FIGUFE 1: Transmission of a stef charige usirig the plug fiou model and the miximg tarik model (1 to 5O tariks).

FIGUFE $2:$ The four corrierstone single-phase flou equations and the flow of infarmation tietween them.

FIGUFE $3:$ The eight Eornerstare tur-phase flow equatioris arid the figu of information tietweeri them.

FIGURE 4: A special case git the gerieral tur-phase flow equations.

FIGURE 1 Transmission of a step change using the Plug Flow Model and the Mixing Tank Model (1 to 50 Tanks)

FIGURE 2 The four cornerstone single-phase flow equations and the flow of

1
)

$$
\alpha(1-a) \rho_{l}=(1-x)<\rho x
$$

$x \rho_{\rho}-x \alpha \rho_{e}=\alpha \rho v-x \alpha \rho_{v}$
(1)

$$
x \equiv \frac{\rho_{r} \alpha}{\rho_{r^{\alpha}}+\rho_{2}(r \alpha)}
$$

(3) $x \rho-x \rho_{x}=\rho_{v}-x_{\alpha} \rho_{r}$
(4) $x \rho_{2}(1-\alpha)=\alpha \rho_{v}(1-x)$
(5) $\therefore \frac{x}{(1-x)} \frac{(1-a)}{a} \frac{l_{l}}{\alpha_{v}}=1$

To solve in taimis of t :
(4)

食

$$
\begin{align*}
& \rightarrow \quad x \rho_{l}-\alpha \times \rho_{l}=\alpha \rho_{v}(1-x) \\
& \quad=\frac{x \rho_{l}=\alpha\left[\rho_{l}+v_{v}-\rho_{v} x\right]}{x+\frac{\rho_{v}}{\rho_{l}}-\frac{\rho_{v}}{e^{2}} x} \\
& =\frac{x}{x\left[1-\frac{\rho_{v}}{\rho_{l}}\right]+\rho_{v / \rho l}}=\frac{x v_{v}}{x v_{v}+v_{l}-v_{l x}} \\
& =\frac{x v_{v}}{(1-x) v_{l}+x v_{v}}
\end{align*}
$$

11

THE RATE METHOD - GENERALIZED

In the following, the case of two-phase equilibrium is considered first in order to illustrate the method. Subsequently, the equations are extended to cover single phase and two-phase non-equilibrium fluid.

Two-Phase Equilibrium

For a two-phase homogeneous mixture we have:

$$
\begin{align*}
& v=v_{\mathrm{f}}+\mathrm{x} \boldsymbol{v}_{\mathrm{fg}} \tag{26}\\
& \mathrm{~h}=\mathrm{h}_{\mathrm{f}}+\mathrm{x} \mathrm{~h}_{\mathrm{fg}} \tag{27}
\end{align*}
$$

where $v_{\mathrm{fg}} \equiv \mathbf{v}_{\mathrm{g}}-\boldsymbol{v}_{\mathrm{f}}$ and $\mathrm{h}_{\mathrm{fg}} \equiv \mathrm{h}_{\mathrm{g}}-\mathrm{h}_{\mathrm{f}}$.
We wish to :elate rates of change of pressure to rates of change in ρ and h. Specifically, we desire:

$$
\begin{equation*}
\frac{d P}{d t}=G_{1} \frac{d \rho}{d t}+G_{2} \frac{d h}{d t} \tag{28}
\end{equation*}
$$

since $\mathrm{d} \mathrm{\rho} / \mathrm{dt}$ and $\mathrm{d} h / \mathrm{dt}$ (or equivalently, $\mathrm{dM} / \mathrm{dt}$ and $\mathrm{dH} / \mathrm{dt}$) are available from the mass and enthalpy conservation equations. First concentrating on the case of constant ρ (or v), to obtain G_{2}, we differentiate equation 27 to gives:

$$
\begin{equation*}
\frac{d h}{d t}=\left[\frac{\partial h_{f}}{\partial P}+h_{f g} \frac{\partial x}{\partial P}+x \frac{\partial h_{f g}}{\partial P}\right] \frac{d P}{d t} \tag{29}
\end{equation*}
$$

Using equation 26 , holding v constant: (ie $\rho=$ constant)

$$
\begin{equation*}
\frac{d x}{d P}=\frac{\partial\left(\frac{v-v_{f}}{v_{f g}}\right)}{\partial P}=-\frac{1}{v_{f g}}\left[\frac{\partial v_{f}}{\partial P}+x \frac{\partial v_{f g}}{\partial P}\right] \tag{30}
\end{equation*}
$$

$\begin{aligned} \nu \frac{\partial\left(\frac{1}{\nu_{f}}\right.}{\partial p_{p}} & =-\frac{\left(\nu-\nu_{r}\right) \partial}{\partial_{g^{2}}} \frac{\nu_{f}}{\partial P} \\ & =\frac{x}{\nu_{f}} \frac{\partial \nu_{f}}{\partial \rho_{f}}\end{aligned}$

Substituting this into equation 29 gives:

$$
\begin{equation*}
\frac{d h}{d t}=\left\{\frac{\partial h_{f}}{\partial P}+x \frac{\partial h_{f g}}{\partial P}-\frac{h_{f g}}{v_{f g}}\left[\frac{\partial v_{f}}{\partial P}+x \frac{\partial v_{f g}}{\partial P}\right]\right\} \frac{d P}{d t} . \tag{31}
\end{equation*}
$$

or equally:
)

$$
\begin{align*}
\frac{d P}{d t} & =\frac{v_{f g}}{\left\{v_{\mathrm{fg}}\left[\frac{\partial h_{f}}{\partial P}+x \frac{\partial h_{f g}}{\partial P}\right]-h_{f g}\left[\frac{\partial v_{f}}{\partial P}+x \frac{\partial v_{\mathrm{fg}}}{\partial P}\right]\right\}} \frac{\mathrm{dh}}{d t} \\
& =\frac{v_{\mathrm{fg}}}{\{\text { DENOMINATOR\}}\}} \frac{\mathrm{dh}}{d t}=G_{2} \frac{\mathrm{dh}}{\mathrm{dt}} . \tag{32}
\end{align*}
$$

This gives the pressure rate response due to an enthalpy rate change, holding ρ constant.

Nite that G_{1} and G_{2} are functions that depend only on the local saturation fluid properties and their slopes at the local pressure.

Combining equation 32 and 33 to get the total pressure rate response when both h and p are varying:

$$
\begin{equation*}
\frac{d P}{d t}=G_{1}(P, x) \frac{d p}{d t}+G_{2}(P, x) \frac{d h}{d t} . \tag{34}
\end{equation*}
$$

This is the rate form of the equation of state for two-phase equilibrium fluid in terms of the intensive rate properties, $\mathrm{dp} / \mathrm{dt}$ and $\mathrm{dh} / \mathrm{dt}$, which are obtained from the continuity equations.

Equation (34) can be cast in the extensive form by noting that, since $\rho=\mathrm{M} / \gamma$ and

$$
\begin{array}{ll}
h=H / M, \\
\frac{\partial M}{\partial t}=\frac{\partial \rho}{\partial t}+\rho \frac{\partial \psi}{\partial t} & \frac{d \rho}{d t}=\frac{1}{\forall} \frac{d M}{d t}-\frac{M}{\forall^{2}} \frac{d \forall}{d t} \\
\frac{\partial H}{\partial t}=M \partial \frac{h}{\partial t}+h \frac{\partial M}{\partial t} & \frac{d h}{d t}=\frac{1}{M} \frac{d H}{d t}-\frac{H}{M^{2}} \frac{d M}{d t} .
\end{array}
$$

Substituting into equation 34 and collecting terms:

$$
\begin{equation*}
\frac{d P}{d t}=\left(\frac{G_{1}}{\forall}-\frac{G_{2} H}{M^{2}}\right) \frac{d M}{d t}+\frac{G_{2}}{M} \frac{d H}{d t}-\frac{G_{1} M}{\forall^{2}} \frac{d \forall}{d t} . \tag{37}
\end{equation*}
$$

; After some simplification and rearrangement we find:

$$
\begin{equation*}
\left(n_{p}-n_{L}: \nu^{i} \rho-h\left(\nu_{g}-\nu_{f}\right)\right. \tag{38}
\end{equation*}
$$

where:

$$
\begin{align*}
& F_{1}=h_{g} v_{f}-h_{f} v_{g} \\
& F_{2}=\boldsymbol{v}_{g}-v_{f} \\
& F_{3}=h_{f}-h_{g} \\
& F_{4}=\frac{\partial h_{g}}{\partial P}\left(v_{g}-v_{f}\right)-\frac{\partial v_{f}}{\partial P}\left(h_{g}-h_{f}\right) \\
& F_{5}=\frac{\partial h_{f}}{\partial P}\left(v_{g}-v_{f}\right)-\frac{\partial v_{f}}{\partial P}\left(h_{g}-h_{f}\right) \tag{39}\\
& \\
&
\end{align*}
$$

and

$$
M_{f}=(1-x) M .
$$

The F functions are smooth, slowly varying functions of pressure (see Figures 6-10) provided geod curve fits are used. The latest steam tables (Haar, 1984) were used to fit saturated properties to less than $1 / 4 \%$ accuracy using low order polynomials and exponentials (Gariand and Hoskins, 1988). Considerable effort was spent on obtaining accuracy and continuous derivatives over the full pressure range. The fact that good fits are available means that the F functions are well behaved which in turn makes the rate form of the equation of state extremely well behaved, as shown later.

The G functions are also well behaved for the same reasons.
The F and G functions have direct physical interpretations which aid in generating intuition. The F functions relate changes in the extensive properties, M, H and \forall, to changes in pressure. The G functions related changes in the intensive properties, ρ and h, to chianges in pressure. Often, a simple numerical evaluation of these functions during a simulation aids in developing an appreciation of the changing roles of the key actors in a dynamic simulation.

For instance, because F_{1} is negative, we immediately see that adding mass to a fixed volume of liquid with fixed wotal enthalpy will cause a depressurization (because the specific
enthalpy, $h=H / M$, is decreased). But, since G_{1} is positive, an increase in density in a fluid of fixed specific enthalpy causes a pressurization.

Single-Phase, Non-Equilibrium (Subcooled and Superheated)

For the single-phase subcooled or superheated case, we do not have to account for the sorting out between phases as we did for the two phase case. thus the derivation is more direct and less complex. We could simply use:

$$
\begin{equation*}
P=n(\rho, h) \tag{40}
\end{equation*}
$$

to give:

$$
\begin{equation*}
\left.\left.\frac{d P}{d t}=\frac{\partial P}{\partial \rho}\right)_{h} \frac{d \rho}{d t}+\frac{d P}{\partial h}\right)_{\rho} \frac{d h}{d t} \tag{41}
\end{equation*}
$$

but, since the steam tables are given as a function of P and T, the slopes in equation 41 are not easily obtained. To cast the pressure rate equation in terms of the independent variables, P and T, consider:

$$
\begin{equation*}
\rho=\rho(P, T) \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
h=h(P, T) \tag{43}
\end{equation*}
$$

Note that the non-equilibrium case requires the explicit tracking of the temperature in addition to pressure. Taking derivatives of Equations 42 and 43:

$$
\begin{equation*}
\frac{d \rho}{d t}=\left.\frac{\partial \rho}{\partial P}\right|_{T} \frac{d P}{d t}+\left.\frac{\partial \rho}{\partial T}\right|_{P} \frac{d T}{d t} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d h}{d t}=\left.\frac{\partial h}{\partial P}\right|_{T} \frac{d P}{d t}+\left.\frac{\partial h}{\partial T}\right|_{P} \frac{d T}{d t} . \tag{45}
\end{equation*}
$$

But we desire:

$$
\begin{equation*}
\frac{d P}{d t}=G_{1 p} \frac{d \rho}{d t}+G_{2 P} \frac{d h}{d t} \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d T}{d t}=G_{1 T} \frac{d \rho}{d t}+G_{2 T} \frac{d h}{d t} . \tag{47}
\end{equation*}
$$

This is easily obtained by solving equation 44 and 45 for $\mathrm{dP} / \mathrm{dt}$ and $\mathrm{dT} / \mathrm{dt}$ to yield:

$$
\begin{equation*}
\left.\left.\left.\left.\frac{d P}{d t}=\frac{\left.\left.\frac{\partial h}{\partial T}\right)_{P} \frac{d \rho}{d t}-\frac{\partial \rho}{\partial T}\right)_{P} \frac{d h}{d t}}{\partial P}\right)_{T} \frac{d h}{d f}\right)_{P}-\frac{\partial \rho}{\partial T}\right)_{P} \frac{\partial h}{\partial P}\right)_{T} \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d T}{d t}=\frac{\left.\left.\frac{\partial h}{\partial P}\right)_{T} \frac{d \rho}{d t}-\frac{\partial \rho}{\partial P}\right)_{T} \frac{d h}{d t}}{\left.\left.\left.\left.\frac{\partial \rho}{\partial T}\right)_{P} \frac{d h}{d P}\right)_{T}-\frac{\partial \rho}{\partial P}\right)_{T} \frac{\partial h}{\partial T}\right)_{P}} \tag{49}
\end{equation*}
$$

which is the intensive form we desire.
The extensive form is obtained as for the two-phase equilibrium case. Equations $\mathbf{3 5}$ and 36 are substituted into equations 48 and 49 and after rearrangement we find:

$$
\begin{equation*}
\frac{d P}{d t}=\frac{F_{1 P} \frac{d M}{d t}+F_{2 P} \frac{d H}{d t}+F_{3 P} \frac{d \forall}{d t}}{M_{v} F_{4 P}+M_{\ell} F_{5 P}}=\left(\frac{C_{1} P}{\forall}-\frac{G_{2 P} H}{\mu^{2}} \frac{d A^{\prime}}{d t}+\right. \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d T}{d t}=\frac{F_{1 T} \frac{d M}{d t}+F_{2 T} \frac{d H}{d t}+F_{3 T} \frac{d V}{d t}}{M_{v} F_{4 T}+M_{f} F_{5 T}} \tag{51}
\end{equation*}
$$

where

$$
\begin{array}{rlr}
F_{1 P} & \left.\left.=\rho \frac{\partial h}{\partial T}\right)_{P}-h \frac{\partial \rho}{\partial T}\right)_{P} & \\
F_{2 P} & \left.=-\frac{\partial \rho}{\partial T}\right)_{P} & \\
F_{3 P} & \left.=-\rho^{2} \frac{\partial h}{\partial T}\right)_{P} & \\
F_{4 P} & =0 & \text { subcooled } \\
& \left.\left.\left.\left.=\frac{d \rho}{\partial P}\right)_{T} \frac{\partial h}{\partial T}\right)_{P}-\frac{\partial \rho}{\partial T}\right)_{P} \frac{d h}{d P}\right)_{T} & \text { superheated } \tag{52}\\
F_{5 P} & \left.\left.\left.\left.=\frac{d \rho}{\partial P}\right)_{T} \frac{\partial h}{\partial T}\right)_{P}-\frac{\partial \rho}{\partial T}\right)_{P} \frac{d h}{d P}\right)_{T} & \text { subcooled } \\
& =0 &
\end{array}
$$

$$
\begin{aligned}
M_{v}=\text { mass of vapor phase } & =0 \text { subcooled } \\
& =M \text { superheated } \\
M_{l}=\text { mass of liquid phase } & =M \text { subcooled } \\
& =0 \text { superheated } \\
F_{1 T} & \left.\left.=\rho \frac{\partial h}{\partial P}\right)_{T}-h \frac{\partial \rho}{\partial P}\right)_{T} \\
F_{2 T} & \left.=-\frac{\partial \rho}{\partial P}\right)_{T} \\
F_{3 T} & \left.=-\rho \frac{\partial h}{\partial P}\right)_{T} \\
F_{4 T} & =-F_{4 P} \\
F_{5 T} & =-F_{5 P}
\end{aligned}
$$

Two-Phase Non-Equilibrium

The rate form for the equation of state for the two-phase non-equilibrium case is a simple extension of the single-phase non-equilibrium case. The liquid and vapor phases are treated independently to give:

$$
\begin{align*}
& \frac{d P_{k}}{d t}=G_{1 P}^{k} \frac{d \rho_{k}}{d t}+G_{2 P}^{k} \frac{d h_{k}}{d t} \tag{53}\\
& \frac{d T_{k}}{d t}=G_{1 T}^{k} \frac{d \rho_{k}}{d t}+G_{2 P}^{k} \frac{d h_{k}}{d t} \tag{54}
\end{align*}
$$

where k represents either ℓ or \vee for the liquid or vapor phases respectively. In general, the 6 equation model (3 continuity equations for each phase) would be used for the general unequal temperature, unequai velocity, unequal pressure situation. Thus $d \rho_{k} / d t$ and $d h_{k} / d t$ are available to the rate form of the equation of state.

0^{n}

Functions
1ϕ non-equilibrium
pressure

[^0]

[^0]: 1ϕ non-equilibrium
 temperature

