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O
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5.2 
The student should be able to develop a com

puter code im
plem
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of state. 
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Condition 

W
orkshop 

or project based investigation. 
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O
bjective 

5.3 

Condition 

Standard 

R
elated 

concept(s) 

C
lassification 

W
eight 

The student should be able to m
odel a si.m

p1.e therm
alhydraulic 

netw
ork 

using the integral 
form

 of the conservation 
equations and the rate form

 
of the equation 

of state. The student should be able to check for 
reasonableness of the answ

ers. 

W
orkshop 

or project based investigation. 

100%
. 

- 
Integral 

form
 of the conservation 

equations. 
Node-link 

diagram
. 

The rate form
 of the equation of state. 
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5.1.3 
C

hapter Layout 

First, the derivation 
of the rate form

 of the Equation 
of State is presented. 

System
atic com

parison 
betw

een the new m
ethod and the traditional 

iterative m
ethod is 

m
ade by applying 

the m
ethod~s to a sim

ple flow
 problem

. 

The com
parison 

is then extended to a practical 
engineering 

problem
 

requiring 
accurate 

prediction 
of pressure. 

, 
.- 

--- 
I 

._ 
,,., 

,,I, 
,, 

.---“~
,.~

 



The R
ate Form

 of the Equation of State 
5-6 

5.2 The R
ate Form

 

Presently, the conservation 
equations are all cast a.s rate eauations w

hereas the equation. 
of state is typically 

w
ritten 

as an algebraic equation 
[AG

E83]. 

The equation of state is considered only as a constitutive 
equation. 

This treatm
ent puts the pressure determ

inations 
on the sam

e level as heat transfer 
coefficients. 

Although 
num

erical 
solution 

of the resulting 
equation 

sets give correct answ
ers (to within 

the accuracy of the assum
ption), 

intuition 
is not generated and tj~m

e-corrsum
ing iterations 

m
ust be perform

ed 
to get a pressure consistent w

ith 
the loca! state param

eters. 

The tim
e derivative 

form
 of the Equation 

of State is investigated, 
herein, in conjunction 

w
ith the usual rate form

s of the conservation 
equations. 

This gives an equation set w
ith 

tw
o distinct 

advantages over the use of algebraic 
form

 of ,the Equation 
of State norm

ally 
used. 
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The first advantage is that the equation 
set used consists of four equations for each node 

or point in space, characterizing 
the four m

ain actors: 
m

ass, flow
, 

energy and pressure. 

This consistent form
ulation 

perm
its the straight- forw

ard extraction 
of the system

 
eigenvalues 

(or characteristics) 
w

ithout 
having 

to solve the equations num
erically. 

Theoretical 
analysis of this aspect is given in appendix 

5. 

The %
econd advantage is that the rate form

 of the Equation 
of State perm

its the num
erical 

cakuiation 
oi ‘the press@

2 .iyi&3b, 
~\~;&+, 

The calculation 
tim

e for the pressure w
as found to be reduced by a factor of m

ore than 
in som

e cases (w
here the flow

 w
as rapidly 

varying) 
and, at w

orst, the rate form
 w

as no 20 

slow
er than the algebraic form

. 

In addition, 
because the pressure can be explicitly 

expressed in term
s of slow

ly 
varying 

system
 param

eters and flow
, an im

plicit 
num

eric 
schem

e is easily form
ulated 

and coded. 

This chapter w
ill 

concentrate on this num
erical 

aspect of the equation of state. 
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5.3 N
um

erical 
Investigations: 

a Sim
ple C

ase 

The sim
ple tw

o-node, 
one-link 

system
 is (Figure 

5.1) chosen to illustrate 
the 

effectiveness 
of the rate form

 of the equation 
of state in elim

inating 
the inner iteration 

loop in therm
alhydraulic 

sim
ulations. 

In general, the task is to solve the m
atrix 

equation, 
dU 

Tt- 
= Au 

+ b 
(1) 

The key point 
that w

e w
ish to discuss is the difference 

in the norm
al 

m
ethod (w

here u = 
(M

,, H
,, W

r, M
2, Hz}) and the rate m

ethod (w
here u = {M

,, H
,, P,, W

, M
,, H

,, P2}). 

For sim
plicity 

and clarity, 
w

e first sum
m

arize 
w

ork for a fixed tim
e step Euler 

integration: 
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5.3.1 
Norm

al 
M

ethod 

The norm
al m

ethod obtains the value of pressure at tim
e, t+At, from

 an iteration 
(as 

discussed previously) 
on the equation 

of state using the values of m
ass and enthalpy 

at 
tim

e, t+At, i.e. the new pressure m
ust satisfy: 

P t+A
t 

= 
h,($+At, 

ht+At) 
(2) 

w
here both p and h are pressure dependent functions. 

Any 
iteration 

requires a starting guess and a feedback m
echanism

. 

H
ere, the starting guess for pressure is the value at tim

e, t: P’. Feedback in the N
ew

ton- 
Raphson schem

e is generated by using an older value of pressure, PteAt, to estim
ate 

slopes. 

Since the slope, dh/dP, w
as readily 

available 
from

 the rate m
ethod, w

e chose to use this 
slope to guide feedback. 

Thus, in the com
parison 

of m
ethods, w

e have borrow
ed from

 
the rate m

ethod to enhance the norm
al 

m
ethod. 

This provides 
a stronger test of the rate 

m
ethod. 

,,“.,,,, 
,, 

,,, 
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Thus w
e can now generate our next pressure guess horn: 

S-10 
- 

h--h 
P 

=p 
-t 

-“t*AD
J 

new
 

guess 
ahm

 
w

here h is the known 
value of h at t+At and h,,, is the estim

ated h based on the guessed 
pressure as discussed in detail in chapter 4. 

ADJ is an adjustm
ent 

factor E[O
, I], to allow

 experim
entation 

w
ith the am

ount of 
feedback. 

This iteration 
on pressure continues 

until 
a c.onvergence criteria, P,,, is satisfied. 

The converged pressure is used in the outer loop in the m
om

entum
 

equation and the tim
e 

can be advanced one tim
e step. Figure 5.2 sum

m
arizes 

the logic flow
. 
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5.3.2 
R

ate M
ethod 

’ 

The rate m
ethod obtains the value of pressure at tim

e, tt.At, directly 
from

 the rate 
equatian as is done for the conservation 

equations. 

Equation 
27 of chapter 4, gives the rate of change of pressure which 

can be solved 
sim

ultaneously 
w

ith the conservation 
equations if substitutions 

for dM
/dt 

and dH
/dt are 

m
ade, leading 

to: 
au 
x 

=A
u+b 

(4) 

w
here u = {M

, H
,, P,, W

, M
2, H

,, P2} . 
Thus: 

t+A
t 

‘i 
= P

i 
+ A

t[A
u 

+ bli 

No inner iteration 
is required, as shown in Figure 

5.3. 

(5) 
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O
ne problem

 w
ith this approach is that the pressure m

ay drift aw
ay from

 a value 
consistent w

ith the m
ass and energy. 

5-12 

This problem
 

does not arise w
ith the conserva~tion equations because the equations are 

conservative 
in form

, by design. 

It is not possible to cast the rate form
 of the equation 

of state in conservative 
form

 since 
pressure is sim

ply 
not a conserved property. 

W
e can surm

ount 
the drift problem

 
by using the feedback philosophy 

of the norm
al 

m
ethod. 

Thus the new pressure is given by: 
t+A

t 
‘i 

= P; 
+ At[Au 

+ bli 
+ 

h-h,,, 
- *AD

J 
ahlap 

(6) 

This correction term
 uses only readily 

available 
inform

ation 
in a non-iterative 

m
anner. 
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In essence, the m
ain effective 

difference 
betw

een the norm
al 

and rate m
ethod is that 

during 
the tim

e step betw
een t and t-iAt the norm

al m
ethod 

em
ploys param

eters such as 
density, quality 

etc. derived from
 the pressure at tim

e, t+At, w
hereas the rate form

 
em

ploys param
eters derived 

from
 the pressure and rate of cha,nge of pressure at tim

e, t. 

The norm
al 

m
ethod is not necessarily 

m
ore accurate, it i.s sim

ply 
forcibly 

im
plicit 

in its 
treatm

ent 
of pressure. 

The rate m
ethod can be im

plicit 
(as w

e shall see) but it need not be. 

W
ithout 

experim
entation 

it is not evident w
hether the necessity of iteration 

in the norm
al 

m
ethod is outw

eighed 
by the possible advantages of the im

plicit 
pressure treatm

ent. 

The next sections tests these issues w
ith num

erical 
experim

ents. 
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5.3.3 
Com

parison 

The tw
o node, one link num

erical 
case under consideration 

is sum
m

.arized in figure 5.1. 

Perhaps the m
ost startling 

difference 
betw

een the norm
al 

and rate m
ethods is the 

difference 
in program

m
ing 

effort. 

The rate form
 w

as found to be extrem
ely 

easy to im
plem

ent 
since the equation form

 is 
the sam

e as the continuity 
equations. 

The norm
al 

m
ethod took roughly 

tw
ice the tim

e to im
plem

ent 
since separate control of 

the pressure logic is required. 

This arises directly 
from

 the treatm
ent 

of pressure in the norm
al 

m
ethod: 

it is the odd 
m

an out. 

- 
-. 

I 
.- 

- 
-. 
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_. 

- 
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The second startling 
difference 

w
as ease of execution 

of the rate form
 com

pared to the 
norm

al 
form

. 

The norm
al form

 required 
experim

entation 
w

ith both the pressure c,onvergence tolerance, 
P,,, and the adjustm

ent 
factor, AD

J, since the solution 
w

as sensitive to both param
eters. 

The rate m
ethod contains 

only the adjustm
ent 

factor AD
J. 

The first few
 runs of the rate m

ethod show
ed that since the correction term

 for drift (h- 
h,,,)/(ah/dp) 

is alw
ays several orders of m

agnitude 
below

 the prim
ary 

update term
, At{A 

u + b}, the solution 
w

as not at all sensitive to the value 
of AD

J. 

Thus the rate m
ethod proved easier to program

 
and easier to run than the norm

al m
ethod. 

,I, 
,. 
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W
e look at the num

ber 
of iterations 

required for pressure convergence 
as a function 

of 
P,, and L!D

J for the norm
al 

m
ethod w

ithout 
regard to accuracy. 

For a At of 0.0 1 set, P,, = 10” (fraction 
of the full 

scale pressure of 10 M
Pa), the effect of 

ADJ is seen in figure 5.4. 

This result is typical: 
an adjustm

ent 
factor of 1 gives rapid convergence (one or tw

o 
iterations) 

except w
here very large pressure changes occur. 

For the case of very rapid changes, the full 
feedback (AD

J = 1) causes overshoot. 

O
verall, 

how
ever, the tim

e spent for pressure calculation 
is about the sam

e, independent 
of AD

J. 



:;,’ 
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ofthc 
Equation 

o/State 

Allowing 
a larger pressure error had the expected result of reducing 

the num
ber of 

iterations needed per routine 
call. 

S-17 

But choosing 
a sm

aller tim
e step (say .O

O
l) did not have a drastic effect on the peak 

interations 
required. 

The rate m
ethod, 

of course, alw
ays used 1 iteration 

per routine 
call and the adjustm

ent 
factor ADJ w

as found to be unim
portant 

since the drift correction 
factor am

ounted to no 
m

ore than 1%
 of the total pressure update term

. 

The integrated 
error for both m

ethods is shown in figure 
5.5. 

Both m
ethods converge rapidly 

to the benchm
ark. 

The value of P,, is not overcritical. 
A 

value of P,, consistent w
ith tolerances set for other sim

ulation 
variables 

is recom
m

ended. 

The tim
e spent per each iteration 

is roughly 
com

parable 
for both m

ethods. 

., ,.- .-,-, -~.-x_ 
.-__ 
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The m
ain difference 

is that the rate m
ethod requires the evaluation 

of the F functions 
over and above the property 

calls com
m

on 
to both m

ethods. 

This m
inor 

penalty is insignificant 
in all cases studied since the num

ber 
of iterations / 

call dom
inated 

the calculation 
tim

e. 

In sum
m

ary, to this point, the rate m
ethod is easi.er to im

plem
ent, 

m
ore robust and is 

equal to the norm
al 

m
ethod at w

orst, m
ore than 20 tim

es faster under certain conditions. 



, 
‘. 

The R
ate Form

 ofthe Equation of State 

VAFUABLE 
TIM

E 
STEP 

5-19 

W
e now look at incorporating 

a variable 
tim

e step to see how each m
ethod com

pares. 

Typicai 
variable 

tim
e step algorithm

s 
require som

e m
easure of t!re rate of change of the 

m
ain variables 

to guide the At choice. 

The m
atrix 

equation, 
equation 

1, provides 
the rates that w

e need. 
Since the rate m

ethod 
incorporated 

the pressure into the u vector, the rate of chzm
ge of pressure is im

m
ediately 

available. 

For the norm
al 

m
ethod, the rate of change of pressure has to be estim

ated from
 previous 

history 
(which 

is no good for predic.ting the onset of rapid changes) or by trial and error. 

,,, 
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It is expected then, that the norrnal m
ethod w

ill 
not perform

 
as w

ell as the rate m
ethod 

prim
arily 

because of the “loop within 
a loop” 

inherent 
in the norm

al 
m

em
od as applied to 

typical 
system

 sim
ulation 

codes. 

A num
ber of cases w

ere studied and the results of the n.orm
al m

ethod w
ere com

pared to 
the rate m

ethod. 
The figure of m

erit w
as chosen as 

F.O
.M

. 
= 

10,000 
(integrated etior)x(total 

pressure routine tim
e)x(N

o. 
of adjustable param

eters) 
(‘) 

Thus, an accurate, fast and robust m
ethod achieves a high 

figure of m
erit. 

Som
e results are listed in table5.1. 

D
erating 

a m
ethod w

ith m
ore adjustable param

eters is deem
ed appropriate because of the 

figure of m
erit should reflect the effort involved 

in using that m
ethod. 

O
n average, about 6 runs of the norrnal 

m
ethod, w

ith various 
P,, and ADJ w

ere needed 
to scope out the solution 

field com
pared to 1 run for the rate m

ethod. 
Thus a derating of 

2 is not an inappropriate 
m

easure of robustness or effort required. 









Em
ploying 

the fully 
im

plicit 
schem

e, the difference 
equations 

are cast 
w

t+Afq 
t 

At 
-p;+At, 

- 
.$w 

tlw 
i-f,At 

(16) 

p’+At-pi’ 
= 

&xiwt+At 
e+‘;+A’-pit 

= 
+,$Jft+AtAt 

(17) 

At 

C
ollectm

g 
term

s and solving 
for the new flow

: 

w 
- 

t+A
t 

_ 

i 1 ++W
 

‘[At 
+ $x1 

+Q
A ’ 

t2rb 
t + $(P;-P$t] 

(18) 

This 
is the im

plicit 
tim

e’advancem
ent 

algorithm
 

em
ploying 

the rate form
 ofthe 

equation 
of state. 

For the norm
al 

m
ethod, 

the pressure rate equation 
in term

s of flow
 

(i.e., 
equation 

18) is not available 
to allow 

an im
plicit 

form
ulation 

of the pressure. 
C

onsequently, 
the im

plicit 
tim

e 
advancem

ent 
algorithm

 
for the norm

al 
m

ethod is: 

W
t+At 

= 
f,& 

-’ W
 t 

] 
[ 

+ $I$+~t-P;+AjAt] 
(19) 

,, ., 
,,, 

,, ,,, 
,, ,, 
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To appreciate the difference 
betw

een equations 
19 and 20, consider the eigenvalues 

and 
vectors of 

am
 

at 
= A(u,t)u(t) 

(20) 

If w
e assum

e, over the tim
e step under consideration, 

that A = constant and has distinct 
eigenvaiues, 

then the solutio:n to equation 
21 can be w

ritten 
as: 

u(t) 
= 5 

upe aQ
t 

P=l 
(21) 

w
here 

up = eigenvectors 
a@

 = eigenvalues. 
It can be shown that for the explicit 

form
alism

, 
the num

erical 
solution 

is equivalent 
to: 

U t+A
t 

_ - 
5 

(I +apAt)u, 
(22) 

P=I 

while 
the im

plicit 
form

 is: 
N 

U t+A
t 

= 
c 

5 

p=l (1 -a,At) 
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The eigenvalues 
can often be huge and negative. 

Thus, at som
e At, the factor (1 +a,At) can go negative 

in the explicit 
solution 

causing 
each subsequent evaluation 

of u to oscillate 
in sign and go unstable. 

For the im
plicit 

m
ethod, the contributions 

due to large negative 
eignevalues 

decays aw
ay 

as At - *. 

Thus the im
plict 

form
alism

 
tend to be very w

ell behaved at large tim
e steps. 

Positive 
eigenvalues, 

by a sim
ilar 

argum
ent 

pose a threat to the im
plicit 

form
. 

H
ow

ever, 
this is not a practical 

problem
 

because a,At is kept ~4 
for accuracy reasons. 

Thus, as long as the solution 
algorithm

 
contains a check on the rate of grow

th or decay 
(effectively 

the dom
inant 

eigenvalues) 
then the im

plicit 
form

 is w
ell behaved. 
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W
ith 

this digression 
in m

ind, w
e see that the im

plicit 
rate form

alism
 

(equation 
19) has 

m
ore of the system

 behaviour 
represented im

plicitly 
than the norm

al m
ethod (equation 

20). 

Thus, w
e m

ight 
expect the rate from

 to be m
ore stable than the norm

al form
. 

Indeed, this w
as found to be the case as shown in figure 

5.6. 

For a fixed and large tim
e step (O

.lsec.) the norm
al 

m
ethod show

ed the classic num
erical 

instability 
due to the explicit 

pressure treatm
ent. 

The rate form
 is w

ell dam
ped and very stable, showing 

that this m
ethod should perm

it 
the user to “calculate 

through” 
pressure spikes if they are not of interest. 

.,,~.,” 
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um

erical 
Investigations: 

a Practical 
C

ase 

The com
parison 

betw
een the norm

al 
and rate m

ethods is extended to a practical 
application 

w
here a tw

o node hom
ogeneous 

m
odel is used to sim

ulate a transient of a 
sm

all pressurizer 
operating 

at near-atm
ospheric 

pressure. 
The procedure is briefly 

described in the follow
ing 

[SO
LSS]. 

Figure 
5.7 illustrates 

the problem
. 

Steam
 and stratified 

liquid 
w

ater in the pressurizer 
are schem

atically 
shown as tw

o 
control volum

es 
(nodes). 

The nodal fluids 
are assum

ed to be at saturated tw
o-phase 

conditions 
corresponding 

to the pressure at their respective 
control volum

es. 

The ov~erall boundary 
conditions 

to the system
 are the steam

 bleed flow
 at the top of the 

pressurizer, 
the flow

 into and out of the pressurizer through 
the surge line, heat input 

from
 heaters at the bottom

 of the pressurizer 
and heat loss to pressurizer w

all. 

,, 
,, ,, 
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The rate of change of m
ass, M

, in the steam
 control volum

e 
and M

L in the liquid 
control 

volum
e, 

can be expressed by the follow
ing: 

d”s 
- 

= - w
 

dt 
S

TB
-W

C
D

-W
C

I+W
E

IfW
B

R
 

M
L 

- 
= w

,, 
dt 

-~~,,-w
~py&+w

C
~ 

(24) 

(25) 

w
here 

W
,, 

is the steam
 bleed flow

, 
W

,, 
is the surge line inflow

, 
W

,, is the interface corrdensation rate at the liquid 
surface separating the steam

 control 
volum

e 
from

 the liquid 
control volum

e, 
W

,, is the interface 
evaporation 

rate at the sam
e liquid 

surface, 
W

c, is the flow
 of condensate droplets (liquid 

phase) from
 the bulk 

of the steam
 control 

volum
e 

tow
ard the liquid 

control volum
e, 

and 
W

,, 
is the rising 

flow
 of bubbles (gas phase) from

 the bulk of liquid 
volum

e 
tow

ard the 
steam

 volum
e. 

,,,, 
,,., 
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h,, 
is the specific enthalpy 

of the fluid 
in the surge line, 

h,,, 
and hfST are respectively 

the saturated gas phase specific 
enthalpy 

and the saturated 
liquid 

phase specific enthalpy 
in the steam

 corrtrol volum
e, 

h,, 
and h,, 

are respectively 
the saturated gas phase specific 

enthalpy 
and the saturated 

liquid 
phase specific enthalpy 

in the liquid 
control volum

e, 
Q

 W
s and Q

w
L are the rate of heat loss to the w

all in the steam
 control volum

e 
and in the 

liquid 
control 

volum
e 

respectively, 
Q

TR
 is the heat transfer rate from

 the liquid 
control volum

e 
to the steam

 control volum
e 

due to any tem
perature gradient, 

excludiag 
those due to interface evaporation 

and 
condensation; 
Q

 coND is the rate of energy released by the condensing 
steam

 to both the steam
 and liquid 

control 
volum

es 
during the interface 

condensation 
process and 

Q
 E,,rR

 is rate of energy absorbed by the evaporating 
liquid 

from
 both the steam

 and liquid 
control 

volum
es 

during the interface 
evaporation 

process. 
The constant, p, represents the fraction 

of these energies distributed 
to or contributed 

by 
the liquid 

control volum
e. 

The ratio 6 represents the portion 
of energy released during 

the interface condensation 
that is lost to the w

all. 

,,,.., 
,, 

,,” 
,, ,, 

,,,,,, 
,, 
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The calculation 
of sw

elling 
and shrinking 

of control volum
es 

is only done for the liquid 
control volum

e 
and the volum

e 
in the steam

 control volum
es 

w
ill 

be related to the 
volum

e 
in the liquid 

control 
volum

e, 
V,, as: 

dV, 
dV, 

- 
= -- 

(28) 
, 

dt 
dt 

The sw
elling 

and shrinking 
of the liquid 

control 
volum

e 
as w

ell as values of W
STB, W

SR
L, 

W
cI, W

m
 W

C
D

> Km
 

Q
w

s, Qvm
 Q

-m
 Q

m
, 

p and 6 are calculated 
u.sing analytical 

or 
em

pirical 
constitutive 

equations. 

The m
ajority 

of these param
eters depend directly 

or indirectly 
on pressure. 

Any 
inaccurate prediction 

of pressure during 
a num

erical 
sim

ulation 
w

ill 
result in severe 

num
erical 

instability. 

Hence the above problem
 

is a good testing ground for com
paring 

the perform
ances of the 

tw
o m

ethods. 

,, ,, 
,,,., 

.,,, 
., 
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During 
the test sim

ulation, 
the pressurizer is initialiy 

at a quasi-steady 
state. The steam

 
pressure is at 96.3 kPa. The steam

 bleed flow
, W

STB, heater pow
er Q

pw
R

 and heat losses 
Q

W
L and Q

w
s are at their quasi-steady 

values, m
aintaining 

the saturation condition 
of the 

pressurizer. 
At tim

e = 11 sec., the steam
 bleed valve 

is closed and W
,, 

drops to zero 
while 

Q
,, 

is increased to a fixed value of 300 W
atts. 

At tim
e = 16 sec., the steam

 bleed 
valve 

is reopened and its set point set at 80 kPa. 

Since the therm
odynam

ir, 
properties in the steam

 control 
volum

e 
and the liquid 

control 
volum

e 
are functions 

of P, and P, (pressures of the respective control volum
es), 

there are 
seven unknowns 

from
 equations 21 to 25, nam

ely: 
M

,, M
,, H

,, HL, V, (or V,), P, and 
pt,. 



Adding 
tw

o equations of state, one for each control volum
e, 

w
ill 

com
plete the equation 

set: 

Ps = fh(ps,hs) 
= fn ‘M

S
 

H
,\ 

--,-G
 

s 
s J 

P
, = W

+,,h,) = fn 

Both the norm
al 

iterative m
ethod 

and the rate m
ethod are tested to solve Equations 

26 
and 27. The follow

ing 
observations 

are m
ade: 

(29) 

(30) 
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1. 
Using the norm

al 
m

ethod, the choice of adjusting 
P to converge on h given p or 

converging 
on p given h is found to be very im

portant 
in providing 

a stable 
num

erical 
result. 

At tim
e step = 10 m

sec, no com
plete sim

ulation 
result can be 

generated when p w
as the adjusted variable. 

An explanation 
of this can be given by 

referring 
to G

,(P,x), or aP/dp, This factor is proportional 
to the square of [x V.&P) + 

’ 
(l-x)vXP)]. 

H
ow

ever, 
the direction 

of change in the saturated gas phase specrfic 
volum

e 
w

ith pressure is opposite to that of saturated liquid 
phase specific volum

e: 
dv$dP > 0 
dv,/dP 

-C
 0 

Therefore, 
a fluctuation 

in the value of pressure dttring an iteration 
process w

ill 
am

plify 
the fluctuation 

in th.e value 
of predicted density when that m

ethod is used; 



c 



5.5 D
iscussion 

And 
C

onclusion 

No barrier is perceived 
to applying 

the rate form
 to the m

ulti-node/link 
case, to the 

distributed 
form

 of the basic equations, 
and to eigenvalue 

extraction 
(num

erical 
or 

analytical). 

Although 
w

e have not m
ade use of it in this w

ork, the non-equilibrium
 

form
 (equations 

4.42 and 4.43) is provocative. 

It entices one to view
 the non-equilibrium

 
sihtation 

as the essentially 
dynam

ic 
situation 

that it is and helps to focus our attention 
on the therm

al 
relaxaticn. 

G
iven the tem

perature rate equations, 
the non-equilibrium

 
situanon 

should be easy to 
incorporate 

w
ithout 

a m
ajor code rew

rite. 
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W
e conclude 

by restating our m
ajor findings. 

The rate m
ethod offers m

any advantages: 

1) 
It is m

ore intuitive 
for system

 w
ork. 

It perm
its a proper focus on the tw

o m
ain 

actors, flow
 

and pressure. 

2) 
The sam

e form
 is appropriate for eigenvalue 

extraction 
as w

ell as nurn.erical 
sim

ulation. 
This extends the usetilness 

of coding. 

3) 
Program

s are easier to im
plem

ent. 

4) 
Program

s are m
ore robust and require less hand holding. 

5) 
Tim

e step control 
and detection of rapid changes (like phase changes) is im

proved. 

O
verall the m

ethod is usually 
faster and m

ore accurate. 
Tim

e savings peaked at a ratio of 
26 for the cases considered. 

“, 
“,, 

x.I.,~_xI- 
.., 

,,,” 
” 

.; 
,,,,., 
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5.6 Exercises 

1. 
C

onsider 
2 connected volum

es 
of w

ater w
ith conditions 

as shown in figure 5.1 
M

odel this w
ith 2 nodes and 1 link. 

Use the supplied 
code (2node.c) as a guide. 

a. 
Solve for the pressure and flow

 histories using the norm
al 

iterative 
m

ethod for 
the equation of state, 

b. 
Solve for the pressure and flow

 histories 
using the non-iterative 

rate m
ethod. 

C
. 

C
om

pare the tw
o solutions 

and com
m

ent. 

2. 
Vary the initial 

conditions 
of question 

1 so as to cause void collapse in volum
e 

2 
during 

the transient. 
W

hat problem
s 

can you anticipate? 
Solve this case by both 

m
ethods. 
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Table 
5.1 Figure of M

erit 
C

om
parisons of the N

orm
al and Rate Form

s of the Equation of State for Various 
C

onvergence C
riteria (Sim

ple C
ase). 

5-4 1 

C
onvergem

e 
PreSSW

e 
(C

reetion 
full 

scale) 
integral 

routine 
Relatiue* 

:a16 
.bfethod 

O
verrll 

Pressure 
ADJ 

error 
tim

e 
APB 

FO
M

’ 
FO

M
 

1 
P rate 

0.01 
0.5 

180.39 
24 

1 
2.31 

2 
Pnorm

 
0.01 

0.01 
0.5 

597.61 
25 

2 
0.33 

8.90 

3 
P rate 

0.001 
0.5 

21.13 
96 

1 
4.93 

4 
Pnorm

 
0.001 

0.001 
0.5 

79.819 
119 

2 
0.53 

9.37 

5 
Pnorm

 
0.001 

o.ooo!I1 
1 

22608 
246 

2 
0.89 

5.53 

6 
Paorm

 
0.001 

0.0001 
1 

22.781 
229 

2 
0.96 

5.14 

7 
Pnorm

 
0.001 

0.001 
1 

22.761 
140 

2 
1.57 

3.14 

a 
Pnornl 

0.001 
0.01 

1 
22447 

$26 
2 

1.71 
2.66 

9 
Pldb 

c.0001 
0.5 

0.634 
736 

1 
25.44 

10 
PlW

llI 
O

.oaO
l 

0.0001 
0.5 

2.2536 
652 

2 
2.60 

9.77 

11 
P norm

 
0.0001 

0.0001 
1 

0.4907 
a94 

2 
ll.M

 
2.23 

A?-= 
L of adjustable 

pem
m

etm
e 

FO
M

 
= 

Figure 
of m

erit 
R

elative 
FO

M
 

= 
tFO

M
 

for rue 
m

ethodY(FO
M

 
for norm

s.1 m
ethod) 
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N
O
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N

O
D

E 
2 

Figure 5.1 Sim
ple 2-node, l-link 

system
. 
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Figure 
5.2 Program

 
flow

 diagram
 

for the nom
al 

m
ethod. 
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Figure 
5.3 Program

 
flow

 
diagram

 
for the rate m

ethod. 
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28 

24 

20 

18 

12 8 4 0, 

- 
AD

J- 
1.0. 

,AD
J=0.5: 
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-8s I-------_I 
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0.2 
0.4 

0.6 

TIM
E 

(set) 

0.8 
1.0 

Figure 5.4 N
um

ber of iterations per pressure routine cal! for the norm
al m

ethod w
ith a rim

e step of 
0.0 1 seconds and a pressure error tolerance of 0.001 of full scale (10 m

Pa). 
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Figure 
5.6 Flow

 vs. tim
e for the im

plicit form
s of the norm

al and rate m
ethod. 
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Figure 
5.7 Schem

atic 
of control 

volum
es 

in the pressurizer. 
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