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4.1 Introduction 

4.1.1 Chapter Content 

This chapter explores how to get the pressure given information from the governing 
conservation equations. 
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r Objective 4.2 

Condition 

1 Weight 

f 

--- 

The student should be able to develop a flow diagram and pseudo-code 
For the calculation of P and T given density and enthalpy. 

Open book written examination. 

100%. 

The rate form of the equation of state. 

Knowledge Comprehension --Tq - Application Analysis 

a 



Objective 4.3 The student should be able to explain the pressure and temperature 
response of a volume of fluid to perturbations given the F and G 
functions. - 

Condition Open book written examination. 

Standard 100%. 

Related The rate form of the equation of state. 
concept(s) 

Classification Knowledge Comprehension Application Analysis Synthesis Evalu 
ation - - 

Weight a a - - 
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4.2 Thermodynamic Properties 

From a thermodynamics viewpoint, the equation of state of a substance is a relationship 
between any four thermodynamic properties of the substance, three of which are 
independent. 

EXTENSIVE FORM: An example of the equation of state involves pressure P, volume V, 
temperature T and mass of system: 

n (P, V, T, M) = 0 (1) 

If any three of the four properties are fixed, the fourth is determined. 

INTENSIVE FORM: The equation of state can also be written in a form which depends 
oniy on the nature of the system and not on how much of the substance is present, hence all 
extensive properties are replaced by their correspon,ding specific values. Thus 

I-C (P, v, T) = 0 (2) 

is the specific value form of the above equation of state, where vis the specific volume. 

If any two of the thermodynamic properties are fixed, the third is determined. 
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From a thermodynamic point of view, the appropriate way to present water properties is by 
tables or formula for each property expressed as a function of the independent parameters 
P and T (figure 4.1). 

Thus given vaiues of pressure and temperature, the calculation of other thermodynamic 
properties is usually straightforward. 

Unfortunately, T and P are rarely the independent param.eters in system dynamics since the 
numerical solution of the conservation equations yield mass and energy as a function of 
time. 

Hence, from the point of view of the equation of state, it is mass and energy which are the 
independent parameters. 

Consequently, system codes are hampered by the form of water property data commonly 
available. 
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A key point to note is that the conservati~on equations are all cast as rate eauations whereas 
the equation of state is typically written as an algebraic equation. 

This arises from the basic assumption that, although the properties of mass, momentum and 
energy must be traced or solved as a function of time and space, the corresponding local 
pressure is a pure function of the local state of the fluid. Process dynamics are not 
considered. 

This is the essence of the equilibrium assumption (in a like m.anner, of course, we invariably 
use steady state heat transfer coefficients, etc. in dynamic processes). 

Historically, this mixture of form arose because thermodynamics endeavours were 
concerned with equilibrium states and not with system processes. System modellers, on the 
other hand, emphasized system dynamics and used what was available for constitutive 
relations. System modellers are more concerned with numerical problems. 
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Porsching [POR7 l] correctly identifies the important role of flow in his work and by keying 
the formulation of node-link networks to flow, stable, efficient and accurate solution 
schemes result. 

However, the role of pressure has not received the equivalent acknowledgement. 

Most other popular schemes, for instance, Agee [AGE83], use the algebraic form of the 
equation of state. 

This treatment puts the pressure determination on the same level as heat transfer coefficients. 

Thus, although numerical solution of the resulting equation sets give correct answers (to 
within the accuracy~ of the assumption), 

- intuition is not. generated 
- time consuming iterations must be performed to get a pressure consistent with the 
local state parameters. 

We look first at such an iterative scheme and then consider a more efficient alternative (the 
rate method). 
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Given the density and enthalpy of a volume of water, the task at hand is to find the 
associated values of pressure and temperature. 

Figure 4.2 shows qualitatively the relation between density, p, and enthalpy, h, for a given 
P. 

At low enthalpy, the fluid is single phase liquid and the density is high. 

As heat is added and the fluid reaches saturation temperature, vapour is generated to form 
a two-phase mixture and the density approaches the ~vapour density. 

The curve is well behaved and continuous making it a suitable candidate for numerical 
search routines. 



We start the iteration procedure by guessing a pressure. Usually in system transient 
simulation codes, the value of P at a previous time step is a good choice. 

Given P we calculate h,, and hgsat, the saturation enthalpies for the liquid and vapour phases, 
respectively. 

If h < hfsat then the fluid is single phase liquid. 

If h > hgsat then the fluid is single phase vapour. 

Otherwise the fluid is a two-phase mixture with a quality, x E [O,l]. 

The case of two-phase equilibrium is consid~ered first. Subsequently, the equations are 
extended to cover single phase and two-phase non-equilibrium fluid. 

- - 



,.:..’ : ,>; 

Equation o/State 4-12 

4.3.1 Two-Phase Equilibrium Fluid 

For two-phase fluid, the density and enthalpy are functions of the pressure and quality. 
Since we know the density, p, we can estimate the quality (xesJ for the guessed P (assuming 
a homogeneous mixture) since: 

v = ; = k+(P) + Xest v,(P) (3) 

and thus calculate the enthalpy based on the guessed P: 
best = hfm + x,,t h,(P) (4) 

This estimated value of h will differ from the known value of h. This difference is used to 
drive the iteration, ie, to update the guessed pressure as illustrated in figure 4.3: 

A,p = Ah 
ww, 

(5) 

The denominator in equation 5 must be evaluated numerically if analytical expressions are 
not available. The pressure is updated via: 

P = P + AP (6) 

and the iteration is repeated until the pressure has converged to some tolerance. The 
temperature is just the temperature of saturated fluid at that pressure. 

D::mCMnli.MSnD”~.~~ h”myll. ,59* II:,* 
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4.3.2 Single-Phase Sub-cooled and Superheated. Fluid 
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For single phase fluid, the density and enthalpy are functions of P and T, ie: 
p = p(P, T) Andy h = h(P, T) (7) 

For a guessed P and T, p and h can be found directly from the water property tables. 

But this is just an estimate since P and T are guessed. 

The true values of p and h lie some distance away and, to a first approximation, the true 
values and the estimated values are related by a Taylor’s series expansion: 

(9) 
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or, more compactly, 
AP = Gn, Ao + GZp Ah (12) 

AT = G,,r Ap + GTr Ah (13) 

The G functions are summarized in table 4.2. The derivatives must be evaluated 
numerically if analytical expressions are not available. 

The pressure and temperature are updated via: 
P = P + AP and T = T + AT (14) 

and the iteration is repeated until the pressure and temperature have converged to some 
tolerance. 
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First concentrating on the case of constant p (or v), to obtain G,, we differentiate 
equation (16) to gives: r 7 

Using equation (15), holding 17 constant (i.e., p = constant): / \ 

a 
dx -22 
dP 

Substituting this into equation (18) gives: 

ah, h$ --- 
+x dP % 

or equally: . 

i?V, av, 

ap +x ap 
dP - 
dt 

(19) 

(20) 
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dP 

(21) 

% dh = - 
{IX~NOMINATOR} “d: = G2 dt * 

This gives the pressure rate response due .to an enthalpy rate change, holding p constant. 

If we repeat the above but holding h constant we find: 
h,, v2 

dP - -- 
{DENOZINAT~RJ dt 

=($!?. (22) 

d t 

Note that G, and G2 are functions that depend only on the local saturation fluid properties 
and their slopes at the local pressure. 
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Combining equations 2 1 and 22 to get the total pressure rate response when both h and p are 
varying: 

dP dP - = G, (P, x) - dh 
dt dt 

+ G,(P, x) -. 
dt 

(23) 

This is the rate form of the equation of state for two-phase equilibrium fluid in terms of the 
intensive rate properties, dp/dt and dh/dt, which are obtained from the continuity equations. 
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Equation 23 can be cast in the extensive form by noting that, since p = M/V and h = H/M, 
dp 1 dM M dV 
dt =vdt- 

_- - 
~2 dt 

(24) 

and 
dh 1 dH 1-I dM _- = _ -- - - 
dt M dt M’dt’ 

(25) 

Substituting into equation 23 and collecting terms: 

~=[;~y) A!g+~!$“;2”i.$ (%) 

After some simplification and rearrangement we find: 
F dM + F 

’ dt 
dH .k F -- d’v’ 

EL- ’ dt 3 dt - -- 

dt MgF4 + MfF5 

(27) 

where: 



F, = hg vf - h,va 
F, = vg - vf 
F, = h, - h g 

F, = _- ;; (vg - vJ - ;+ (ha - h,) 
(28) 

ah, F, = __ (v 
ap g 

- vi) - f-- (hg - h,) 

Mg = xM 
M, = (1 x)M. 

The F functions are smooth, slowly varying functions of pressure (see appendix 4) provided 
good curve fits are used. 

The latest steam tables [H&U341 were used to fit saturated properties to less than l/4% 
accuracy using low order polynomials and exponentials [GAR88]. 

Considerable effort was spent on obtaining accuracy and continuous derivatives over the full 
pressure range. 

The fact that good fits are available means that the F functions are well behaved which in 
turn makes the rate form of the equation of state extremely well behaved, as shown later, 
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The G functions are also well behaved for the same reasons. 

The F and G functions have direct physical interpretations which aid in generating intuition. 

The F functions relate changes in the extensive properties, M, H and V, to changes in 
pressure. 

The G functions related changes in the intensive properties, p and h, to changes in pressure. 

Often, a simple numerical evaluation of these functions during a simulation aids in 
developing an appreciation of the changing roles of the key actors in a dynamic simulation. 

For instance, because F, is negative, we immediately see that adding mass to a fixed volume 
of liquid with fixed total enthalpy will cause a depressurization (‘because the specific 
enthalpy, h = H/M, is decreased). 

But, since G, is positive, an increase in density in a fluid of fixed specific enthalpy causes 
a pressurization. 
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4.4.2 Single-Phase Sub-cooled and Superheated Fluid 

For the single--phase sub-cooled or superheated case, we do not have to account for the 
sorting out between phases as we did for the two phase case. 

Thus the derivation is more direct and less complex. We could simply use: 
P = dp, h) (29) 

to give: 

(30) 

but, since the steam tables are given as a function of P and T, the slopes in equation (30) are 
not easily obtained. 
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To cast the pressure rate equation in telms of the independent variables, P and T, consider: 
P = P (K T) (31) 

and 
h = h (P, T) (32) 

Note that the non-equilibrium case requires the explicit tracking of the temperature in 
addition to pressure. Taking derivatives of Equations (3 1) and (32): 

(33) 

and 

.-___“_._;, 

dh ah -=- + dh \ dT 
dt 8P zTJp~dt’ 

(34) 
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This is easily obtained by solving equations (33 j and (34) for dP/dt and dT/dt to yield: 

(37) 

and 

which is the i,ntensive form we desire. 

(38) 



The extensive form is obtained as for the two-~phase equilibrium case. Equations (24) and 
(25) are substituted into equations (37) and (38) and after rearrangement we find: 

F 
dP 

dM + F2, dH_ + F,, = 
lp dt dt dt (39) -= 

dt M” F4P +\$ F,, 

and 
F dM+F dH+F 2 

dT lT dt 2T dt 3T dt .- = 
dt Mv F4T + M,F5T 

(40) 

where 
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The rate form for the equation of state for the two-phase non- equilibrium case is a simple 
extension of the single-phase non-equilibrium case. 

The liquid and vapour phases are treated independently to give: 
d% d&c dhlc ~ = G,; - + G2kp - 
dt dt dt 

dTk d&c - = GA - + (,‘A fd; (43) 
dt dt 

(42) 

where k represents either e or v for the liquid or vapour phases respectively. 

In general, the 6 equation modei (3 continuity equations for each phase) would be used for 
the general unequal temperature, unequal velocity, unequal pressure situation. Thus dp,/dt 
and dh,/dt are available to the rate form of the equation of state. 

The expressions for the F and G functions are sum.marized in tables 4.1 and 4.2. These 
expressions cover the full range from sub-cooled liquid to superheated steam. 
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The basic overall approach taken in the curve fitting task was that, since the more difficult 
region to fit was the transition from single to two-phase and since most power plants operate 
at or near this region, careful attention would be paid the phase transition region at the 
expense of accuracy away from the saturation line, if necessary. 

Thus, the first major step was to accurately fit the saturation lines. 

Then, since density, enthalpy and other properties vary more strongly with T than with P (as 
shown in figure 4.4), the property in question, say density, would be calrulated based on the 
deviation from the saturation value at the given T, ie: 

PRT) = P,,(T) + s !p -~, P,R,(T>) 
T 

(44) 

Figure 4.5 illustrates the strategy. 

It should be obvious by now that not only the properties need to be fitted but the slopes are 
needed as well. 

Both the properties and the slopes of the properties must be free of discontinuities if 
numerical searches are to converge. 
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‘The supplied code is divided into 3 levels: 
- Level 1: the fitted functions 
- Level 2: derived functions and collections of functions (for convenience) 
- Level 3: logic sorter and manager 

Details on these routines are given at the end of appendix 4. 

It is instructive to study appendix 4 in conjunction with the supplied code (WATFSA.FOR, 
PROPA.FOR, H20PROP.FOR). 

,, ,,, ,,,, ,, 
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1. 

2. 

3. 

Using the spread sheet macros for Microsoft Excel supplied by G.R. McGee (as per the 
memo at the end of this chapter, calculate and plot the density, enthalpy, quality and 
void fraction for a range of pressures ( 1 to 100 atmospheres) and temperatures(50 “C 
to 350 “C). Make sure you cover the subcooled, saturated and superheated ranges. 

Using the supplied code, WATERA.EXE: 
a. Calculate p and h for P=lO MPa and T=300 “C. Increase the temperature in steps 

to see the approach to two-phase. 
b. Using p and h slightly different than that found in (a), calculate P and T. 
C. Practice calculating p given h and P. 

Using the supplied skeleton code N0DE.C: 
a. Fill in the missing code required to ca.lculate P and T given p and h. 
b. Use the code to calculate AP and AT when a node experiences a AM, a AH or a 

AV. Compare your answers to WATERA.EXE. 
C. Use the code to calculate AP and AT when a node experiences a Ap and a Ah. 

Compare your answers to WATERAEXE. 
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Table 4.2 Summary of the G functions for the rate form of the equation of state 
G. I G, 

-  

241 equilibrium 
(all derivatives 

along saturation 
line) 

f--,2 +x%j’~ts,~ +xij&ts,$ +i$$hts,G +x2]] 

I $I non-equilibrium 
pressure 

14 non-equilibrium 
temperature 
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Figure 4.1 P-v-T surface for water. 
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Figure 4.3 Error correction scheme for pressure in two-phase. 
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Figure 4.4 Density vs. pressure at various temperatures in subcooled water. 
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