

Rosponso Amplitude for a Vibrating Svetem A O

Design of CANDU Reactors

Figure 4-3 Response of a Vibrating Cantilever Beam

. Desprocf.wpd

 $x = x_0 \sin 2\pi ft$ $a = x'' = -a_0 \sin 2\pi ft$ $a_0 = 4\pi^2 f^2 x_0$ or $x_0 = a_0/4\pi^2 f^2$

Figure 4-4 Simple Harmonic Motion

(1) Non-Resonant Response

(2) <u>Amplified Response for Assumed</u> <u>Uniform Response Acceleration</u> (3) <u>Amplified Response for Actual</u> <u>Varied Response Acceleration</u>

Figure 4-5 Displacement and Deflection on a Vibration Cantilever Beam

5

i

ļ

Figure 4-6 Time-History of Typical Complex Vibration

Proprietary Document

Design of CANDU Reactors

ł

1

Output Recording of a Frequency-Spectrum Analyser using filter bandwidth = 1/3 octave

Figure 4-7

Proprietary Document

Design of CANDU Reactors

- \

Desprocf.wpd

Design Response Spectra for Recorded Earthquakes

ſ

Acceleration (gal) 50 00 50 00 20 20 50 20 : 502 30 33 0.4 0.5 2.5 2.0 >> 1.4 1.0 - EL CENTRO - TAFT Near-Field Eq. Far-Field Eq. Intermediate-Field Eq. 0,5 0,5 Period (second) Frequency (Hz) F 7

0

(a) Smoothed envelope curve used for design

2000

Figure 4-9

Proprietary Document

Design of CANDU Reactors

Ĵ,

Desprocf.wpd

:

Figure 4-10 Added Responses for a Simplified Representation of a Complex Structure

(I) ground motion input spectrum

Figure 4-11 Floor Response Spectrum for CANDU 6 Reactor Structure

Design of CANDU Reactors

Proprietary Document

[

Figure 4-12 Structure Schematic of Present CANDU 6 Reactor Assembly

t

Figure 4-14 Seismic Schematic of Present Reactor Assembly - Basic Response Modes and Frequencies

 $f_1 = half-mass mode = 11.7$ Hz, $A_1 = 0.9$ g $f_2 = whole-mass mode - 10.6$ Hz, $A_2 = 1.0$ g

Proprietary Document

Design of CANDU Reactors

(

;

.

Figure 4-15 Seismic Schematic of Present Reactor Assembly - End Shield Response Mode and Frequency

Design of CANDU Reactors

Proprietary Document

· (

:

ı.

1

Figure 4-16 Seismic Schematic of Present Reactor Assembly - Fuel Channel Response Mode and Frequency

 $f_{1} = 7.4$ Hz, $A_{1} = 1.3$ g

Proprietary Document

Design of CANDU Reactors

Ç

ł

Ì

Figure 4-18 Seismic Schematic of Modified Reactor Assembly Basic Response Modes and Frequencies

 $f_5 = 14.9$ Hz, $A_5 = 0.9$ g

Proprietary Document

Design of CANDU Reactors

(

Υ

Straight Calandria Shell & End Shield Shell

4

Ý

Vault End Wall

٠.

• •

Proprietary Document

Design of CANDU Reactor

- Ç

Embedment Ring

Figure 4-20 Seismic Schematic of Straight-shell Reactor Assembly - Basic Response Modes and Frequencies

 $f'_5 = 23.1 \text{ Hz}, A'_5 = 0.89 \text{ g}$

Proprietary Document

Design of CANDU Reactors

1

Desp										•			
DESIGN OPTION	Half-Body Mode		Whole-Body Mode		End Shield Mode		FM/PT Mode		Positioner Assembly End		Non-Positioner Assembly End		CT Stress (Net)
	f ₁	A ₁			f3	A3	f4	A ₄	1.2 Aep	P _{PA}	1.2 Aen	P _{RJ}	
STANDARD CANDU 6	11.7 Hz		f ₂ 10.6 Hz	A ₂	6.6 Hz	6.6 Hz	7.4 Hz		2.25	58100 lb	2.74 g	.70800 lb	Outer 145 Comp
		0.9 g		1.0 8		1.3 g		1.3 g	. B				Inner 1450 Tens
BOLTED BOTH ENDS	n/a		f,	A,	6.6 Hz	1.3 g	7.4 Hz			49100 Ib		63500 lb	Outer 190 Comp
			14.9 Hz	0.9 8				1.3 g	1.90 g		2.46 g		Inner 1080 Tens
STRAIGHT CALANDRIA SHELL	n/a		f's	A',	6.6 Hz		7.4 Hz		: 1.83 g	47400 Ig			Outer 1000 Tens
			23.1 Hz	0.8 g		1.3 g		1.3 g			2.40 g	62300 lb	Inner 2000 Tens σ cal shell= 6000 Comp

1

Figure 4-21 Comparison of Present and Proposed Designs

i

Simply supported beam with a large gap at mid-span at connection to the downstream sub-system

1.4

)

Figure 4-23 Vibration Behaviour of a System with a Gap

(b) Behaviour when response amplitude becomes bigger than gap - beam has 3-point support, coupling it to downstream sub-system

Proprietary Document

Design of CANDU Reactors

Ę