
Chapter 1 

POINT KINETICS 

1.1 INTRODUCTION 

The Point Kinetics Model is widely used in reactor dynamics because of the 
apparent simplicity of the resulting equations. The main difficulty of this 
method lies in obtaining the necessary parameters describing the reactor. 
Nevertheless, many characteristics of the dynamic behaviour of a nuclear 
reactor can be deduced from them. Also, the point kinetics method can be 
used as a basic test of the more sophisticated methods used in full space- 
time calculations; if a given method is not able to pass the test on a reactor 
considered as a single point or region, it will have difficulties when considering 
the reactor with many regions. 

We present here a very sketchy demonstration of point kinetics; another 
course will be devoted to this method. 

1.2 DERIVATION 

The starting point of the point kinetics equation is of course the space-time 
neutron transport equations. This transport equation is almost impossible 
to solve, even on the most powerful computers available today. We resort 
instead to the diffusion approximation of this, which is obtained after apply- 
ing the Pl spherical harmonics approximation to the directional flux. This 
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space time diffusion equation is 

g=l,..., Gandi=l,... ,D 
The main idea in point kinetics is to separate the (multigroup) neutron 

flux in a part depending only on space, and another depending only on time, 
in the following way, 

[WC t)l = [W wm (1.4) 

This equation is still exact, but [S (F, t)] depends on both space and time in 
this approach. 

We now introduce a weight vector 

whose role will be to obtain completely general expressions. 
There is a degree of arbitrariness in the choice of T(t) and [S (7, t)]. Only 

the product of the two really counts. We thus introduce a normalization 
constraint on T(t) and [S (?,,)I, We define 

T (4 = (P (W IT PI) 
and it follows that after 1.4, [S (F,t)] must obey the constraint 

([W ml’ w’ 1s ml) = 1 

(1.6) 

0.7) 

where the symbol () implies integration over the whole spatial extent of the 
reactor. The factor (S (F’, t)] becomes the “formfunction”, whereas T(t) is the 
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amplitude function. Remark that T(t) represents loosely the total number 
of neutrons in the reactor, this number depending somewhat on the chosen 
weight vector. The constraint on [S (F, t)] does not depend on time; the form 
function may vary in time, but it’s spatial integral is time independent. Thus 
T(t) represents by itself the time dependence of the neutron population. 

We can now obtain a differential equation for T(t) by substitution of 
[S (F, t)] 7’ (t) for 4 (F, tJ in th e s p ace time diffusion equations that have been 
pre-multiplied [W (~31 and by integrating over the whole reactor core. 

We define the quantities 

(WI’ [xt] G) 
ci(t) = ([w]‘[v]-’ [S]) (1.8) 

A (t) = 
([WI’ w’ PI) 

(WI’ { (1 - PI [xpl + gi [xi]} w,Y [Sl) 
(1.9) 

and 

Pi @) = Pi 
(WI’ [x”] k%lT [Sl) 

([WI’ { (1 - PI [xpl f&i [xf]] bGIT [Sl) 
(1.10) 

P(t) = 

([WI’ {v [Dl v [A - PI [Sl + ((1 - P) PI + g Pi [xf]) kW PI }) 

(WI’ { (1 - P) [xpl f&i [xs] } ml’ [Sl) 
(1.12) 

With these definitions, the space-time kinetics equations become 

and 

!!I$ = p ‘“g @)T (t) + 5 Ajc, (t) 
i=l 

y = g*(t) - xic; (t) 

(1.13) 

which are the point kinetics equations 
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1.3 THE POINT KINETICS APPROXIMA- 
TION 

So far no approximations have been made. However the calculation of the 
parameters p(t), ,Si (t) and R(t) depend, by definition on the form function 
[S (F, t)]. In order to know [S (7, t)] implies in turn knowing the neutron flux 
[4 (?, t)] which necessitates a complete solution of the space time equations. 
Thus it becomes very difficult to determine the point kinetics parameters. 

The way out of this consists in replacing [S (?, t)]. by a function depending 
on space alone, denoted [S(rJ]. This function is usually provided by the 
static, initial neutron distribution, before perturbations have been applied. 
In this case, it appears clearly that the resulting parameters are necessarily 
approximative. 

For instance, the Si and A lose their time dependence. As for the reac- 
tivity p(t), it’s value depends on the time variations of nuclear cross-sections 
and diffusion coefficients. But these parameters are applied to a form func- 
tion which does not correspond to the instantaneous state of the core during 
the transient. In this case, it can be shown that the best choice for the weight 
function [WI’ is the adjoint flux of the initial neutron flux. Any other choice 
would increase the error on p(t), and therefore increase the error on the 
amplitude T(t). 

Despite all these difficulties, point kinetics is still the most widely used 
method in reactor kinetics. This is mainly due to the small number of equa- 
tions to solve, and to the fact that only one spatial calculation (initial state 
of the core) is necessary. However, despite this apparent simplicity, many 
difficulties are hidden behind these equations. 

1.4 AN ANALYTIC SOLUTION 

In the presence of specified reactivity changes, with all other parameters 
fixed, it is possible to obtain analytic solutions to the point kinetic equations, 
The mathematical analysis of these is outside the scope of this course. We 
outline briefly the procedure here, for a step change of reactivity. Generally 
speaking, p varies in complicated ways as a function of time. We chose time 
intervals within which p stays relatively constant. This is the “stairway” 
approximation to the function p(t). Reactivity thus stays constant within a 
time step. 
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We define a vector 

and the following matrix 

q Xl A, 
2 -x1 

PI = 2 --x2 

-!F 
so that the system 1.13 and 1.14 becomes 

T @I - 
Cl (t) 

WI = G (6 

-cDh 

AD 

-XL 

5 

(1.15) 

(1.16) 

)- 

(1.17) 

We also introduce a vector [$‘I related to the vector [$I by application of a 
linear transformation [T], 

NJ1 = iTI Iti’1 (1.18) 

The system 1.17 then becomes, after substitution of 1.18, 

; WI = [RI PI wl (1.19) 

PI ; WI = [RI IT] WI (1.20) 

which becomes 

$ WI = PA-’ PI P’l WI (1.21) 

The operator [T] is chosen so that it diagonalizes the system 1.21, we will 

get 

$ WI = PI WI (1.22) 

where [D] is a diagonal matrix. The individual elements of [$‘I are easy to 
calculate in this new basis, and are simply 

Iti’ WI = exp hi 0 - hd) W (tdl (1.23) 
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and, after the inverse transformation, we get 

[Tl-’ WI = exp bi (t - to)) PI-’ I4 (to)] 
or 

(1.24) 

We are left with calculating the elements of the matrix [T], and the wi. 
To determine them, let us consider the systems 1.21 and 1.22, which give 

A result of linear analysis r shows that the elements of the diagonal matrix 
[D] are the eigenvalues of the matrix [RI, and that the columns of the matrix 
[Z’] are made of the corresponding eigenvectors. The elements of the matrix 
[T]-’ can be calculated by direct inversion, or by solving the adjoint problem. 
Thus, we have to solve the eigenvalue-eigenvector problem of the matrix [RI. 

The eigenvalues are given by 

det ([R - wJ]) = 0 (1.27) 

The determinant expansion, along the first column of the matrix [R - I&] 
will give 

{(q-W)+? i=l * (fY”; -I} fi C-b - W) = 0 (1.28) I * 
Note that w = Xi is not a solution of 1.28. Rather they are solutions of 

(1.29) 

This is known as Nordheim equations. The zeroes of this equation can only be 
obtained approximately (method of Newton and variants...) when more than 
three delayed neutron groups are involved. After obtaining the eigenvalues, 
we get the eigenvectors 

4 

/ 1 

uf 
[lJ]< = u; (1.30) 

lsee for example J. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University 
Press, Oxford, 1965). 
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where the index i is used to show that the eigenvector [Uli belongs to the 
eigenvalue wi. We get 

- 1- 

q 
[cry = u; 

To find the remaining elements, we solve 

[R - Will [I!# = 0 

or, more directly, 

We then get 

and the matrix [Z’] can be constructed 

(1.34) 

(1.35) 

(1.31) 

(1.32) 

(1.33) 

The determination of the w, shows that these differ much from each other, 
the minimum being about, 9, whereas the maximum is greater than -X1 
in all cases, and greater than 0 if p > 0. This characterizes the pointy kinetics 
equations as being “stiff”. 

We conclude over the following observations: 

1' With more than one group of delayed neutrons, the point kinetics equa- 
tions are difficult to solve. 



J. Koclas: Reactor Control and Simulation 8 

2' It is impossible to get a true analytical solution, because the tran- 
scendental equation for the wi, which can be solved only by numerical 
methods. 

3- The matrix [T] must be inverted, or the adjoint problem must be solved. 

4' As p varies in time, all this work must be redone at each time step. 

Because of all this, the analytic solution of the point kinetics equations 
is too difficult to be a practical method. Rather, numerical methods will be 
used in place of the analytic method. 

1.5 NUMERICAL SOLUTION 

We examine here a few simple numerical methods to solve the point kinet- 
ics equations. A full course on numerical methods could be given on this 
topic alone. We restrain ourselves to the simplest practical methods, mainly 
because they can be applied to the full space time kinetics with little mod- 
ifications. Also, some important conclusions can be derived from even the 
simplest methods, even with a little mathematical rigor. 

In practice, the choice of a numerical is based on three criteria, 

l truncation error 

. stability 

l calculation effort 

Proper equilibrium between these three is chosen on individual needs. For 
example, if many situations of very different states are to be calculated, the 
stability criterion might be the most important one. 

In order to review each of the three criteria for a few very simple methods, 
we write the point kinetics equations in the form 

In this section, we use the following notation: 

. at = t,+1 - t, 
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Furthermore, in the stability analysis, we suppose that the operator R stays 
constant in any given transient. We use the principle, without proving it, 
that the stability properties of a given numerical scheme do not depend on 
the particular basis used to represent the resultant vectors and matrices. 

In this section, we will consider only two numerical schemes, the explicit 
method and the implicit method. The first step involved in these methods 
is to replace the temporal derivatives in 1.36 by 

tp’ - ql” 

At 
(1.37) 

1.5.1 Explicit Method 

The explicit method consists in replace the right hand side term in 1.36 by 
RP. In this case, 1.36 becomes 

V+’ = (I + RAt)V’ (1.38) 

Truncation Error 

Formally, the exact solution of the differential equation 1.36 is an exponential 
of the matrix R, 

V’” = ezp(RAt)V’ (1.39) 

The truncation error is the difference between the approximate solution and 
the exact solution. Consequently, the truncation error ET is given by 

ET = (I + RAt - ezp(RAt)) 

If we expand the matrix exponential, 

(1.40) 

ET=(I+RAt-(I+RAt+;R’At’+...)) 

and 
ET = -; R2At2 

The explicit method is thus of order At2. 

(1.41) 

(1.42) 
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Stability 

In order to examine the stability of the explicit method, we write the differ- 
ential equation in the basis that diagonalizes the matrix R. In this case, we 
go back to equation 1.38, which we rewrite in the new basis 

x”+l = (1 + wAt)z” (1.43) 

The w will be the eigenvalues of R, this is to say the roots of the Nordheim 
equation 1.28. 

Starting from the initial conditions x0 at time t = 0, the first cycle of 
calculation will give rise to the vector x?, 

x1 = (1 + wAt)s’ (1.44) 

The application of the same operator on L$ will give rise to the second cycle 

x2 = (1 + wAt)z’ (1.45) 

Thus 

x2 = (1 +wAt)(l +wAt)s’ 
= (1 + wAt)*z’ (1.46) 

Continuing this process, we find 

x”+’ = (1 + wAt)“+‘s’ (1.47) 

For example, if we had a negative reactivity, we know that all the w are 
negative, and that we must have a decreasing solution. Therefore. 

11 +wAtl < 1 (1.48) 

which can be written 
-l<l+wAt<l (1.49) 

We replace w by -1~1 to emphasize that all w are negative. 

-l<l-IwjAt<l (1.50) 

The system will be stable if these two inequalities are met. We must examine 
the two possibilities : 1 - IwI At < 1 and -1 < 1 - /WI At 
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Case 1.: 1 - IwI At < 1 

We subtract 1 on each side if this inequality, to get 

-IwlAt<O 

which is always true. 

Case 2 : -1<1-/wlAt 

We subtract 1 on each side of the inequality, 

(1.51) 

-2< -IwlAt (1.52) 

which is 
-IwlAt>-2 (1.53) 

We change the sign by multiplying by -1. We must change the > by a 
< 

IwlAt<2 (1.54) 

or finally 

(1.55) 

There is thus a condition on At to insure stability of the explicit scheme. 

This stability condition 1.55 is very restrictive. The negative roots of the 
Nordheim equations are very negative, and the most negative one is inferior 
to -X0, being around -$. Time steps lower than 10 or 20 milliseconds will be 
necessary to insure stability. 

Calculation Effort 

The explicit method, given in 1.38 needs only a multiplication of the matrix 
AtR by the vector Q” to get the solution at the next time step. From this 
point of view, the explicit method is very simple and requires very little 
calculational effort to put in place. 
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1.5.2 Implicit Method 

In the implicit scheme, we replace the right hand side of 1.36 by R’V’+l, 
(instead of RV as in the explicit method). Thus 

(1.56) 

We group terms in *“+I and in V’ together 

(I - AtR)‘P”+’ = ‘PI” 

and writing * n+l in terms of Q”, 

V+’ = (I - AtR)-‘V’ 

(1.57) 

(1.58) 

Truncation Error 

The truncation error will be 

ET = V+’ - ezp(RAt)V 

and in terms of the implicit scheme, 

ET = ((I - AtR)-’ - ezp(RAt))V’ 

Making the expansions 

(1.59) 

(1.60) 

and 

(I - AtR)-’ = I + AtR + (AtR)2 + (1.61) 

ezrp(RAt) = I + AtR + ;(RAt)’ + 

which we substitute in the trilncation error expression 

(1.62) 

ET = (I -I- AtR + (AtR)’ + .) - (I + AtR-t ;(RAt)2 + .)‘4”’ (1.63) 

Stopping the expansion to terms in (AtR)2 

ET = (I + AtR + (AtR)2) - (I + AtR + ;(RAt)2)V (1.64) 

and finally, 

ET G -;(RAt)2V (1.65) 

Consequently, the implicit method is a method of order At’. Also, the 
&efficient of At2 is $, the same as that of the explicit method. 
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Stability 

Again we use the basis that diagonal& the system. We find 

2’ = (I - fdAp)xO (1.66) 

x2 = (I-cd&)-‘)x’ 

X2 
2 0 

= (I - hIAt)- )x (1.67) 

and after 7~ + 1 intervals the solution wctor is 

xn+’ = (I- w&-(n+‘))xo (1.68) 

We will have a stable solution if 

We must have a method whose solution tends towards 0 when reactivity is 
negative, ie when all w are negative. in this case, --w can be replaced by 1~1) 
which gives 1 

-l< ’ 
l+WAt 

<I (1.70) 

As 1 + IwI At is positive, we can m&ply each member of the previous 
inequality by this factor without changing the inequalities themselves, 

-(l + 1~1 At) < I< (1 + Iw/ At) (1.71) 

We examine in turn each of them: 

Case 1 : -(l + IwI At) < 1 

Subtracting 1 on each side gives 

--!x‘zIAt<O (1.72) 

But the absolute value of Iwl At is always positive because At is always 
positive. Then - IwI At is ahways negative, and the inequality is always 
true. 

Case 2 : 1 < (1 + Iwl At) 
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Subtracting 1 on each side gives 

0 < IwI At (1.73) 

or equivalently 
IwiAt>O (1.74) 

But the value of 1~1 At is always positive, because At is always positive. 
The inequality is thus always true. 

The conditions on stability are thus always verified, and we can conclude 
that the implicit method is unconditionally stable. 

Calculation Effort 

The implicit method, given in 1.58 requires the inversion of the AtR matrix 
to get the solution at the next time step. This matrix can change as the 
kinetics parameters, especially the reactivity, change during the transient. 
The inversion will have to be performed each time. Fr?m this point of view, 
the implicit method is much more calculationally intensive than the explicit 
method. But it has the advantage of unconditional stability, at the price of 
a matrix inversion. 
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Equation (6.3.8) shows that S(ae. the asymptotic one-group absorption cross sec- 
tion for S~I”~, is y” (1.13 pcnmt) times the one-group fission cross section. Thus yNd 

gives a measure of the competition for neutrons between the fission process and absorp- 
tion in SIII’~~ once an quilibrium concentration has been attained. Moreover we see 

that this equilibrium coocentratioa isindependent of the flux level #,. Thus, after a 
reactor has been operating at high power for a month or so, an equilibrium of Sm’49 is 

attained and remains in competition for neutrons for the rest of the lifetime of the core. 
For a low-power reactor the same potential competition exists. However it takes so 

much longer for the Sm“9 ecmcentration to reach equilibrium that, in many cases, its 

effect throughout lifetime is nc$igiik. This fact can be seen from (6.3.6), which shows 
that, if zy0, CC 1” and S(0) = 0, 

s(t) = 9 [I - exp(-~‘O,r)l. (6.3.9) 

If UJ, is, say, 10” neutrons/cm*/scc, exp(-eU~,r) will be close to unity until t exceeds 

IO9 seconds (about 13 years), at which time it will be approximately 0.996. 
After Shutdown from Eqmlibrimm High-Power Operation. If equilibrium conditions have 

been attained and the reactor has then been shut down, the time behavior of Pm”’ and 
Sm”’ is given by (6.3.5) and (6.3.6) with @, = 0 and P(0) and S(0) replaced by the 

equilibrium values (6.3.7) and-(6.3.8). The result is 

(6.3.10) 

where I is now the time after shutdown and Q,(O) is the flux prior to shutdown (i.e., the 

flux associated with the initial equilibrium concentrations of Pm”’ and Smlh9). 
Physically these equations state that the equilibrium samarium present at shutdown, 

y?&,/dy, is augmented by an amount fd&,~,(0)/l’” as the equilibrium promethium 
decays into samarium. This final concentration does depend on the value of Q, prior to 
shutdown, and the inerase in coocmtration will be significant for 

Thus, when CJ, is slightly less than IO”. the concentration of Srnli9 present after shut- 

down is about twice its equilibrium. full-power concentration. After the reactor is turned 
on again, the extra samarium will burn out,and the equilibrium conditions (6.3.7) and 



(6.3.X) will return. Thus. provided the rextor contains enough excess fuel to go critical 

despite the increased absorption in Sm”’ after shutdown, thar extra absorption produces 

no Ixting effects. 
Figure 6.4 shows the behavior of Srnla9 under several trmsirnt conditions. 

The Xc”5 Fission-Product Chain 
From the viewpoint of critic&ty and control, the isotope Xe”’ is the most important of 

all the fission products. It has a hr$ absorption resonance that peaks at E = 0.092 eV 
and results in an aborption cross section of approximately 2.7 x IO6 barns at 0.035 eV. 
Xenon-135 is formed from the decay of iodine-135 (6.7-hour half-life) and is itself radio- 

active (9.2-hour half-life). It is part of the fission chain shown in Figure 6.5, where all the 
decay constants 1.’ are in see-’ and the fission fractions yT’ and y” xc those appropriate 
to thermal fission of U”‘. None of the absorption cross sections in the chain except that 

of Xc”’ are Iarse enoqh to be of any si&ficance. 

The decay of Ts “’ is so fast, and that of CS”~ IS so slow (1.6-million-year half-life), 

that we may asx”me for our purposes that I “’ is formed directly from fission with n 
yield y’ = 0.064 and that the chain ends with the destruction, by /3 decay or neutron 
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Figure 6.5 The Xc”’ Cs&nq&uct chain. 

absorption, of Xc”‘. Thus. ifI(t) and X(f) represent the conce&ations of I”’ and 
Xe”’ at some location ria the reactor, the equations specifying the time dependence of 

these concentrations may k written (with the r dependence suppressed), 

al(r) - 
Jl 

= y’&,uqf) -n(t), 

JX(f) 
- = y?q,@*(t) + l’l(r) - [+D,(t, + LX’] X(r), 

Jr 

where &,, O,(r), and <r M the one-group, macroscopic fission cross section, flux, and 

microscopic absorption cmss section for Xc I”. As with the samaraium chain, we shall 

think of the yields 7’ and 1” as reprexnting averages over the fissionable isotopes present 

at location r and over the energy spectrum of the neutrons causing fission at that point. 
Strictly speaking 4, and 4: arc also time-dependent. However, in the time scale (tens 

of hours) of xenon tt-ansieats. this time dependence may be neglected. (Note, however, 
that changes ofti; with time due to changes in temperature may have a short-term 
effect on the criticality of the reactor. We shall deal with such matters when we consider 

reactor kinetics.) 
For O,(r) constant the solution of (6.3.1 I) is 

I(r) = f$P [I’- up(-l’r)] + l(0) exp( -L’I), 

where y - y’ + u”. 
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A_eai”, we examine what these equations predict about the approach to equilibrium at 

constant flux and the change in xc”“” absorption after shutdown from equilibrium 

operating conditions. 

X(I) following Start-Up. If  a reactor. initially containing no Xe”* or 1”5, is brought to a 

flux level 0,, at time I = 0 and operated at 0, for a long enough time, (6.3.12) shows 

that, asymptotically, the concentrations of I”’ and Xe’15 become 

(6.3.13) 

Equation (6.3.12) also shows that the speed with which this equilibrium state is 

reached depends on i’ = 2.87 x IO-’ xc-’ and on (a:;cD, f  2”‘) = (2.7 x IO-“10, 

+ 2.09 x 10-q set-’ and thus is about IO” set (:30 hr) eve” if ~0, is very small. The 

situation is thus difTerent from the Sm”9 case, for which the speed of approach to equi- 

librium is crucially dependent on Q,. Physically the rexo” for this dilTere”ce is that 

Xc”’ decays radioactively and will thus come into a” equilibrium condition, in which 

the rate of creation of Xc”’ equals its mtc of disappearance, in a time characteristic of 

both its own half-life and that of I”‘. I f  there are neutrons present to add to the dastruc- 

tio” rote of Xe”’ due to radioxtivedecay, X(r) will approach equilibrium fxter. How- 

ever the 6.7-hour half-life of I”’ will limit the speed at which equilibrium conditions are 

rcmhed. Thus 30 hours after startup is a good estimate of the time to reach equilibrium 

conditions for any value ofeD,. 

Another important consquencr of the fact that Xr ‘I5 is radioactive-and another 

chxacterirtic of xenon behavior that differs from xtmarium behavior-is that X(m) is 

flux-dependent. The “equilibrium xenon poison” o:;.V(sl) associated with operation at a 

constmt tlux level eD, is 

For 0, equal to, say. IO “e~trons,krt?/sec, this macroscopic xenon cross section is only 

about 9 x IO-’ &,. Thus. in a reactor at very low power, Xe”’ otTen a “cgliSibie 

competition for neutrons. However. for a”;tD, z L”‘, G;;X(,X) approaches i’Lr, 

(=0.067 IfI). For e~~.mple. for 0, = 5 x IO” neutrons/cm’+, ~l;X(co) = 0.0% &,. 

The rate of absorption of neutrons by Xc”’ I” a thermal reactor operating at such a 

flux level is quite compxable to their nte of absorption in the moderator or structural 

material. As 3 consequence the p- of “equilibrium xenon“ in a high-power thermal 
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reactor has a significant c&t on the critical condition of the reactor. Unless an excess 

of fuel is provided to ~vercomc the poisoning effects of this isotope, it will not be pos- 
sible to maintain criticality for mom than a few hours of full-power operation. 

One of the advantages of fast reactors is that they do not have this problem. The 

energy-dependent microscopic xenon cross section 0, I”(E) is large only in the thermal 

energy region. Hence the onegroup number 02; will be a million or so times smaller if 
it is obtained by averaging over a fast-reactor spectrum. 
X(t) after Shutdown from F.q&ii Operating Conditions. If we insert (6.3.13) for I(O) 

and X(0) in (6.3.12) we find that; when a reactor is shut down to UJ, = 0 after operating 

under equilibrium conditiomduting which the one-group flux at point I has been o,(O), 
the I”’ and Xe”’ concentrations at I behave according to 

where, again, time is mcasuced from the instant of shutdown, so that X(0) of (6.3.15) is 

the equilibrium, preshutdown coacentration X(a) of (6.3.13). 
Equation (6.3.15) shows that f(f) and X(f) both approach zero asymptotically. How- 

ever the time derivative of X(r) evaluated at t = 0 is 

axw - 
Jl t-o 

(6.3.16) 

Thus, if the equilibrium, preshutdorm t&.x CD,(O) exceeds yxeAx’/y’o,:’ (-3 x IO” neu- 

trons/cd/xc), the derivative dX(f)/drl,., will be positive, and A’(f) will at first grow. 
In fact, if the initial equilibrium concentration is high, the net amount of xenon present 

can increase by a factor of two or more before the reactor runs out of I”’ and the net 
concentration of xenon b-&s to decrease. The turnover point depends on the equili- 
brium conditions at location I but generally occurs about ten hours after shutdown. It 
may, however, be necessary to wait 40 or 50 hours after shutdown for the decaying con- 

centration X(t) to return to its initial equilibrium value. 
Figure 6.6 shows the behavior of Xc”’ under various transient conditons. 

6.4 Accounting for Depletion EtTccts h IMathematical Models of Reactor Behavior 
Fuel burnup and the build-up ofnuclei in the reactor resulting from neutron absorption 

arc in principle easily accounkd for in the group diffusion-theory model that forms the 
basis of most nuclear-reactor design computations. One simply determines multigroup 
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cross sections throughout the reactor at the begin&S of a depletion time step from eqw- 

tions like (5.3.6) (or (5.5.8) if the material is not isotopically homopeneous). These may 

be used directly in the multigroup ditTuusion equations of (4.13.7); or they may be used to 

compute asymptotic spectra, via (X3.7). for each composition in the reactor so that the 

spectrum-averaged constants of (5.3.8) and (5.3.9) may be found for use in few-group 

diffusion-theory calculations. They. by solving these group diffusion equations, we can 

determine the spatial dependence of the flux for exh group throughout the reactor. 

These flux shapes are assumed to remain constant throughout each time step, and 

chanses in the concentrations of the important nuclei are found by solving equations 

such as (6.2.6) or (6.2.8). with the one-group reaction-time constants o:(D, replaced by 

the corresponding few-group or mufti,nroup expressions z, a&cDg. With the new material 

concentrations determined in this mzmner for the end of the depletion time step, new 

energy-group parameters are found, and the tandem depletion process is continued. 

In practice a great deal of ingenuity is necessary in making this procedure economically 

feasible. Problems associated with searching for critical conditions, with keeping track of 

the number densities of all the time-dependent isotopes throughout the reactor, and with I 

using large time intervals for the depletion calculations, all require that special strategies 

be developed if the runnin,o time for a depletion calculation is not to become unaccept- 
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