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Wmn. J. Garland

Dept. of Engineering Physics
McMaster University
Hamilton, Ontario

ABSTRACT
This paper reviews the basic mass, momentum and energy equations used in typical
computer codes for Heat Transport System simulation. The equations are derived from first
principles and the necessary approximations lead to the requirements for empirical

correlations. Closure is obtained by the equation of state.

1. INTRODUCTION

The known territory of the basic mass, energy and momentum conservation equations
(Bird et al [1]) is explored, herein, from the perspective of thermalhydraulic systems analysis
for nuclear reactors.

Invariably in the modelling of fluids, the conservation equations are cast in one oi two
main forms: integral or distributed approach, respectively (Currie [2]). The differential form
sees infrequent use in the analysis of thermohydraulic systems since the cost and complexity
of such a detailed analysis on even a single compiex component of a system is enormous,
which makes this route to the analysis of systems of such complex components unrealizable.
Recourse is generally made to the integral or lumped form so that inter-reiationships of
various components cCOmprising a system can be simulated. Necessarily, the models used for
the individual components are much simpler than that of the detailed models based on the
distributed approach. Great care must be taken to ensure that the simpler models of the
integral approach are properly formulated and not misused.

it behooves us, then, to develop the models used in thermohydraulic systems analysis
from first principles. This will provide a traceable and verifiable methodology to aid
development and vulidation of system éodes, to lucidate the necc‘assary gssumptions made, to
show pitfalls, to show the common roots and geneslogy of specific tools like FLASH (3),
SOPHT (4), RETRAN (5), FIREBIRD (6), etc., and to help guide future development.

The exploration proceeds by first establishing and discussing the general principle of
conservation. Next, this general principle is apphed in turn to mass, momentum and energy
to arrive at the spec1ﬁc forms commonly seen in the systems approach. Closure is then given

via the equation cf state and by suppomng empirical correlation. Finally, the ideas
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developed are codified in a diagrammatical representation to aid in the physical interpreta-
tion of these systems of equations and to provide a summary of the main characteristics of

fluid systems.

2. CONSERVATION, |
We start, both historically and pedagogically, with a basic experimental observation:
' “CONSERVATION".
This was, and is, most easily understood in terms of mass:
"WHAT GOES IN MUST COME OUT UNLESS IT STAYS THERE
OR IS GENERATED OR LOST SOMEHOW".

Although this should be éelf-evident, it is important to realize that this is an experimental
observation.

If we further assume that we have a continuum, we can mathematically recast our

basic experimental observation for any field variable, y:

l-)D-t !llvq’dvz .{ ’f JVI‘dV+l LS-nds, . o

where
D/Dt = substantial derivative® = change due to time variations plus change due to
movement in space at the velocity of the field variable, y,
Y =  arbitrary fluid volume,
I' = netsum of local sources and local sinks of the field variable, y, within the
volume V.
yw = field variable such as mass, momentum, energy, etc.
t = time '
s =  surface bounding the volume, ¥
n =  unit vector normal to the surface, and
S = net sum of local sources and local sinks of the fluid variable, y, on the
surface s.
We can now use Reynold's Transport Theorem (a mathematical identity) {Currie, [2]):
%I”;:wv:”[v iztfdv+J‘Lq:v-nds @)
*For a lucid discussion of the three time derivatives, i g % see Bird et al[1), page 73.




where

alat local time derivative, and

V = velocity of the field vﬁriable.

[[[, Zavec| [ wvmses [ [ rave ] [sonee o

In words, this states that the change in the conserved field variabie y in the volume V is due

to give

to surfece flux plus sources minus sinks. We can use another mathematical identity (Gauss’

Divergence Theorem):
l [ A-nds= J J J V-Adv , (4)
S v
where
A = any vector, such as velocity, and
vV = 2l operator (eg. V = d/axi + afoyj + ...).

Thus equation (3} can be rewritten:

([ 2avee] [ vwvors || [ rove ][ s

If we assume that this statement is universally true, i.e. for any volume within the system

under consideration, then the following identity must hold at each point in space:

%=_v-wv+r+v-s. (6)

This is the distributed or microscopic form. Equatioa (3) is the lumped or macroscopic form.
They are equivalent and one can move freely back and forth between the two forms as long as
the field variables are continuous.

The above derivation path is not unique. One could start with an incremental volume
and derive (1) via (6). Itis largely a question of personal choice and the end use. One school of
thought, attended by most scientists, applied mathematicians and academics, since they
usually deal with the local or microscopic approach, focuses on the conversion of the surface
integrals to volume integrals using Gause'’ Theorem. The volume integrals are then dropped
giving the partial differential or microscopic form. This path works well when a detailed
analysis is desired, such as subchanael] flow in fuel bundles, moderator circulation in the
calandria, etc.

The second school, which sees more favour among engineers, particularly in the
chemical industry, evaluates the surface integrals as they stand without converting to
volume integrals. This leads to & lumped or macroscopic approach useful for network

anslysis, distiliation towers, etc.
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There exists a very large number of possible derivations, each with its own

advantages and disadventages. As more and more detail is picked up in each class of models,

numerical means have to be used. 1n the limit of large numbers of nodes or mesh points, etc.,

both methods converge to the same solution.

Since the above equations are basic to all subsequent modeiling of thermalhydraulic

systems, one should keep in mind the basis for these equations:

1)

2)

Conservation as an experimental observation.

This is usually taken for granted. However, when the conservation equations for
separate phases in 8 mixture are under consideration, the various sinks and sources of
mass, momentum and energy are not entirely knowmn &nd the interpretation of
experimental data can be difficult because of the complexity. It helps to keep in mind
the distinctly different roles that we have historically assigned to the players in the

conservaticn process:

a) the local time derivative, 3y/st,

b) the advection term {flux), V¢V,

c) the local sinks and sources, I', within a velume and

d) the local sinks and sources, S, on the surface of a velume.

If a clarity of form is adopted by establishing and maintaining a one-to-one
correspondence between the form and the physical in‘ocesses, then & substantial
pedagogical tool will have been achieved. This proves invaluable in experimental
design (to zero in on a particluar process or parameter), modél formulation and
interpretation, data analysis and presentation, correlation development, etc. A model
could lose its generality because, for instance, fluxes across interfaces are writtenas a
term in T, thus making the interfacial flux a local phenomena rather than & boundary
phenomena. This may be acceptable for a single geometry but ‘causes the model to
break down when applied to diverse geometries. .

The field variables are continuous within the volume V.

‘This is also usually taken for granted. But care raust be exercised in multiphase flow
where discontinuities abound. A common approach, taken to simplify the complexity

of multiphase flow, is to average the terms in the conservation equations across the

_ eross-sectional area of the flow path. One could speculate that the error introduced in

this manner could separate the mode! from reality enough to make the solutions be
"unreal”, i.e. complex numbers, singularities, etc. Further, fluctuating parameters
are often smoothed by averaging over an appropriate At. These averaged parameters
and products of parameters are used in models and compared to experiments. But

there is no guarantee that, for inst.ancé,
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Thus the use of time averaged parameters can lead to additional errors. Indeed,
because of the possibility of error due to space and time disontinuities, several
ir.vest.igatm;s have offered rigorous treatments for the distributed approach (see, for
example, Delhaye {7]). There is no reason why these treatments could not be applied
to the lumped approach, as well. But, at this time, there is little incentive to do so
since grid coarseness and experimental data are larger sources of error. As always,
the operative rule is - BUYER REWARE.

We now proceed to treat the mass, momentum and energy equations in turn.

3. THE CONSERVATION OF MASS

Historically, mass was the first variablz observed to be conserved:

; [
I J Iv ;{(Ykp_k)dV= - ] s Y, p, ¥, nds+ I I Iv I dv + } L S, n-ds 0

where .
p, = densityofphesek(l = liquid, 2 = vapour),
Y, = volume fraction of phase, k, in volume V, and
I,,S,= phase sinks and sources, including chemical and nuclear effects.

The individual densities are related as follows:

P=yp +Yp,=0-adp +ap, (8)
where
T = averagedensity, and
a =  void fraction.
The ‘overbar®, = serves, to remind us that the volume fraction weighted sum must be
. performed.

But adding both phases tegether, equation (7) becomes:

d .
l I Jv 5[(1—a)p1+ upzldV-—'

. . (9)
- [Q=a)p, V. +ap V}-nds+l[[ (T.+T)dv.
J L 1717 %P2 v 1 2
Inourcase, I', = —T, (liquid boils or vapour condenses) and Sy = 0 (no mass sources or sinks

at surfaces). Therefore:

”J a—EdV=-—JJ oV - nds, (10)
v 6t s )

where
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If we apply Gauss’' Thecrem and drop the integrals we have:

a —_—
£ v pv =0 a2
ot .
or
] :
5 Q-a)pl +ap)+V- ((1~a)p V + ap2V2] =0. (13)

This is the distributed form useful for modelling detailed flow patterns such as in the
calandria, vessels, steam génerat.ors &nd headers. Component codes such as THIRST [8] und
COBRA (9] use this approach. |

In contrast, system codes such as SOPHT [4) and FIREBIRD [6], both based ¢n
Porsching’s work {3], use the lumped equations. These codes represent a hydraulic network of
pipes by nodes joined by links. Mass, pressure and energy changes occur at the nedes.
Momentum changes occur in the links. Thus the network is treated on a macroscopic scale
requiring an integral approach to the fundamental equations. Flow details in pipes are not
considered. That is, diifusion, dispersion, ad\?ection, flow regimes, flow profiles, etc. are not
fundamentally accounted for but are ccvered by empirical correlations. Averaging
techniques, commonly used in the distributed approach are not used in the lumped approach
mainly because there is little incentive to do so. The main sources ol error lie elsewhere,
mainly in the coarseness of the discretization in the direction of flow (i.e. node size) and in
friction factors and heat transfer coefficients.

Now, [[, pdV is the mass, M,, in the volume, ¥, of the ith node. Alse, for our case, the
surface integral can be written as surface integrals over the individual flow paths into and out

of the volume or node. Thatis,
—Ilspv-nds=§ ijjAj, (14)

where j represents inflow and outflow links with V,- > 0 for inflow and < 0 for outflow.

Inherent in equation (11) is the assumption that the integral, [f pV-nds can be replaced by

the simple product P V_i Aj. This implies known or assumed (ustally uniform) velocity and

“density profile across the face of the link {or pipe). -

Thus we now have:

(=1

M.
s v 5)
a«;l - ? ijjAjEij'

where Wj is the mass flow. This is the typical representation in system codes. Thus for the
node-link type equations, we must add two more assamptions:

i) nodalization, and
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ii) assumed velocity and density profile across the cross-section of a pipe.

These assumptions have far reaching ramifications that are not immediately obvious.
Ne flow detail is considered as the fluid moves along a pipe. Therefore, no diffusion,
dispersion, advection, flow profiles or flow regimes are explicitly permitted. This is not too
crude an approximation for the calculation of pressure drops and flows but for modelling the
propagation of disturbances, this approach is inadequate as it stands unless a large number of
nodes and links are used. ‘

To show this, consider a homogeneous or bubbly flow through a pipe, as in the two-
phase regions of typical heat transport systems in nuclear reactors, modelled in system codes
2s nodes connccted by links. Perfect mixing at the nodes is assumed. Flow in a pipe,
however, has aspects of plug flow. That is, flow is transmitted along the pipe relatively
undisturbed. If no-diffusion or turbulent dispersion existed, & sharp discontinuity in a
property would propagate undisturbed. If a single mixing taenk (node) represented a section of
pipe of volume, V, and vclumetric flow, \.1, then a step change to zero in a field property, C,
{which could be ccucentration or density) entering the riode would be an exponential by the
time it left the node, that is:

_ “th
Cour = Ci ©

where T = W\;; T is also the transmission time for the plug flow model. If the pipe were

modelled by two nodes in series,

— A,
Courrope 2 = Civnope X (1 + 2U/dhe
and in general, for n nodes.
n
= -tk k-1 _
Cournope = Civnopr1 X ¢ Z (nt/0"" /(n-1) ;

k=1
Figure 1 compares the transmission of a step ¢change for various numbers of nodes and

the plug flow model. It is easy to see why the codes model void propagation poorly. A very

large number of nodes are needed to transmit a disturbance without appreciable distortion.

The phase relationships or timing, of the propagation is very important in determining the

stability of a thermal hydraulic system. A pocket of void reaching a given destiration at an
earlier or later time may inhance or cancel the phenomenon in guestion. The smearing of a
wave front alters the timing and gain an& hence affects stability. The slow convergence of the
mixing model to the plug flow mode!l explains the typically slow coenvergence of such system
codes.

Thus, nodalization creates a form of diffusion in much the same manner as finite

difference schemes create numerical diffusion {see, for instance, Roache [10]).
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Attaining convergence in nodalization is, in essence, converging the model to plug
flow behaviour. But is the flow in typical heat transport systems plug flow?

Flow in the CANDU feeders (38 to 76 mm) at 15 Mlsec may indeed be plug flow. But
some turbulent mixing does take place. More importantly, the feeders are of varying length
and the flow has a spectrum of qualities. This gives quite a spectrum in transit time: This
will skew the propagation of a disturbance. Thus. depending on the transit time spectrum, a
5 node approximatior: (say) may be quite a good representation.

The risers and headers may also give more diffusion than plug flow. These pipes are
large diameter and the flow is turbulent. Very little is know of flow regimes and propagation
properties in these situations.

In short, carefu!l attention should be given to nodalization for meaningful simulation,
quite apart from the normai numerical concerns such as the Courant limit, etc.

To conclude our progressive simplification, we note the steady state form of equation
(1.5):

V. A W =0 (16)
Z YT z i
j
For a simple circular flow loop, the mass flow rate at steady state is a constent at any
point in the loop. Local area and density variations thus give rise to velocity variations

around the loop.

Local velocity then is:

W
V= — (1n
pA

4. THE CONSERVATION OF MOMENTUM

Newton observed that momentum is conserved, i.e. a body moves in a straight line
unless forced to do otherwise. This is equivalent to a force balance if the inertial force (a
momentum sink of sorts) is recognized. In the integral sense, the rate of change of momentum

is equal to the forces acting on the fluid. Thus:

D f r
Dt J f L"fkpk'vkdv"‘ J L o, -nds+ I ] vakpkfkd\{+ J J LMde, (18)

where _
o is the stress tensor (i.e., short range or surface effects including pressure,
viscosity, etc.), .
f isthe long range or body force (i.e., gravity),

and
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M is the momentum interchange function accounting for phase change efiects.

Using Reyneald’s Transport Theorem, we get:

]
J I lv 5: (v, Py Vk)dV + I L; (v, p, V)V -n)ds

- } ‘ ' (19)
= I L o, nds + J I vakpkfkd\'/-i-l [ Iv Mde.
Adding both phases together as per the mass equation, we find:
d — ' -—
III —deV+JJ pV(Vn}ds:J! o-nds—i-[[[ pf dY . 2o
Jy ot i s S v

To get the microscopic form we use Gauss's theoremn and drop the volume integrai as before to

leave:

g - — -
g(pV)-’rV- pVV =V. o+ pf . (21)
The stress tensor, ¢, can be split into the normal and shear components:

. 6= —Pl+ry, (22)
where P is the pressure, 11s the unity tenser and t is the shear stress teasor. This enables the
explicit use of pressure and helps maintain our tenuous link with reality. Of course, it can
equally be introduced in the integral form, Equation (20), or as a separate pressure for each

phase in equation (19). At any rate, Equation (21) becomss:

i(}ﬁ)-:-v- pVV =VP 4+ V-t+ pf . (23)

This is the form commeoniy seen in the literature, useful for distributed modelling as

per the mass conservation equation. The term, V-x, is usually replaced by an empirical

relation. For the system codes using the node-link structure, we switch back to the
macroscopic form, Equation (20).

If the surface integral for the advective terﬁ is performed over the inlet and outlet

areas of the pipe (link) in guestion, then:

- r ’
JJ pV(V- nlds= ' J pV (V- m)ds+ J} pV (V- n)ds, (24)
s Iia A

IN ouT
where A _is the flow inlet area and A gy is the flow outlet area. If we =ssume the properties

are constant over the areas, then:

. apV _— —

V—p——A p V V 4A [ \Y v =Ilok- nds+{[]pfdv.
at IN IN IN IN ouUT OUT oOUT oUT S ’ v

Alternatively we could perform & cross-sectional average of each term, usually denoted by

< >,where <()> = VA [ . () ds. If we assume the properties, V, p and A are constant along
the length of the pipe, then the second and third terms cancel.

Equation {25) can be rewritten as:

WJG-09b 9




apV _
Vor— = - Pl-nds+ (V-t+ pfl)dv
ot s v
= vp (L Vv - (26)
= ~AqurPour + APy~ 2 (5 * k) 3o - LAP @),
C

where g, is the gravitational constant, g is the acceleration due to gravity and where V-t and
pf evaluated by empirical correlations (the standard friction factor) plus an elevation change
term (8 is the angle w.r.t. the horizontal).

Assuming one dimrensional flow and defining the mass flowas W = ;)VA, and L as the

pipe length, Equation (26) becomes:

WA fL w2 . @7
F A LN IR C R P REYECECS |

2g, pA2
which is the form typically vsed in system codes.

Jf circumstances require, extra terms can be added. For instance, if a pump is present
this can be considered to be an external force acting through head, APpymp. Equation (27)
would then become:

W

L; = AOU‘I‘POUT + AINPIN + A Appump + e . (28)

The momentum flux terms (ApV? in Equation (25) could also be added if large area or
property changes were present.
In the steady staie, for a constant area pipe with ne pump and no elevation change:
2 2
L vV_ (L w 29)
P —P =p(-—+k)—-=(-+k) ,
1IN QuUT
, D D 24%p g,

2gc
As a final note, the assumptions made for the mixture momentum equation are thus

similar to those made for the mixture mass equation and the same comments apply. One
cannot hope to accurately model such phenomena as void propagation and other two phase
transient flow effects using lumped single phase equations unless a large number of nodes
and links are used. ‘

5. THE CONSERVATION QF ENERGY

By the early 1800's, philosophical jumps were made in recognizing that heat was not a

substance and in the emergence of electromagnetic theory. The concept of energy as we now
think of it was formulated and it was found that energy, too, was conserved, as long as we
carefully identify all the different forms of energy (kinetic, chemical, potential, nuclear,
internal, electromagnetic, ...}. |

The mathematical statement of the conservation of energy is:

10
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' (30)
+ I l Jv ykpkfk-vk dV+’ L (Ok'n)'des

where
e, = internal energy of phasek,
q, = surface heatflux for phasek, and
E, = internal heat sources and sinks of phase k.

The left hand side is the substantial derivative of the internal plus kinetic energy.
The right hand side terms are, respectively:
1) surface heat flux,

2) internal sources and sinks,
3 work due to long range body forces {gravity, etc.),
4) work due to short range forces (surface tension, pressure, ete.).

Using Reynold;s Transport Theorem again:

"9 1, £ q 1,
[ J' L E[\’kpk(ek+5\’k’}dv+l ]S ykpk(ek-i-gvk)Vk- nds

B _ : (31)
= qu-nds+ kadV-i- VYkP.(fa‘de” s(ok~n)- V,ds

Sumiring over k, the mixture equation becomes:

”J a[—_—+1?1d\1+”.[ + VIV nd
1 ~lpe+ - e+ — - nds
e Qe e

=-I[ q-nds-l-[J[ EdV+I[J pf - VdV+J[ {(o-n)- Vds, 32)
[ v v , is

where
. pe= Y, P €t Y,p,€ and E=E1+—E2'etc'

Using Gauss' Theorem to change some of the surface integrals to volume integrals:

[, 265 hev+ ]| FIREEEG
_ = . v.|=
J[Jvat[pe+2 pVildv + . peV- nds+ " 2pV v

=_”Sq.nd5+” JVE-dV+IIIV pf- VdV-:-l[LV- o V)-dV.  (33)

Since

dv

a2

o= -=PI + 1,

”I V- (o- vmv:”J [V- (v- V)—V- (PV)dv.
v Y

11



This is the total energy equation, composed of thermal terms and mechanical terms.
We can separate the two by first generating the mechanical terms from the momentum

equation (Equation 20). Forming the dot product with velocity we get:

_”Limdw'l”v"' - pVV)dV:”L Vo (- oav

—_— [ (34)
- V. VP dY + pf- V -dV.
4 R iy
Now _
V. (V1) = V{t-V) — 1. IV, - (35)
© V.VP=V(PV) - PV-V, (36)
v- 2w a(lvv) a(l v’) (37)
. —_— = = — - = = -2 o
o PYT i\ P x\2?
and
(1 2
V@ pYWV =V | pViv (38)

Using these identities and subtracting Equetion (34) from Equation (33), we get:

at

[l o[, T[], e

This is the thermal form of the energy equation. This form of the energy equation can be used

a Z (perav + peV- nds=—[ r q-nds
) J
e s 118

to generate the thermal conductance equation for solids. By setting fluid velocity to zerc and

converting surface integrals to volume intefrals we get the distributed form:
é
'a—t(pe)=—v-q+E, 40)

where E is the internal energy generation rate term.

From thermodynamies, for solids, we have:

2 ooy =pZ =pc, & (an)
— (pe) =p — = —_ )]
a POEP L TR,

and using Fourier's law for heat conduction:

q = —kVT, ’ (42)

we have the classical form of the heat conduction equation:

- dr
pC — =V. kVT+E
vV oat

= kVIT+E for space independent k . {43)
This is useful for determining the temperature distributions in boiler tube walls, piping walls

and reactor fuel pencils. To generate the node-link forms we now turn back to the integral

12
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form of Equation (39). If we assume that the density and enthalpy are uniform over the node
" (the volume in question), then

4 — aUu
JJJ ;(pe)d\f:;. (44)
v

where

U = Vpe = LApe.
The integral of the transport term can be written over tha flow surfaces:

I[ pe V- nds=J[ pe V- nds+l] pe V- nds+ ..., (46)
I8 Al A2

where Av Az, etc. are the pipe flow cross-sectional areas. For inflow, V-n is negative. For

(45)

outflow, V-n is pesitive. Assuming uniform velocity, enthalpy and density across the link
(pipe) cress-section gives:

JJ pe V-nds= — E_ peVAi-l- Z peVAi
s ‘ IN FLOW OUT FLOW

_ - e 47
. == Wyey + > Wourour -

The heat flux and generation terms of the thermal energy equation can be lumped into a
losely defined heat source for the volume:

_IJ q-nds+[ll Edv=Q. (48)
s v :

Therefore, the thermal energy equation becomes:
V_Sw > vV av vV 49)
_'o’t- = NCIN — -/—WOUTeOUT +Q + y T: — y PV.V dv (49

The last two terms are the irreversible and reversible internal energy conversion,
respectively.

Some system codes track enthalpy rather than internal energy. Defining:

h = enthalpy = e + P/p
and

(50)

we can rewrite Equation (39) ac foliows:

h—P —
]” a(p——)dv+” (ph— P)V- nds
v at s

—_— _— (51)
=—II q nds+JJ[ EdV-i—JJ[ t:VVdV—J PV-Vdv.
£ v v v

Collecting the pressure terms and simplifying yieids:

13
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[” i(ﬁ)d\ﬂ” phV. nds
4 v dt S

o[ [0 mase ||| pave | [ [, 55
+”L %d\ﬂ ”s PV- nds—”L PY-Vadv. (52)

The surface integral over P can be transformed into & volume integre! using Gauss' theorem

and combined with the last term to give:

HS BV nds-”L-pv- V av =”L W\\mﬂv_[”vmdv

_ J[L'V_-TP\\*QN&V.

The enthalpy flux terms can be evaluated in the saine manrer that the energy flux terms

were in Equations (46-47). Thus,

- — —
I e phV- nds= — ? Wby + ? Wourhour - (54)

¢

Finally, using Equations (48, 53, 53-54), Equation (§2) becomes:

JH . N
Tt == 2 Wby + 3 Wogrhoyr +0

+HL :;vvav+”]v(%%+ V. vp )dv (55)

The integral term involving pressure is often neglected since it is usually negligible

compared to the other terms. For instance, the typical CANDU Heat Transport System
operates at a pressure of 10 MPa, a fluid velocity of ~10 m/s, and a pressure gradient of less
than 70 kPa/m. This translates into roughly 10 kd/kg while e is approximately 1000 kd/kz.
The turbulent heating term is usually approximated by adding purap heat as a
specific form of Q. .
Equation (55) in the steady state, neglecting turbulent heating and the pressure

terms, is the familiar:

_ - ———— —_— (56)
Q= 2 Wouthour _z ¥inby -
For a reactor or a boiler (one flow in, one flow out}:
57
Q = Wlhgy-hyg) = WC T T 57)

Another special case of equation (55) is obtained by expanding the term Q as per
equation (48):

14
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Using Newton's Law of cooling for convection:
qn=h (T -T), (58)
where
q-n = heat flux normal to surface, s,
T

T = Temperature of surface (wall), and

n

Temperature of fluid,

h,, = heat transfer coefficient,

Equation {55), neglecting the pressure terms, becomes:

aph op F] aT
V—L—V—(EV-E:V[)C —)
at ot at v oat
= 2 Winbhy - z Wourhoyur — Aby T-Tg)

+VE+[” T:VV dv (59)
i

v
which is useful for accounting for heat transfer between the fluid and the pipe or tube walis

(eg: boiler heat transfer).
The heat transfer coefficient, h, is supplied through empirical relations. The

turbulent heating term f{[v t: VV dV generaily can be neglected. -

6. THE EQUATION OF STATE

From the conservation equations, we have three equatiocns for each phase (mass,

momentum and energy conservation) and four unknowns:

1) density, p or mass, ¥p,

. 2) " veloeity, V, or mass flow, W, or momentum, pV,
3 energy, e, or enthalpy, h = e + P/p, or temperature, T = fn(e) or fn(h), and
4) pressure, P.

The fourth equation required for ¢losure is the equation of state:
P = fn(h, p) or In(T, p)
or
p = fn(P,T}, etc. {6G)
Thermodynamic equilibrium is uéually assumed, as in the following. For water, H,0 or D,0,
tables of properties give the required functional relationship. Often, a curve fit of the tables is
used. This data is input to the computer codes and utilized in table lookup schemes or directly

via the parametric curve fits.
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To illustrate the process, consider a fixed volume, Y, having a mass of H,0, M, and a
specific enthalpy, h. The volume is usually a specified geometric input. TLe mzss flows and
enthalpy have, let's assume, been calculated from the simultaneous solution of fhe
conservation equations. The state equation gives the pressure given the mass and enthalpy
for that volume, as follows.

The density, p, is an average for that volume, and is calculated from:

 p=MAW. (61)

The pressure is guessed (as per the last time iteraiion, for instance) and the table lookup gives

the associated density and specific enthalpies for liquid and vapour forms of H 0. Since the
average density is related to the specific densities by the relation:

p=pl_(1_u) + pga' (62)

that is, the average density is a volume weighted sum of the specific densities. The void

fraction, a, is readily calculated. Given a relationship between void fraction, a, and weight

fraction (quality), x, we have the quality, x. An example of such a relationship is the ne-slip

’ _ P
( X )(1 n)__f_zl. (63)
l—x a p

E

case; -

The mixture enthalpy, h, is given by
b=h(1-x + h_x, (64)
that is, the average or mixture enthalpy is a mess weighted sum of the specific enthalpies.
This mixture enthalpy is compared to the given enthalpy and the guess at the pressure is
updated accordingly until convergence is reached.

To help guide the search for the compatible combination of P, h and p, partial
derivatives, such as aP/ahl,,, are often used to calculate the next guess.

If the fiuid is calculated to be subcooled, theﬁ no positive quality or void exists. The
slope of the property functions become very steep so that small variations in p or h can
generate large variations in P. One solution to this problem is to start with the density, use it
in a table lockup to give the saturation pressure and the saturation enthalpy. Then a
correction to the pressure is made to correct for the fact that the actual enthalpy is less than

the saturation enthalpy. Thus:

aP
P=P (p)+ —| h~h ()] . (65)
SAI} ah p SAJ}
A similar process is used for single phase steam, giving:
P=P & h (66)
= sm.g(p) + a_h . h - 5M.g({:»)] .

Internal energy, e (or sometimes, u), is related to enthalpy, h as follows:

WJG-09¢ 16



h=e+ P/ (67)
The above calculation of pressure is sometimes performed using the variable, e or u, rather

than h. The choice is one of convenience or personal preference oniy..

7. EMPIRICAL CORRELATIONS

As previously discussed, supporting relations are required to provide the necessary

informaticn for the conservation and state equations. The primary areas where support is

needed are;

1) relationship between quaiity and void fractions, i.e., slip velocities in two phase flow
(to iink the mass and energy conservation equations via the state equaticn);

2) the stress tensor, t (effects of wall shear, turbulence, flow regime and fluid properties
on momentum or, in a word: friction);

3) heat transfer coefficients (to give the heat energy transfer for a given temperature
distribution in hezt exchangers, including steam generators and reactors);

4) - thermodynamic properties for the equation of state; -

5) flow regiﬁ:e maps to guide the selection of empirical correlaticns appropriate to the
flow regime in question;

6) special compenent data for pumps, valves, steam drums, pressurizers, bleed or
degasser condensors, ete; and

N critical heat flux information (this is not needed for the solution of the process
equations but a measure of engineering limits is needed to guide the use of the
solutions of the process equations as applied to process design.

The above list of correlations, large enough in its own right, is but a subset of the full list that

would be required were it not for a number of key simplifying assumptions made in the

derivation of the basic equations. The three major assumptions made for the primary heat

transport system are;

1) one dimensional flow;

2) thermal equilibrium (except for the pressurizer under insurge); and
3 one fluid model (i.e. mixture equations). -

These are required because of state of the art limitations. References [11-21] are

recommended for further reading.

8. SOLUTION OVE‘.I;!VI‘EI'VUT

Because of the complexity of solving the mass, momentum and energy equations plus
supporiing equatiens of state and empirical correlations all subject to initial and boundary

conditions, it is quite easy to “not see the forest for the trees”. A skeleton overview may help
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in this regard. Figure 2 illustrates the equations and the information links between them. In
words, the momentum equation gives the {lows or velocities from one node to another, or from
one grid point to another, based on a given pressure, flow, mass and energy distribution. The
updated flows are used by the mass and energy equations to update the mass and energy
contents at each location. This information is given to the equation of state to update the
pressure distribution. This information, along with the new densities and energies are used
by the momentum equatior, and so on. In this manner, a time history of the fluid evolution is
obtained. Of course, only the main variables-are noted. The numerous and diverse empirical
correlations require updates on the main variables and many secondary variakles. This
irformation also "flows" around the calculation.

A further point to note on the solution overview is that each phase in a multiphase
fiow has 8 main information flow path as shown in Figure 3. In the full UVUEUP {unequal
velocity, energy and pressure) model, there are two distinct phases: one for the vapour phase
and one for the liquid phese. If a simplified model was imposed, this essentially means that
the pianes would touch at some point. For instance, if equal pressure in both phases was
assumed, then Figﬁre 4 would result. Here, the equaticn of state is common to both planes.

The HEM (homogeneous equilibrium model) is the fully coliapsed case where both
planes collapse into one (Figure 2). You may find these images to be useful in conceptualizing
the basic equations and how they fit together.

The precise solution procedure that you might emgloy is case depandent. At present,
no general solution scheme exists because the nuances of specific probiems are subtle and
because one cannot usually afford to ignore the efficiency and cost savings gained by tuning a
method to a particular case. The economics of using a case specific code are changing,
however, with developments in the micrecomputer field and with the realization that total
design fmd analysis time can often be reduced by using ‘a less efficient but more robust code.
Codes such as SOPHT and FIREBIRD are a direct result of this realization. The near term

evolution will likely be affected mostly by microcomputer developments.
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NOMENCLATURE

L - TR S o B BT T T

@nwnggrrhmgb‘mw""'"‘FJ"Q,‘,O_OD-B»

area
arbditrary vector

concentration

heat capacity at constant pressure
heat capacity at constant volume
specific internal energy

internal heat source or sink
friction factor

long range or body force
gravitational constant
acceleration due to gravity
specific enthalpy

heat transfer coefficient

total enthalpy in volume, V
unity tensor

head loss coefficient

length

mass in volume, YV

momentum interchange vector
unit vector normal to the surface
pressure

heat flux

lumped heat source or sink = _ J [ q: nds+[ [[ EdVY
.5 Y

surface bounding volume, v
surface sink or source

time

temperature

total internal energy in volume, ¥
arbitrary fluid volume

velocity vector

mass fiow

quality (weight fraction)
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Greek

a void fraction
y phase volume fraction
r local sink or source
] field variable
p density
G stress tensor
0 angle with respect to horizontal
T shear stress tensor
Operators
a—i- partial time derivative
d . s
a—; total time derivative
D - N
-l-)—-;' cubstantial time derivative

Del operator

}d¥Y  volume integral

)ds surface integral

( sum over the phases
<( K [ L( Jds = cross—sectional average

Subscripts

f liquid (fluid) phase

g vapour (gaseous) phase

i summation index for nodes

j summation index for links

k 1,2(1 = liquid, 2 = vapour)

surface

SAT saturated

IN ingoing

OuUT outgoing
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