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Before taking up the main business of the chapter, we pause briefly to
make a few comments regarding three kinds of time derivatives used in the
text. We might illustrate them with a homely exainple—namely the problem
of reporting the concentration of fish in the Kickapoo River. Because the
fish are moving, the fish conceatration ¢ wiil be a function of position
(z, ¥, z) and time (¢).

The Partial Time Derivative, dcfdt

Suppose ‘ve stand on a bridge and note how the conceatration of fish
just below us changes with time. We are observing then how the concentra-
tion changes with time at a fixed position in space. Hence by 9¢/dt we mean
the “partiai of ¢ with respect to ¢, holding =, y, z constant.”

Total Time Derivative, dz/dt

Suppose now that instead of standing on the bridge we get in a motcrboat
and speed around on the river, sometimes going upstream, sometimes across
the current, and perhaps sometimes downstream. If we report the change
of fish concentration with respect to time, the numbers we report must also
reflect the motion of the boat. The total time derivative is given by

de ©dc  dcdzx ir:gg de dz

= -—— 3.0-1
dt dt dxdt Oy dr+az dt ( )

in which dz/dt, dyfdt, and dz[d! are the components of the velocity of the
boat.

Substantial Time Derivative. Dc/Dt

Suppose that we get into a canoe, and, not feeling energetic, we simply
float along counting fish. Now the velocity of the observer is just the stame
as the velocity of the stream v. When we report the change of fish concentra-
tion with respect to time, the numbers depend on the local stream velocity.
This derivative is a special kind of total time derivative and is called the
“substantial derivative” or sometimes (more logically) the “derivative
following the motion.” It is reluted to the partial time derivative as follows:

De 3 de dc de
Dt o t v dz + o dy +o dz (30-2)
in which o, v,, and v, are the components of the local fiuid velocity w.

The reader should thoroughly master the physical meaning of these three

derivatives. Pemember that dcfot is the derivative at a fixed point in space

. and Dc/Dt is a derivative computed by an observer floating downstream
with the fluid.
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APPROXIMATE FUNCTIONS FOR THE FAST
CALCULATION OF LIGHT-WATER
PROPERTIES AT SATURATION
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Ontario LES 4M1, Canadz

(Received 30 July 1985; in revised form 24 December 1987)

Abstract-—For thermalhydraukic systems analysis, linear interpolation algorithins are commonly used for
the calcuiaticn of thermodynamic properties. However, these algorithms can use a substantial amount of
computer time and memory. An alternative to this approach suggested in the past is the use of
approximation formulas. Such formulas for the calculaiion of the thermodynamic proparties of light water
for saturation conditions are presented here, based on the 1584 NES/NRC Steam Tobles, The range of
these approximations is from below 1b to just below the critical point (22.055 MPa) with z deviation from
tabulated values of not more than 0.22%. The formulas were determined by thc racthod of least squares.
enzbiing a minimization of deviations from the liae of best fit and the fitting of functions sumple enough
10 be used with programmable calculators. as well as microcoinputers. In addition to the rapid calculation
of the properties, the simple curve fits are instrumental in the development »f the rate form of the equation
of state.

Since any given property cannot be accurately fided over the eritite pressure range with a single simple
expression, the pressuve range was split into subranges. Special care was taken to ensure that the slopes
of the curve fits were coptinuous across the boundaries sine: discontinuities in the slopes of the property
tables can cause instabilities and failure of search algorithms in typical computer codes.

Key Words: water propertizs, curve fit, fast, saturaiion.

INTRODUCTION

In the analysis of flow systems, the thermodynamic properties are usually calculated by linear
interpolation algorithms applied to thermodynamic tables stored cn computer. However, the
storage of these steam tables can occupy a large amount of computer memory. As well, the linear
interpolation algorithms require a searching algorithm to select the proper numbers from the tables.
Thus the use of such algorithms can considerably tax computer running time. An alternative to
this method is the employment of approximate formulas. similar to those described by Firla (1984),
which can rapidly compuie the value of a property with satisfactory accuracy for the purpose of
system analysis.

This paper concentraies on the thermodynamic properties of light water for saturation
conditions. At saturation, the temperature can be expressed as a function of pressure oaly.
Therefore, we can represent the properties by a number of simple functions containing one
independent variable: pressure.

In 2ddition io the direct caiculation of thermodynamic properties, these zpproximation functicns
can be applied to the determination of the rate form of the equation of state (Garland & Sollychin
1988).

APPROXIMATION METHOD

The approach taken in developing the correlations minimized the deviations from the reference
steam tables. To maintain a high accuracy it was necessary to subdivide the range of pressure
variation into several regions. The simple functions used were fitted to the data by the method of
least squares, as discussed in the following section.

As system codes often require the slopes of the properties, the fits to the steam table by a set
of approximation functions, were required to exhibit a continuous first derivative across the entire
range of pressurc.

333



334 WM. ). CARLAND and J. D. HOSKINS

Least-squares method
We represent a set of r data points by some relationship y =f(x), containing p unknown
parameters dg, 8y - -« % the deviations or residuals are given by
Dy=f(x)— ¥ m
The sum of the squares of the deviations, '

s= z D= ‘}":l L (x) —yiFs #)

is a function of a,, @;,...,4d,. The parameters are determined such that S is 2 minimum
(dS/de, =0, dS/da, =0, ..., dS/da,=0).

If we take y = f(x) to be a linear function (y = @, + a;x ), the residuals are D, = (a, + &;x,) — yi,
so that

S =(a,+ax,—y) + (@ +ax —y P+ X, =y (3]
On differentiating § with respect to &, and a,, two equations are obtained:
4as .
- 2Aa, + asx, — y1) + 2{a Fax—y) 4.+ Aa tayx,—y) =0
1

and

ds
aa =2(x){a + @x, — ¥+ Hx)a, + a5 —y) . 2Ax)a F @x, =y = 0 [4]
3

Dividing by two and collecting the coefficients of 2, and a,, we get

”n "
ra, -!—(Z xl).:a,: Sy

(LR Q=

and

(i x,)a, + (é.:; x,?\)al = i X, ¥ (5]

i=1 f=1

Similarly, for a second-order polynomiai (quadratic equation):

4a, + (2 xl)az + (z x,;‘)a; = }: Vis (6a)

im=] im | i=1

(; .t,:)a‘ + (; x?)a1 + (};I x,‘)a, = é:l Xy [6¢c]

These equations can be solved for a,, ¢, and a, 1o give the function ¥ =, + @& + a,x°. Higher
order polynomials may also be fitted in this manncr, of course.

Correlations are often described by a correlation constant, r. This number expresses the strength
and direction of the correlation and can vaty from + 1.60 to — 1.00. For positive correlations where
an increase in one variable tends (o lead to an increase in the other variable being considered, r
is positive. For negative correlations where an increase in one variabie tends to lead 1o a decrease
in the other, r is negative. The largest magnitude of r is 1.00 which represents a perfect correlation.
Thus the closer the points in a plot of the two variables come to falling on the line of best fit, the
nearer r will be to +1.00 or —1.00. The following section describes different types of functions
that can be determined using the method of least squares. The correlation constant can be used
as a way 10 compare cach function and to see if the range being fitted is too large to obtain a high
enough accuracy with the steam tables.

and
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Table 1. Transforming functions into a lincar form

Function Operations on data Line¢ar form

a 1 1
y=—+b X m_—-— y=al—-}+b

x ix x

x=log x

y =ax® y=logy (log y) = b(log x) + log a
y = aexp(bx} y=logy (logy)=bx +loga
y=alogx +4 x=log x y=a(logx)+b

The correlation constant for y =ax +& is calculated as

b}’iy.--fai(x.-y.-)—(}'j)—

=Y T n

r= " Nz M
i(y.-)z—(';}:‘)—

n

i=1

Similarly, for y = ax?+bx +¢,

(3,)

¢ iy,--t—b i(xfyi)+a i(x?y.)—-‘;’n——
=t i=1 i=1

BRY (8]
" (Z .Va')

Z (y) — A=

iml h

r=

Using least squares for other functiors

Data can be approximated by other functions which include power, exponential and loganthmic
forms. The coefficients of each of these functions can be determined using [5] by altering the data,
as shown in table 1, to transform the functions into a linear form. The power functicn and the
exponential function are expected to be useful in producing an accurate curve fit of the
thermodynamic properties. However, the method of least squares determines these functions such
that x = 0 for y = 0. To obtain better accuracy with these curves, we can shift the data by adding
to or subtracting from the x and y values. For example. figure 1(a) shows two curves passing

(a) (b)

Figure 1. Example of data shifting. {a) The solid linc represents the best-fit curve as determined by sight.

The dashed line represents the best-fit power curve as determined by the method of least squares. (b) The

y values in (a) have a constant value, Y,. subtracted from them such that the solid line passes through

the origin. The dashed line is now more comparable to the solid line and is given by » — Y, = ax*®, where
a and b are found using {5].

M.F. 143-F
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(a) (b) (e}

Figure 2. Dealing with negative sloping curves. (a) The actua! data poinfs are plotted, The slope of a curve
passing through these points is negative, From figure 1, ene can sec that the shift that would produce
the most accurate fit makes all (y — ¥y) values negative in this case. (b) The negative y values are plotted
here. The stope of a curve passing through these poinls is positive (c) The negative ) vaiues are shifted
upward by a consiant, Yy, such thai all y™ = —y + ¥, arc positive. The method of least squares can now
be used for the power and cxponential functions. For the power function, the equation detzrmined by

least squares is given by y = ¥, —ax®. ’

through a set of points. Curve 1 is the best fit, as determired by sight, and curve 2 is the best fit
of a power function, as determined by the method of least squares, without shifting the data. Figure
1{b) shows the two curves after 2 constaat, Y,, has besn subtracted from each y vaiue. We can
see the effectiveness of a shifting of data. By companng the correlation constants for different shifts,
one can deterraine which shift gives the moct accurate curve fit. The shifting of the data shouid
be done hefore the operations described in table ! are carried cut.

In some circumstances, such as when there is a dzcrease in y for an increase in x, the necessary
shifting of data would produce negative values either in the x or y direction. To avoid taking the
log of 2 negative number we can fit the negative of the y values. Figure 2 demonstrates this
procedure.

CORRELATIONS OF LIGHT-WATER THERMODYNAMIC
PROPERTIEST

The following thermodynamic properties of light water at saturation were fitted to approvi-
mation functions: (1) specific volume/density, (2) specific enthalpy. (3) saturation temperature. {4)
specific entropy, (5) specific hieat and (6) dynamic viscosity. The reference source of data for all
of these properties, with the exception of viscosity, is the NBS/NRC Steam Tables (Haar ¢z al.
1984). The subroutines by Sokolnikoff & Recheffer (1966} were used for the calcufation of the
above properties.

These subroutines were also used in conjunction with the equation for viscosity given by White
(1975/1983). This combination was shown to vield an adequate representation of viscosity by
Kamgar-Parsi & Sengets (1982).

The set of functions for each property are listed along with their range of use and the worst
accuracy encountered over this range. Figures 3—13 show the properties and the accuracy of the
approximation, as calculated by

ox Ys cam Lables
accuracy = — = eam @bl 100 [%]. %1
Yslezm tables

For all of the properties, the range of each function was chosen such that the accuracy is as small
as possible and the first derivatives of two adjoining functions are equal at the point where they

tProgram diskeltcs, containing the programs used in the determination ot the approximation functions and in the
reproduction of property tables, can be obtained from the first avthor. These diskettes are available in either PDP11
or IBM-PC flormat.
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Figure 7. Saturation temperature.

join. Thus the sets of functions for specific volume and specific enthalpy can be used for the
calculation of the rate form equation of state (Garland & Sollychin 1988) and in comguter
algorithms involving the Jacobi of the system matrix. The continuity of the slopes for soecific

volume (liquid phase), density (gas phase) and specific enthalpy for both phases, is showa in figures
14-17.

The approximation functions can now be applied to the rate form of the equation of state (ses
the appendix). Plots of the F functions of [A.2] are shown in figures 18—22. Each of the £ functions
yields a smooth continuous curve, as desired.

Specific volume, liquid phase at saturation

The functions given below are an approximation to the specific volume of light water in the liquid
phase, v {m*/kg], for saturation conditions. The pressure range within which they may be used is
0.075-21.5 MPa with the accuracy nol worse than 0.14%. Figure 3 shows the accuracy of the
approximation.

Approximation functions:

v = 1.274697TE — 4« P =+ {(1.4644339) 4+ 0.00]
0.075MPa £ P < 1.00 MPa

v = 1.0476071E — 4= P »%(0.5651090) + 0.001022
1.00 MPa < P < 3.88 MPa

v, = 3.2826717E - SeP + 1.12174735E =3
3.88 MPa < P < 8.84 MPa

v = 3.3551046E — 4 «exp(5.8403566E — 2+ P} + 0.00085
.84 MPa < P < 14.463 MPa

s = 3.1014626E — 8+ P »+(3.284754) +0.00143
14.463 MPa < P < 18.052 MPa

b = 1.5490787E — 11 » P +x(5.7205) +0.001605
18.052 MPa < P < 20.204 MPa

v, = 4.1035988E — 24+« P ««(15.03329) + 0.00189
20.204 MPa < P < 21.5MPa.
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Figure 16. The slope of the specific enthalpy of the liquid
phase at saturation.

Denzity, gas phase at saturation
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Figure 17. The slape of the specific enthalpy of the vapor
phase at saturation.

The feliowing correlations give an approximation to the density of light water in the gas phase,
Dglkg/m*}, for saturation conditions. Their range of use is 0.085-21.5 MPa with the accuracy nct
worse than 0.22%. Figure 4 shows the accuracy of the approximation.

Approximatior. functichs:

Dg = 5126076+ P ++(0.9475862) + 0.012
0.085 MPa < P < 1.112MPa

Dg = 4630832+ P ++(1.038819) + 0.52
1.112MPa < P <3.932 MPa

Dg = 2.868721+F «x(1.252148) + 3.80
3.932 MPa < P <8.996 MPa

Dg = 0.5497553» P «»(1.831 182) + 18.111
§.996 MPa < P < 14.628 MPa

De = 8.5791582E — 3~ P «*(3.176484) + 50.0
14.628 MPa < P < 18.21 MPa

D = 3.5587113E—~6+P +%(5.660939) + 88.0
18.21 MPa < P < 20.253 MPa

D = 3.558734E — 16+ P #+(13.03774) + 138.0
20.253 MPa < P < 21.5 MPa.

Specific enithalpy, liquid phase at saturation

The correlations given below approximate the specific enthalpy of light water in the liquid phase.
h, [kJ/kg], for saturation conditions. The range for which they may be used is 0.075-21.70 MPa
with the accuracy not worse than 0.10%. Figure 5 shows the accuracy of the approximation.

Approximation functions:
h,=912.1779« P «+(0.2061637) — 150.0
0.075 MPa < P < 0.942 MPa
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Figure 22. The function Fy.

h; = 638.0621 =P #»(0.2963192) + 125.0
0.942 MPa < P <4.02MPa

h, = 373.7665+ P ««(0.4235532) + 4150
402 MPa € P <9964 MPa

hy = 7538673+« P ««(0.8282384) + 900.0
9.964 MPu < P < 16.675 MPa

h, =0.1150827« P ++(2.71 1412) + 1440.0
16.673 MPa < P < 20.396 MPa

A, =9.1417257E — 4= P (1 1.47287) + 1752.0
20.396 MPa < P < 21.70 MPa.

Specific enthalpy, gas phase at saturation

343

The following functions give an approximation of the specific enthalpy of light water in the gas
phase, hglkJ/kg}, for saturation conditions. Their range is 0.075-21.55 MPa with the accuracy not

worse than 0.066%. Figure 6 shows the accuracy of the approximation.
Approximation functions:

hg = —4.0381938E — 6+(2.0 — Py« (15.72364) + 2750.0
0.075 MPa < p < 0.348 MPa

he = —0.5767304 sexp(— 1.66153«(P — 3.2)) + 2800.0
0.348 MPa < P < 1.248 MPa

hg= — 7.835986 % (3.001 — P)*+2.0+ 2.934312«(3.001 — P) + 2803.71
1.248 MPa < P < 2.955MPa

hg = — 1.347244«(P - 2.999)+x 2.0 — 2.326913 (P — 2.999) + 2803.35
2.955MPa < P < 6.522MPa

hg = —0.9219176 (P — 9.00) =+ 2.0 — 16.38835«(# —9.00) + 2742.03
6.522 MPa < P < 16.497 MPa
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hg = —3.532177«(F — 8.00) ++ 2.0 4 29.81305* (P — 8.00) + 2565.00
16.497 MPa < P <20.193 MPa

hg= —22.92521«(P — 18.0)++ 2.0 + 4423671 «(P — 18.0} + 2415.01
20.193 MPa < P < 21.55MPa.

Suturation ltemperature

The correlations given below are for the saturation temperatuse of light water, T, [°C). The
pressure range for which they may be used is 0.070-21.85 MPa with the accuracy not worse than
0.02%. Figure 7 shows the accuracy of the approximation.

Approximation functions:

T =236.2315+P «#(0.1784767) — 57.0
0.070 MPa < P <0.359 MPa

T, = 207.9248 « P *» (0.2092705) — 28.0
0.359 MPa < P < 1.€76 MPa

T, = 1850779« P ««(0.2323217) - 5.0
1.676 MPa < P < 8.511 MPa

T, = 195.1819% P «#(0.2241729) — 16.0
8.511 MPa < P < 17.69 MPa

T, =227.2963« P «+(0.201 581)--50.0
17.69 MPa < P < 21.85MPa

Specific entropy, liquid phase at saturation

The functions given below are an approximation of the specific entropy of light water i he
liquid phase. s {k¥/kg}, for saturation conditions. Their range of use is 0.065-21.25 MPa with the
accuracy not worse than 0.12%. Figure 8 shows the accuracy of the approximation.

Approximation funcrions:

s = 3.340244« P w(0.125474) — 1.20
0.065 MPa < P < 1.666 MPa

5. = 1.748203« P «x(0.2275611) + 0.40
1.666 MPa < P < 8.825MPa

5. =0.2549248 « P «+(0.6381866) + 2.25
2825 MPa € P < 16.66 MPa

5, = 4.3632383E — S« (F — 0.40) == (3.153273) + 3.50
16.66 MPa < P < 21.25 MPa.

Specific eatrop}', gas phase at saturation

The following functions give an approximation to the specific entropy of light water in the gas
phase. sq{kJ/kg}, for saturation conditions. Their range is 0.025-21.5C MPa with the accuracy not
worse than 0.10%. Figure 9 shows the accuracy of the approximation.

Approximation functions:
sq = 6.58681 —0.335924 log(P)
0.025 MPa < P < 1.48 MPa
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sg=1.80—1.227644=F +=(0.2481072)
1.48 MPa < P < 8.05 MPa

5g = 6.30 — 0.084638514+ P «+ {0.9082161)
8.05MPa < P < 1564 MPa

Sg = 5.50 — 3.6897161E — 3=(F — 7.80) =+ (2.012466)
15.64 MPa < P < 20.00 MPa

5= 5.00 — 0.042830642+(P — 18.7) »«(1.779526)
20.00 MPa < P < 21.5 MPa.

Specific heat, liquid phase at saturation

The correlations given below are an approximation 10 the specific heat of light water in the liquid
phase, Cpc [kJ/kg K], for saturation conditions. Their range of use is 0.030-20.2 MPa. For pressures
< 13.3 MPa, the accuracy is not worse than 0.08%: for pressures > 13.3 MPa, the error can be as
high as 0.60%. Figure 10 shows the accuracy of the approximation.

Approximation functions:

C,u=0247762 P ++(0.5704026) + 4.150
0.030 MPa < P <0.671 MPa

Co . =0.179305 % F = (0.8967323) + 4.223
6.671 MPa < P <2.606 MPa

C, = 0.09359843« P ««(1.239114) + 4.340
2.606 MPa < P < 6.489 MPa

C, = 0.01068888+ P «x(2.11376) + 4.740
6.489 MPa < P < 11.009 MPa

C,, = 1.333058E — 4+« P % (3.707294) + 5.480
11.009 MPa < P < 14.946 MPa

C, = 6.635658E — 3e(P — 10.0)%%(3.223323) + 7.350
14.946 MPa < P < 18.079 MPa

C,y. = 4.6844786E — 6 +exp{0.7396875+ £) + 10.020
18.079 MPa < P < 20.30 MPa.

Specific heat. gas phase at saturation

The following correlations give an approximaton to the specific heat of light water in the gas
phase, ColkJikgKl, for saturation conditions. Their range of use is 0.050-20.40 MPa. For
pressures < 16.0 MPa, the accuracy is not worse than 0.12%; for pressures > 16.0 MPa. the error
can be as high as 0.60%. Figure 11 shows the accuracy of the approximation.

Approximation functions:

Cpo = 0.6471635+(P — 0.006) «+ (0.6400569) -+ 1.90
0.050 MPa < P < 0.599 MPa

Cog = 0.5560633+ P «(0.8197355) + 2.0C
0.599 MPa < P < 2.391 MPa
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Ci; = 0.3187082 % P 4x(1.110271)+2.30
2.391 MPa < P < 5.661 MiP2

C, = 0.064275995 « P x+ (1.766186) + 3.12
5.661 MPa < P <9.458 MiPa

C,; = 3.8011048E — 3« P ++(2.BIERIT) + 4.40
9.458 MPa < P < 12.900 MPa

Cwo= 0.18756175 «exp(0.2466925+ P) + 5.00
12500 MPa < P < 16.309 MPa

C, = 7.620756E -~ 3+exp(0.41 7289+ P) +9.20
16.309 MPa < P < 18.743MPa

C,; = 6.5162612E — 6+exp(0.7562i 1+ ) + 17.10
18743 MPa € F <2040 MPa.

Dynamic viscosity, liquid phase at saruration

The follewing functions give am approximation to the dynamic viscosity of light water in the
liquid phase, Visc [10~°kg/m s], for saturation conditions. Their range of use is 0.035-21.45 MPa
with the accuracy nol worse \tham 0.10%. Figure 12 shows the accuracy of the approximation.

Approximation functions: T = MP -5

Visc, = 111.5993 « P 4= (—0.3425438) -+ 38.0
0035MPa < P < 0.960 MPa

Visc, = 134.5288 « P = (-- 0.2843300) + 5.0
0960 MPa < P < 3.948 MPa

Vise, = 141.5415 — 2591353 «kmP)
3.948 MPa < P < 9.514 MPa

Visc, = 113.4399 xexp( —0.03279562* F)
9.514 MPa < P < 15.074 MPa

Vise, = 110.0 — 17.67922 = exp{@.05556056 « P)
15.074 MPa < P < 18.868 MP2a

Visc, =9.12152% P — G.3159837» P == 2.0
18.868 MPa < P < 20430 MPa

Visc, = 64.0 — 0.00261596 » exp(0.4010038 » P)
20430 MPa < P < 2145 MPa.

Dynamic viscosity, gas phase ar saturation

The following functions give an approximation of the dynamic viscosity of light water in the gas
phase. Viscg{i0~¢kg/m s], for saturation conditions. Their range of use is 0.040-21.35 MPa with
the accusacy not worse than 0.065%. Figure 13 shows the accuracy of the approximation.

Approximation functions:
Visce = 7.473620 « P +%(0.2050149) + 7.6
0.040 MPa £ P £ 22071 MPa
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Table 2. Summary of approximation functions

Property No. of functions  Range of use [MPa] Worst accuracy [%]
o 7 0.075-21.50 0.14
Dg 7 0.085-21.50 0.22
hy 6 0.075-21.70 0.10
hg 7 0.075-21.55 0.066
U, — 0.075-21.50 0.08
U — 0.085-21.50 0.11
Tt 5 0.070-21.85 0.02
5 4 0.065-21.25 0.12
s 5 0.025-21.50 0.10
5 0.030-13.30 0.08
Co 3 13.30-20.30 0.60
6 0.050-16.G0 0.12
Coa 3 16.00-20.40 0.60
Visc, 7 0.035-21 .45 c.'0
Viscg 6 0.040-21 .35 0.065

Viscg = 3.375163 % P +»(0.3916208) + 11.8
2.207 MPa < P < 5.480 MPa

Viscg = 0.9169410 + F +«(0.7644731) + 15.0
5.480 MPa < P < 9.585 MPa

Visce = 5.030544 «exp(0.5045239 = P) + 12.0
9.585 MPa < P < 14.351 MPa

Viscg = 0.4423761 xexp(0.1458726 » P)+ i8.8
14.351 MPa < P < 81.385MPa

Vise, = 0.01082229 2exp(0.30719i8 + P) + 222
18.385 MPa < P < 20.347MPa

Viscg = 6.6753655E — 6+exp(0.6347700+ £) + 251
20.347 MPa < P < 21.25 MPa.

SUMMARY

The functicns presented in this paper allow rapid calculation of the thermodynamic properties
of light water for saturation conditions. Their range of use is from below 1b to just below the caitical
point with a high enough accuracy for the purpose of thermalhydraulic systems analysis. The
ranges and accuracies for each property are summmarized in table 2. It should be noted that internal
energy, U, can be calculated using the correlations for specific volume and specific enthalpy and
the equation U/ = H — PV. This yields an error of <0.11%.

Acknowledgements—Partial funding for this work was provided by the NSERC. The authors gratefully
acknowledge the cocperation and contribution of the following: L. McKay (technician. McMaster University)
and D. Klug (Nationa! Rescarch Council of Canada).

REFERENCES

FirLa., A. P. 1984 Approximate computational formulas for fast calculation oi heavy water
thermodynamic properties. Presented at the /0th 4. Symp. on Simulation of Reactor Dynamics
and Plant Control, Saint John, N.B.

GARLAND, WM. J. & SorLycwin, R. 1988 The rate form of the equation of state for thermal-
hydraulic systems. Int. J. Multiphase Flow. In press.



APPROXIMATION FUNCTIONS FOR CALCULATION OF THERMODYNAMIC PROPERTIES 347

Table 2. Summary of approximation functions

Property No. of flunctions  Range of use [MPa] Worst accuracy (%]
oy 7 0.075-21.50 0.14
D, 7 0.085-21.50 0.22
A 6 0.075-21.70 0.10
hg 7 0.075-21.55 0.066
Uy — 0.075-21.50 0.08
Us — 0.085-21.50 0.1t
Tt 5 0.070-21.85 0.02
5 4 0.065-21.25 0.12
5g 5 0.025-21.50 0.10
5 0.030-13.30 0.08
Coe k| 13.30-20.20 0.60
6 0.050-16.00 Q.12
Co 3 16.00-20.40 0.60
Visz, 7 0.035-21.45 010
Viscg 6 0.040-21.35 0.065

Viscg = 3.375163+ P #x(0.3916208) + 11.8
2.207 MPa < P < 5.480 MPa

Visce = 0.9169410+ P =#(0.7644731) + 15.0
2480 MPa < P < 9.585 MPa

Viscg = 5.030544 «exp(0.504523S » £) + 12.0
9.585 MPa < P < 14.351 MPa

Viscg = 0.4423761 +exp(0.1458726+ P) + 18.8
14.351 MPa < P <81.385MPa

Viscg = 0.01082229 xexp(0.3071918« F') + 22.2
18.385 MPa < P < 20.347 MPa

Viscg = 6.6753655E — 5 +exp((.6347700« FP) + 251
20,347 MPa < P < 21.35 MPa.

SUMMARY

The functions presented in this paper allow rapid calculation of the thermodynamic properties
of light water for saturation conditions. Their range of use is from below 1b to just below the critical
point with a high enough accuracy for the purpose of thermalhydraulic systems analysis. The
ranges and accuracies for each property are summarized in table 2. It should be noted that internal
energy, U, can be calcutated using the correlations for specific volume and specific enthalpy and
the equation U = H — PV. This yields an error of <C.11%.
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APPENDIX

The Rate Form of the Equation of State

“The develcpment of a non-iterative equation of state for two-phase flow systams was recently
investigated (Sollychin et al. 1985; Garland & Sollychin 1988). At present, the equation of stafe
is usually solved by iterative numerical techniques. By recasting the equation of state the time
derivative of P can be solved directly and the use of iterative methods can be eliminated. The
time derivative form of the equation of state was developed by considering an arbitrary volume
of two-phase fluid as a thermodynamic system where both phases are at saturation under a
uniform saturaton pressure, P. By utilizing the total mass of the fluid, M, the totai enthalny
in the system. H, the volume of the system, ¥, and taking the derivatives of these quantities with
respect to time, one obtains [A.1] which is dependent on the initial pressure and on the rate of
change of mass, volume and enthalpy in the system:

dM dH dVv
F, (P)_dT + Fz(P)E; + Fa(P)E

dP
e , Al
de M E(P)+ M F(P) (A1l
where
F,(P)=hg*v — hyxtg,
Fy(P)=1tc— '
F(P) = — (hg — ).
dah dr _
Fo(PY= 'd—PE(UG Y —d?f(hc — )
and
dn de
F(P)= a.—;(v(} —ty)— '(i-;(hg —ho).

This form involves combinations of the saturation values of specific volume and specific enthalpy
in uguid and gas phases. and the derivatives of these properties with respect to pressure. Thus we
can incorporate the approximation functions described above Lo easily solve the equation of state
{1}. The derivatives are determined simply by aking the derivatives of the approximation functions
with respect 10 pressure.
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