

Desprocf.wpd Figure 3-1 Schematic of CANDU 9 Support System

1

Design of CANDU Reactors

Section A-A for Equivalent Solid Plate Having Same Moment of Inertia I_{XX}

. -

Section of Segment of Shield Tank End Wall used to Compare Edge Fixing Concepts

Comparison of Deflected Shapes and Magnitude for Simply-Supported and Built-In Flat Plates

Desproof.wpd

Figure 3-3

Figure 3-4

Deflections and Stiffness of Built-In End Wall Design

Design of CANDU Reactors

SUMMARY OF <u>DIFFERENCES IN DESIGN</u> - BY RULE - BY ANALYSIS

- MATERIALS
- MANUFACTURING
- INSPECTION
- STRESS LIMITS

BY RULE - 3100	BY ANALYSIS - 3200
- BASED ON MAXIMUM STRESS VALUE	- BASED ON MAXIMUM STRESS INTENSITY
- S _A : HIGHER FACTOR OF SAFETY 5/8 Y.S. OR 1/4 UTS	- S _M : LOWER FACTOR OF SAFETY- MIN. OF 2/3 Y.S. OR 1/3 UTS
- SIMPLE ANALYSIS	- DETAILED ANALYSIS
- SIMPLE SERVICE CONDITIONS	- SEVERE OPERATING CONDITIONS
- LIMITED DESIGN CONFIGURATIONS	- NO LIMIT ON DESIGN CONFIGURATIONS

Figure 3-5 Allowable Stresses for Design-by-Rule & Design-by-Analysis Methods

ł

÷

...

OPERATING CONDITIONS

Figure 3-7

Operating Conditions

OPERATING OR SERVICE LEVELS

NORMAL OPERATION SERVICE LEVEL A AND B

SERVICE LEVEL 'A' AND 'B' LIMITS ARE PROVIDED TO EVALUATE COMPONENT STRESSES AND EFFECT OF SYSTEM OPERATING LOADS ON THE FATIGUE LIFE OF THE COMPONENT (FIGURE 6).

SERVICE LEVEL C OR EMERGENCY

THESE LEVELS ARE PROVIDED IN ORDER TO EVALUATE THE EFFECT OF PLANT OPERATING LOADS ON THE STRUCTURAL INTEGRITY OF A COMPONENT FOR SITUATIONS WHICH ARE NOT ANTICIPATED TO OCCUR FOR A SUFFICIENT NUMBER OF TIMES TO AFFECT THE FATIGUE LIFE AND FOR WHICH LARGE DEFORMATIONS IN THE AREA OF DISCONTINUITIES ARE NOT OBJECTIONABLE. UNDER THIS CONDITION REACTOR IS SHUT DOWN AND THE VARIOUS COMPONENTS ARE INSPECTED FOR DAMAGE AND THE COMPONENTS MAY BE REMOVED FOR REPAIRS

SERVICE LEVEL D OR FAULTED CONDITION

THIS LIMIT IS PROVIDED IN ORDER TO EVALUATE THE EFFECT OF PLANT OPERATING LOADS ON THE STRUCTURAL INTEGRITY OF A COMPONENT FOR SITUATIONS IN WHICH GROSS GENERAL DEFORMATIONS, LOSS OF DIMENSIONAL STABILITY AND DAMAGE REQUIRING REPAIR, EXCLUDING LOSS OF PRESSURE RETAINING FUNCTION ARE NOT OBJECTIONABLE.

REQUIRES SAFE SHUTDOWN.REACTOR AND COMPONENTS MAY BE A WRITE OFF.

DESIGN AND TEST LOADS

SPECIAL LIMITS APPLY TO DESIGN AND TEST LOADS. BUT ONE CAN CONSERVATIVELY CHOOSE TO APPLY SERVICE LEVEL 'A' LIMITS FOR THE DESIGN AND TEST LOADS.

Desprocf.wpFigure 3-8 Definition of Service Level Categories

Design of CANDU Reactors

IN OLD AND NEW CODE					
PRE 1974 CODE	POST 1974 CODE				
LOADING CONDITION	SERVICE LEVEL				
DESIGN CONDITION	CONSERVATIVELY WE CHOOSE TO APPLY LEVEL A				
NORMAL OPERATION	LEVEL A OR LEVEL B				
UPSET CONDITIONS	LEVEL B				
EMERGENCY CONDITION	LEVEL C				
FAULTED CONDITION	LEVEL D				
TEST CONDITIONS	CONSERVATIVELY WE CHOOSE TO APPLY LEVEL A				

SUMMARY OF OPERATING CONDITIONS

Figure 3-9 Service Level Category Definitions before and after 1974

· · · · -

Primary	General Membrane Local Membrane Bending	Average primaryAverage stress acrossComponent ofAverage primaryAverage stress acrossComponent ofstress across solidany solid section.Primary stresssection.Excludesdistance fromdiscontinuities anduities but not concentrations.Producedproduced only bynechanical loads.Produced only bymechanical loads.Produced only bysection.produced only bynechanical loads.Produced only bymechanical loads.Produced only bysection.produced only bynechanical loads.Produced only bymechanical loads.Produced only bysection.produced only bynechanical loads.Produced only byproduced only bynechanical loads.Produced only by	P ^D P	Use Design Loads
	Stress Category	Description (For examples, see Table NB-3217-1)	Symbol	Combination of stress Components and Allowable Limits of Stress Intensities.

Design of CANDU Reactors

.

roprietar	y De	cumen				
	-	Peak	 Increment added to primary or second- ary stress by a con- centration (notch). Certain thermal stresses which may cause fatigue but not distortion. 	6		
	dary	Membrane Plus Bending	Self-equilibrating stress necessary to satisfy continuity of structure. Occurs at structural discontinui- ties. Can be caused by pressure, mechanical loads, or by differen- loads, or by differen- tial thermal expan- sion. Excludes local stress concentrations.	œ	$\frac{1}{(Total Stress)}$	
	Secon	Expansion	Stresses which result from the constraint of "free end displace- ment" and the effect of anchor point from earthquakes. Considers effects of discontinuities but not local stress con- centration. (not applicable to vessels)	e."		litions
		Bending	Component of pri- mary stress propor- tional to distance from centrold of solid section. Excludes effects of discontinul- ties and concentra- tions. Produced by pressure and me- chanical loads, includ- ing inertia earthquake effects.	م ^م		Stress interistices et Operating Cont
	Primary	Local Membrane	Average stress across any solid section. Considers effects of discontinuities but not concentrations. Produced by pressure and mechanical loads, including inertia earthquake effects.	e I	ible Value lated Value ting Loads	3-11 Allowable & Ups
	•	General Membrane	Average primary stress across solid section. Excludes effects of discontinui- ties and concentra- tions. Produced by pressure and me- chanical loads.	e. ^E		Figure
Desproof.w	/pd	, Stress Category	Description (for examples see Table NB-3217-2)	Symbol	Combination of stress components and allowable limit of stress intensitie	

Pro

of CANDU Reactors

	esses (Note 1)	ment added to or secondary stress centration (Notch) sin thermal stresses asy cause fatigue distortion of vessel	F VB-3213.11	uation not Required	r, and rr. VB-3213,22). pressure loadings
	Peak Str	(1) Incre primary by a corr (2) Certi which m but not shape.		ی س ل ل ع	71, 07, 716, 71, 07, 00, 1-2.2 (1
Secondary Stresses (Note 1)	Membrane & Bending	Self-equilibrating stress necessary to tartisfy con- tinuity of structura. Occurs at structural discon- tinuities. Can be caused by mechanical load or by differential thermal axpan- sion. Excludes local stress concentration.	Q NB-3213.9	G C C C C C C C C C C C C C C C C C C C	the six stress components σ_{P} values specified in Table 1-2.1 ination of stress components. uckling stresses (NB-3211(c)) arerials, the P_{m} elestic analys
	Bending	Component of primery stress proportional to distance from centroid of solid section. <u>Excludes</u> discontinuities and <u>concen</u> - trations. Produced only by mechanical loads.	Pb NB-3213.7 & .8	+ P. Note 3 + P. Note 3 + P. Note 3	of six quantities representing the sum of α_1 and yield strangth the solution $\alpha_1 + \sigma_2 + \sigma_3$ for the combined to take into account critical by take into account critical both the rechanical loads. For ferritic methods
rimary Stresses (Notes 1 & 4	Local Membrane	Average utress across any solid secondary discontautions. Produced only by mechanical loads.	PL NB-3213.10	PL NB:3224.2 NB:3224.2 Note 2 Note 2	gle quantitites, but rather sets lower bound theorem of limi three primary principel stresse to <u>stress</u> limits shall be revised e in combination with other π
•	General Membrane	Average primery stress across solid section, Ex- cludes discontinuisies and concentrations. Produced only by mechanical loads.	Pm NB.3213,6 & .8 (Note 5)	The the greater of the values specified	. Q, and F do not represent sin loulated on the basis of the secont the algebraic sum of the compressive stresses occur, th stress resulting from pressiv
- - -	Stress Category	Description (For examples see Table NB-3217-1)	Symbol (Note 1)	eldewollA bre amenoqmod zeards to noitenidmod teatritenatril zeards to atimi J Search and a search and a search a searc	NOTES: NOTES: 1. The symbols <i>Pm, PL, Pb.</i> 2. CL the collapse load ca 3. The triaxial stresses repr 4. For <u>configurations when</u>

Design of CANDU Reactors

Figure 3-12 Allowable Stress Intensities for Level C Conditions

Desproof.wpd

. .

Figure 3-13 Simple Pin-Jointed Truss

Redundant Pin-Jointed Truss

Figure 3-14

Figure 3-16 Finite Element Model for a CANDU Reactor Structure

Seismic Finite Element Model for a CANDU Calandria Figure 3-17

ANSY	\$ 5.	3		
AUG	15 1	997		
12.2	9 . <u>0</u> .			
n		•	~	
55055	NÇ.		7	
ELEY	ENT	SOL	UTICN	ī
STEF	<u>=1</u>			
SUB	=1			
TIME]=1			
CSIN	T	$\langle N \rangle$	OAVG)	ŀ
BOTT	YON:			
DMX	=2.2	06		
SMN	=852	2		
SMX	-590	74		
	034	. <u>.</u>		
	142	239		
a second s	195	155		
San	256	572		
	217	990		
	223			
	5/3	LVO		
	428	323		
النيفينيا.	485	540		
	542	57		
	234	27.4		
	393	774		

Figure 3-18 Graphical Display of Stresses for a CANDU Reactor Structure

Design of CANDU Reactors

ANSYS 5.3 AUG 15 1997 12:29:57 PLOT NO. 10 NODAL SOLUTION STEP=1 SUB =1 TIME=1 UΧ BOTTOM RSYS=1 DMX =2.205 SEPC=26.321 SMN =-.635465 SMX =2.202 -.635465 -.320241 -.005018 .310205 . 625429 .940552 1.255 1.571 1.886 2.202 <u>.</u>

.......

Graphical Display of Deflections for a CANDU Reactor Structure
