drive the iteration, ie, to update the guessed pressure as illustrated in figure 4.3:
_Ah

~ (OWoP), ®)

The denominator in equation 5 must be evaluated numerically if analytical expressions are
not available. The pressure is updated via:
P =P + AP ©)

and the iteration is repeated until the pressure has converged to some tolerance. The
temperature is just the temperature of saturated fluid at that pressure.
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Equation of State - 4-13

4.3.2 Single-Phase Sub-cooled and Superheated Fluid

For single phase fluid, the density and enthalpy are functions of P and T, ie:
p=pP, T) and h = h(P, T) Q)

For a guessed P and T, p and h can be found directly from the water property tables.
But this is just an estimate since P and T are guessed.

The true values of p and h lie some distance away and, to a first approximation, the true
values and the estimated values are related by a Taylor’s series expansion:

aT),  P).
h = het + —dﬁ AT + ~a—h AP (9)
U eT), P,
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Equation of State ‘ 4-15

or, more compactly,

AP = G, Ap + Gy Ah 12)

i

AT = G, Ap + G, Ah (13)

The G functions are summarized in table 4.2. The derivatives must be evaluated
numerically if analytical expressions are not available. |

The pressure and temperature are updated via:
P=P+AP and T =T + AT (14)

and the iteration is repeated until the pressure and temperature have converged to some
tolerance.
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4-18

First concentrating ou the case of constant p (or v), to cobtain G,, we differentiate

equation (16) to gives:

dh_(ah dp _ |9h ox . Ohg|ap
— = = [—— + hf + K - :
dt  {9dP) dt [GP 5 9p aP dt
Using equation (15}, holding v constant (i.e., p = constant);
vV - v,
dx = Vfg / ™ - L avf + i&g.
dP oP oP JopP

Substituting this into equation (18) gives:
aP oP [ oP oP

dp
dt

or equally: .

(18)

(19)

(20)
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Equation of State ) 4-19

dP _ Vfg dh
dt Vf a_l}_t.‘ + X ilﬁg. - hf a_\if + E_V.ig. at
5| oP dP | 0P oP | @1
i Ve dh . dh

G, —.
(DENOMINATOR} dt dt

This gives the pressure rate response due to an enthalpy rate change, holding p constant.

If we repeat the above but holding h constant we find:

i}i _ ‘_hfg dv- _ hfgvz L dp = G _‘il_p__ 22)
dt  {DENOMINATOR} dt {DENOMINATOR} dt bdt

Note that G, and G, are functions that depend only on the local saturation fluid properties
and their slopes at the local pressure.
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Equation of State : 4-20

Combining equations 21 and 22 to get the total pressure rate response when both h and p are

varying:
dP dp dh
— =G, P, x) — + G, (P, x) —.
P R T =

This is the rate form of the equation of state for two-phase equilibrium fluid in terms of the
intensive rate properties, dp/dt and dh/dt, which are obtained from the continuity equations.
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Equation of State

Equation 23 can be cast in the extensive form by noting that, since p =M/V and h =H/M,
dp 1 dM M dV
' — 24)

dt V dt  v? dt

and
dh 1 dH H dM |
(25)

dt M dt M2 dt

Substituting into equation 23 and collecting terms:

dP _ G  GH) dMm \ G, g GM dV. 2
dt \Y% M2 dt M dt v? dt
After some simplification and rearrangement we find:
w b idl\_tfl._ + F, %? v F, ‘g— .
dt M,F, + MFs

where:
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Equation of State 4.22

F, = hg\?f - hfvg

F, = A

F, =h; - hg

. ahg ) ) avg )

4 = 5}; (vg Vp) —a—i;- (hg hy) o
dh, A

F, = T (Vg = V) - m (hg - hy

Mg =xM

M, = (1 x)M.

The F functions are smooth, slowly varying functions of pressure (see appendix 4) provided
good curve fits are used.

The latest steam tables [HAA84] were used to fit saturated properties to less than 1/4%
accuracy using low order polynomials and exponentials [GARSS].

Considerable effort was spent on obtaining accuracy and continuous derivatives over the full
pressure range.

The fact that good fits are available means that the F functions are well behaved which in
turn makes the rate form of the equation of state extremely well behaved, as shown later.
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Equation of State 4-23

The G functions are also well behaved for the same reasons.
The F and G functions have direct physical interpretations which aid in generating intuition.

The F functions relate changes in the extensive properties, M, H and V, to changes in
pressure.

The G functions related changes in the intensive properties, p and h, to changes in pressure.

Often, a simple numerical evaluation of these functions during a simulation aids in
developing an appreciation of the changing roles of the key actors in a dynamic simulation.

For instance, because F, is negative, we immediately see that adding mass to a fixed volume
of liquid with fixed total enthalpy will cause a depressurization (because the specific
enthalpy, h = H/M, is decreased).

But, since G, is positive, an increase in density in a fluid of fixed specific enthalpy causes
a pressurization.
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Eguation of State 4-24

4.4.2 Single-Phase Sub-cooled and Superheated Fluid

For the single-phase sub-cooled or supetheated case, we do not have to account for the
sorting out between phases as we did for the two phase case.

Thus the derivation is more direct and less complex. We could simply use:
P =m(p, h) (29)

to give:

(30)

dp _ 8P} dp , 9P| dh
dt 9p), dt  oh/, dt

but, since the steam tables are given as a function of P and T, the slopes in equation (30) are
not easily obtained.
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Equation of State 4-25

To cast the pressure rate equation in terms of the independent variables, P and T, consider:
p=pP,T) 31)

and
h=b®, T (32)

Note that the non-equilibrium case requires the explicit tracking of the temperature in
addition to pressure. Taking derivatives of Equations (31) and (32):

dp _dp) dp , dp) dT
dt oP). dt aT ), dt

(33)
P

and

(34)

dh ah) dP oh) dT
_dt oT), dt
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Eguation of State

This is easily obtained by solving equations (33) and (34) for dP/dt and dT/dt to yield:

dP

and

dT

dp _ dp} dh

4-27
aT), dt
@37
_9p| oh
3T/, 9P .
. dp) dh
1), @
(38

which is the intensive form we desire.

dp) oh
P}, 3T),
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Equation of State 4-28

The extensive form is obtained as for the two- phase equilibrium case. Equations (24) and
(25) are substituted into equations (37) and (38) and after rearrangement we find:

poSM g dH g odv
_cl_l?_ _ dt “dt dt (39)
dt M,F,p + M, Fo
and
dM dH dVv
Fo.—+F, — +F;—
d_T _ IT dt 2T dt T dt‘ , (40)
dt M, Fp + M, Fysp
where
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Equation of State 4-31

4.4.3 Two-Phase Non-Equilibrium

The rate form for the equation of state for the two-phase non-equilibrium case is a simple
extension of the single-phase non-equilibrium case.

The liquid and vapour phases are treated independently to give:
dP, GX dpy . Gk dh,

—_ _ (42)
dt Pt ® o dt
dT, v dpy ¢ Ghy,
— = G — + Qo ——= 43)
dt gt T dt

where k represents either ¢ or v for the liquid or vapour phases respectively.

In general, the 6 equation model (3 continuity equations for each phase) would be used for
the general unequal temperature, unequal velocity, unequal pressure situation. Thus dp,/dt
and dh,/dt are available to the rate form of the equation of state.

The expressions for the F and G functions are summarized in tables 4.1 and 4.2. These
expressions cover the full range from sub-cooled liquid to superheated steam.
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Equation of State 4-33

The basic overall approach taken in the curve fitting task was that, since the more difficult
region to fit was the transition from single to two-phase and since most power plants operate
at or near this region, careful attention would be paid the phase transition region at the
expense of accuracy away from the saturation line, if necessary.

Thus, the first major step was to accurately fit the saturation lines.

Then, since density, enthalpy and other properties vary more strongly with T than with P (as
shown in figure 4.4), the property in question, say density, would be calculated based on the
deviation from the saturation value at the given T, ie:

p(P,T) = p(T) + 2| (P - P_(T)) ”
oP) o

Figure 4.5 illustrates the strategy.

It should be obvious by now that not only the properties need to be fitted but the slopes are
needed as well.

Both the properties and the slopes of the properties must be free of discontinuities if
numerical searches are to converge.
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Equation of State 4.34

The supplied code is divided into 3 levels:
- Level 1: the fitted functions
- Level 2: derived functions and collections of functions (for convenience)
- Level 3: logic sorter and manager

Details on these routines are given at the end of appendix 4.

It is instructive to study appendix 4 in conjunction with the supplied code (WATERA.FOR,
PROPA.FOR, H2Z0PROP.FOR).
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4.6 Exercises

1.

Using the spread sheet macros for Microsoft Excel supplied by G.R. McGee (as per the
memo at the end of this chapter, calculate and plot the density, enthalpy, quality and
void fraction for a range of pressures ( 1 to 100 atmospheres) and temperatures(50 °C
to 350 °C). Make sure you cover the subcooied, saturated and superheated ranges.

Using the supplied code, WATERA.EXE:

a. Calculate p and h for P=10 MPa and T=300 °C. Increase the temperature in steps
to see the approach to two-phase.

b. Using p and h slightly different than that found in (a), calculate P and T.

c. Practice calculating p given h and P.

Using the supplied skeleton code NODE.C:

a. Fill in the missing code required to calculate P and T given p and h.

b. Use the code to calculate AP and AT when a node experiences a AM, a AH or a
AV. Compare your answers t0 WATERA.EXE.

c. Use the code to calculate AP and AT when a node experiences a Ap and a Ah.
Compare your answers to WATERA.EXE.
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Table 4.1 Summary of the F functions for the rate form of the equation of state

0 subcooled b | dh
pJT 3T), oT

_gg] ﬂ]
PaPT

subcooled

0 superheated

Case
2¢ equilibrium
(all derivatives
alcng saturation

line)

g

v, - hfvg

superheated

- FsP

1 ¢ non-
equilibrium
pressure

oT

+hap

ah] +h@)
B oT P

p_.._.

9P

1¢ non-

dh
5,

equilibrium
temperature

L
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Table 4.2 Summary of the G functions for the rate form of the equation of state

Case G, G,
2¢ equilibrium hfg v Ve
(all derivatives
along saturation v ohy, x Ohg| % _h v + X 9V
line) % | 5p 2P ®lap " aP
1 non-equilibrium dh ) ) ap]
pressure aT/, T/,
3\ on) _ o %) ab
3T ), oP), p 9T)p 0P/;
i non-equilibrium ah ) K p)
temperature aP) ; P/,
op) an) _dp - %) oh
3T |, 3P )+ ; oP).aT),
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PRESSURE —»

Figure 4.1 P-v-T surface for water.
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Figure 4.3 Error correction scheme for pressure in two-phase,
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DENSITY vs. PRESSURE

for various tsmpetatures (deg C)

1 l—e—e—a—e—a-—e—e—-a—a—a—e-e—e—e—e——e—-e—o-—d
0.03"'
°|° "J i
" 0 S—r— — e ety 4—6——0—-’—‘——.-——’-—.4
? 0.88 -
ig
——A——-—ﬁ"'—"ﬁ_‘_ﬁ‘_'ﬁ'—
S . —
¢ 0.78 -
E uuux,:;:;xx“"“*
a 007 - T
0.65 -
l
o-a- /
0.88 T Tt T T T T T
1 S - 7 e 11 13 16 1?7 19
PRESSURR gﬂ’l)
o 1106 + 160 © 200 A 30 X 300 v 30

Figure 4.4 Density vs. pressure at various temperatures in subcooled water.
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