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ABSTRACT

Porsching’s classical solution algorithm for the simulation of thermalhydraulic systems is
revisited with a view to pedagogy. The general linearized system equations are used to develop a
fully-implicit, back-substituted solution. Matrix notation is used and the solution algorithm is

explored using a simple example. Porsching’s algorichm and other approximations are derived as
special cases.
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INTRODUCTION

One of the more successful algorithms for thernalhydraulic simulation is based on the work of
Porsching 1969, 1971. This algorithm, involving the Jacobian (derivative of the system state mairix),
is used originally in the computer program FLASH-4 (Porsching 1569) and subssquently in the
Ontario Hydro program SOPHT (Chang 1977) and evolved into forms used in RETRAN (Agee 1982).

The strength of Porsching’s approach lies in its recogniticn of flow as the most important dependent
parameter and, hence, its fully implicit treatment of flow. This ieads to exceilent numerically
stability, consistency and convergence. Further, the Jacobian permits 4 generalized approach to the
linearization of nonlinear systems. This allows the development of a system state matrix which
contains all the system dynamics in terms of the dependent parameters of mass, energy and flow.
Back substitution finally gives a matrix rate equation in terms of the system flow (the unknown) and
the system derivatives. While this approach is certainly a proven and successful one, it has some
disadvantages. The matrix rate equation involving the Jacobiun is as complicated as it is general. The
resulting expressions are somewhat obtuse and it is diffizult to obtain an intuitive fee! {or the system.
This complexity also hinders implementation ina simulation code and makes error tracking a tedious
process. The pervasiveness and obtuseness of the algorithm begs a revisit so as to distil the salient
features, leaving them exposed for pedagogy and further scrutiny.

Recently, (Garland 1987), work has been presented on the use of the Rate Form of the equation of
state. This work showed that by casting the equation of state in the form of a rate equation rather
than the normal! algebraic form, the system siate matrix can be more logically formed frem the
normal conservation rate equations for mass, energy and momentum plus the pressure rate pquation.
These form the four cornerstone equations in thermathydraulic systems analysis (Figure 1}. Numerical
implementation of the rate form proved to be very successful, leading to roughly a factor of 16
improvement over the algebraic form of the equation of state, largely due to the iterative nature of
the algebraic form. Incorporating the implicit pressure dependency in the numerical method also
drastically improved the numerical stability.

Since Porsching’s method also carried the pressure dependency implicitly (via the Jacobian), the
question arises as to how the Rate form compares the Porsching’s method. This paper is devoted to
an explanatory derivation of the fully-implicit back-substituted form (FIBS), which is a more general
than the Rate form. It is shown that the Porsching form is identical to the Rate form and is a subset
of the fully-implicit back-substituted form and is easily derived from it. The FIBS form thus offers

an alternative to Porsching, is found to be of some pedagogical usefuiness and is far more intuitive
and easier 10 code.



DERIVATION OF FIBS
Following Porsching (Porsching 1971), the general form of system equations can be written

. ~aR
y = F(t.y) @)

which is linearized, assuming no explicit t dependence to give:

y-F + Aot Ty (2)
or

Ay = At F* + At J Ay (3)
to give

(I - At J] Ay = At F° (4)

where J is the system Jacobiamn.

For typical thermalhydraulic systems using the node-link aotation™:
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1 Porsching actually uses U, total energy rathsr than H, total enthalpy in a hybrid form:
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There is no sdvantage to tracking poth H and U in a simulation; thus in this paper, H iz used throughout .
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APi = C,, AM, + Cyy AH; for coustant volume
At At At

where ked, indicates a sum over links for which the node i is 2 downstream node (i.e. links are

sources) and keu, is for upstream nodes.

Switches, S, are used to provide user control over degree of implicitness:
0 = explicit

1 = implicit.

The system unknowns to be scived for are AW, AM, AH and AP using equations (5), {6), (7) and (8).
The general strategy is to reduce the number of unknowns so that the size of the matrices 1o be
inverted in the simuitaneous solution of these equations is reduced. The mass equation (6) is simple
and is used to eliminate AM in terms of AW. Flow is choser as the prime variable since it is the
main actor in thermaihydraulic systems. The enthalpy equaticn poses a problem as it is too compiex
to permit a simple substitution. Porsching surmounts this by setting Sun = Sy = 0. ie making the
solution exptlicit in specific enthalpy. However, we need not make this assumption; by casting the

equations in matrix notation, the full implicitness can be retained while still allowing the back
substitutions to be made.
Proceeding then, using matrix notation:

M = At A™ (W' + Sy, AW] (6a)

where, for a 4 node - 5 link example {Figure 2):

-] links ->
0 0 1 0 nodes
A - 1 -1 0 0 1 | (9)
0 1 -1 0 0 v
0 0 1 -1 -1

This matrix contains the total system geometry. It is constructed by the following procedure:
For each column (link), insert -1 for the upstream node and +1 for the downstream node for
that link since the link supplies (adds) flow to the downstream node and takes it away from
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ths upstream node. Flow reversal is handled automatically since the sign of W will take care
of mass accounting properly.

The form of other matrices in the following are derivable from AY. This can be used to advantage

in coding. The input data for each link need only contain pointers to the upstream node and the
downstream node for that link. This allows A™ to be created. In short, the upstream node and

downstream node for each link completely defines the geometry and this can be used to programming
advantage. '

The flow equation is:

w
oW = At { A¥F [P* + S AP]+A\«[W"+ZS‘M&§AW]+B") (5a)
Where:
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note that A" is formed easily from A™ by the following procedure:
First multiply (A™ by -Ay/Ly, -8/l - Ag/Ls)7t

Then transpose the resulting matrix to give AV,
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Finally:

AH — ot { AP (WY + Sgy OW] + Sy AT OHY - S AR + 8% ) (7a)

Where AH® and aM" refer to the enthalpy and mass associated with upstream properties of the links
(ie the transported properties). Thus
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We wish to write the matrix equations eliminating the * parameters, ie convert AH" to AH, AN to AM.

To do this we introduce a transfer matrix, I 50 that

AH* = I AH

where

nodes ->

1
OO0 OO+
oo O

oo~ OO

0O 0

(17)

links
[ (18)

where I is formed by entering 1 for the node that is the upstream or scurce node for each link.

Now, we can define:
AHE* AH® = ATE* TN aAH
= AT AH

and AR aM® - A IR aM

(19

(20)
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Thus
AH = At (AB® (W' + Sgy &W) + Sgg AT AH - Sy AR AM + B) (21

Substituting in the mass eguation {6a):

AH = At ( A" (W+SHHAV)+SHEAEAH-AtSmAmAm (W* + W aw) + B9 )

(22)
Solving for Al:

AH = At[I - At Sgy AF]TD (™ (U + Sy aW) - A Siy AR ATR(UY & S aW) + BR)

(23)
So now we have AM and AH in terms of AW. Recalling (8), in matrix notation, we have:
AP = C, AM + C, AH, (8a)
where
Cy1
¢, - Ci2 0 {(24)
C13
G Ca

Similarly for C,.

We can back-substitute AM and AH into (8) and the resuit into the flow equation 10 leave a matrix

equation in AW only, which can be solved by traditional numeric means. Hence,

AP = At G, AM™ (W + Sy AW} + At Cp [I - AT Suy AR (AR (UR 4 Sy OW)
- At Sy AF' A (W' 4 Sy W) 4 391
= ot AT gt 4 at APY? AW + At BP (25)
where : APl = C, A"™ + C, [I - At Sm AFE)L (AFF L At Sy AT A (26)
AT = 5. T, A + G, [T - At Sy AR (s AP AT Sy S AT AT Q27)
B® = C, [I - At Sy aA™]7' Bf (28)

Thus:
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AW = At | AP [P + At Sy (AT W'+ AT AW + BD)] +
AN (Ut 4+ 284 A™ Aw‘_] + B I(29)
Collecting terms in AW:
[I - At(2 Sww A™ + At S, A ATH)] AW
- At JA™ + A Sy AVE ATWL) gt o BY 4 AW (PP 4+ AL S BP]i (30)

which is of the form
A AN =B

which can be soived by conventional means to yield AW. Then we can directly calculate AM, AH and
AP using equations 6a, 7a (or 21), and 8a. Associated changes in temperature can be obtained as for

pressure, using the appropriate equation of state coefticients.

Special cases

To summarize, the general solution is given by the following equations:

AL L g A™ 4 G, [I - At Sgy A7 [AFY - At Sgy AT A (26)
AP? o 5, C, A™ + G, [T - At S ABE"L (5. AP At Sgy Sy AT &™) 27
BF = G, [I - At Syy A™]7 BY (28)
(I - At(2 Su A™ + At Syp AT A%y AW

- at ( [A™ + At Sy A" AT WC 4 BT+ A"F [P* + AU Sy BF] ) (30)
AM ~ At AM™ [WY + Sy AV] (6a)
AH—At{AHH(WL+SEHQW)+SHHA“AH-SmAHHAH+BH} (21)
AP = C, oM + C, AH (8a)

Special cases of this general algorithm are as follows:

Fully explicit: all S's =0



ATl = ¢, A% &+ G, AT

AT . 0

B? - ¢, B*

AW = At { AM Wt 4 BY + AT Pt )
AM - At A™ Wt

AM - At ( AP Wt + B )

AP - C, AM + C, AH,

as expected.
Porsching's semi-implicit (Syg = © and Sgy = O.all other 8's = 1)

AM - ¢, A + c, a™
AT - ¢, A + ¢, AT
8% - ¢, B
(I - At(2 A™ + at A ATy AW
= At { (A" + at A"F AT W+ g¥ + AWF [P* 4+ at BF) )

AM

at A (WE + aw]

AH - At { A™ (W' + aw) + BY )
AP = C, &M + C, AH

Fully Implicit; All S§'s = !
AR -, A™ 4 C, [T - at AT [AFY - ar AT A™™)
AP2 - ¢, A 4 C, [I - at AT [ABY - Ar AT A

BF - G, [I - at ™)t ¥

(I - at(2 A™ + at A'F AT2)] oW

- At { [A™ + at A" AT wt + B¥ + A"F [P + at BF] )

(26)
(27

(28)
(30)
(6a)
(7a)

(8a)

(26)
(27)

(28)

(30

(6a)
(21)

{Ba)

(26)
(27)

(28)

30
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AM = At A W [W" + aW] (6a)
AH = At { AP (W' + AW) + A™ AH - APMAM + BB ) (21)
AP = C, AM + C, AH (8a)

PROGRAMMING NOTES

1t should be noted that the full system geometry is contained in A™. All other matrices are derived

from this matrix z2rd node/link properties. Programming is thus very straightforward. In additicn,

the switches, S, can be varied at will to control the degree of implications of the system variabies,
W, M, Hand P.

The fully-implicit method is more compilicated than the semi-implicit method in that it requires
the addition and multiplication of more matrices as well as a matrix inversion. The effect of these
additional operations is quite costly, especially when 2 large number of nodes is needed. In one case
study (Hoskins 1989), for 9 nodes and links, the cost is a 50% increase in iteration time. Bu? this
vecomes a 250% increase as one approaches the 36 node/link case. By handling the mairix operations
as efficiently as possible, some increase in speed should bec artainable for both models. Using efficient
assembly routines (rather than FORTRAN) for the matrix operaticns yielded a 10 to 20% reduction
(increasing from 9 nodes to 36 nodes) in the time per iteration for the semi-implicit method and a
15 to 25% reduction in the f ully-implicit case.

Usually the matrices contain mostly zeros and, in the case of a circular loop, may be diagonally
dominant in nature (i.e. non-zero elements occupy one, two or three stripes through the matrix). By
writing routines specific to the nodal layout for handling the matrix operations, significanat gains in
speed may be possible. However, the simulator will no longer be general in nature and the routines
may have to be changed if the nodal layout is altersd.

\f the multiplication of two large matrices is desired, say NxN in dimension, the time to carry out
the operation (N3 multiplications and N3 additions) can be very significant. However, iL is possible
to reduce the number of individual operations without losing the generality of the method. Take, for
example, the multiplication of A% and APY The rows in the former term pertain to links and the
columns to nodes. Each row will only contain two terms located in the columns corresponding to the
upstream and downstream nodes of that particular link. Thus, knowing wiich are the upstream and
downstream nodes for every link, it is only necessary to do two multiplications and one addition to
obtain each element of the product matrix (2N2 multiplications and N? additions). By taking
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advantage of having only two elements in each row of the former term or only two elements in each
column of the latter term wherever possible, significant savings in time may be observed. With this
improvement in the code, a cut in time by a factor of two for 18 nodes and by a factor of three for
36 nodes, regardiess of the method (semi- or fully-implicit) was obtained. The cost of the fully-
implicit method is reduced slightly to a 32% increase in iteration time over the semi-implicit method
when 9 nodes and 9 links are used. This becomes a 214% increase as one approaches the 36 node case.

Since the focus of this paper i to provide a less obtuse and more general derivation of
thermalhydraulic system equatioas than Porsching’s method, a full comparison of the performance
of the fully- and semi-implicit methods will not be made. Suffice it to say that, in general, the semi-
implicit method has a Courant limit on the maximum time step that can be taken in order to ensure
stability. The fully-implicit method does not have this limitation. As the Courant time step limit is
determined by the nodal residence time, the time step limit is dependant on the node sizes and the
flows through the nodes. Practical simulations have a further time step constraints such as: the
tracking of movement of valves, the maintenance of accuracy, synchronizing of report times, etc.
Thus, the choice between the semni- or fully-implicit method depends on the time per iteration
mulitiplied by the nunber of iterations required to reach the largest time step permitted by the
simulation problem. For example, for a 9 node case, the semi-implicit method required 0.10 seconds
per iteration and required 2 iterations to meet the report time of 1.0 seconds. The fully-implicit
method meet the report time in one iteration which took 0.14 seconds. At 36 nodes however, the
semi-implicit method took 2 x 0.71 seconds while the fully-implicit method took 2.12 seconds.
Clearly, one method is not superior to the other in all cases.

Pressure determination involves the use of property derivatives. To avoid the numerical problems
associated with discontinuities, smooth functions for properties must be used, such as those derived
by [Garland 1988 and 1989]. FORTRAN Source code for the water properties as described in these
works is available on a MS-DOS diskette from the author. These functions and routines permit the
quick and fast evaluation of AP and AT given AM and AH for all water phases. Automatic
adjustment is provided to prevent P and T drift from values consistent with current M and H values.
These routines are non-iterative, essential for real-time simulation.

FORTRAN source code illustrating the FIBS algorithm is available on MS-DOS diskette from the
author.
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CONCLUSION

The FIBS approach for thermalhydraulic system simulation has been compared tc the classic work
of Porsching. Porsching’s algorithm is derived asa subset of the fully implicit approach. Focusing
on the system Jacobian, as Porsching did, focuses on the perturbation of the system as a whole.
Although general, it tends to obscure the interaction of the main players in typical thermalhydraulic
cystems: flow and pressure. The FIBS form is shown to bs more general than Porsching's method,
yet iess obtuse. The interplay of flow and pressure is clarified and coding is simplified.
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Figure Captions:

Figure 1:

Figure 2:

The four cornerstone equati
of information between them.
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ons for thermalhydraulic system simulation and ihe flow

The simple 4 node - 5 iink example.
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