
Principles of Nuclear Safety

<u>Module 4</u>

The 3C's: CONTROL, COOL & CONTAIN

Slide I

Control: Defence Hierarchy1) RRS-normal process control2) Setback-automatic power ramp-down using
normal RRS control devices3) Stepback-sudden power reduction via CA full or
partial drop4) SDS1-sudden, deep shutdown via SA drop5) SDS2-sudden, deep shutdown via LISS

Slide 5

Reacsaf04.ppt

Reacsaf04.ppt

Reactor Regulating System (RRS)

- First line of defence against fuel overheating
- Accepts set point from:
 - Operator in Reactor Leading mode
 - BPC in *Reactor Lagging* mode
- Compares actual power with demanded power
- Manipulates reactivity mechanisms to reduce power error = actual power - demanded power
- If RRS impaired, unit <u>must</u> be put in GSS to prevent Loss of Regulation Accident (LORA)

Slide 6

What if Fuel Cooling is Inadequate?

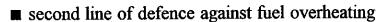
- Fuel overheats
- Fission product gases released from ceramic
- gas pressure increases inside sheath
- sheath softens as temperature nears melting point
- sheath balloons & ruptures
- fission products released into coolant

Slide	3

Reacsaf04.ppt

וחחח

Basic Requirements to Maintain Fuel Integrity

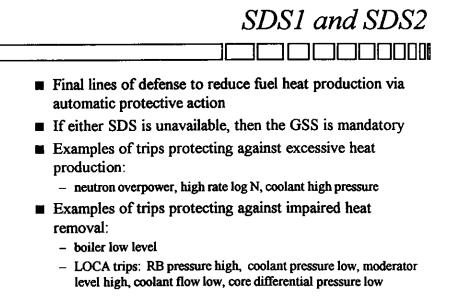

u fuel heat production \leq heat removal

- Heat production = fission heat + decay heat
- Fission heat is proportional to neutron power Pn
- Decay heat production depends on core power history
- Even if Pn is off-scale low, need heat sink for decay heat

temperature well below melting point

- Primary and back-up heat sinks must always be available

Setback and Stepback


- various parameters monitored by each system
- fuel heat production is reduced when
 - operating limit reached indicating actual or potential mismatch between heat production and removal

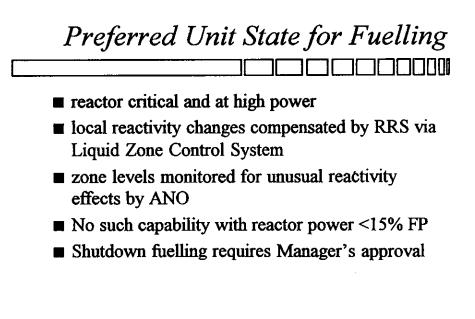
Examples:

- Boiler pressure high (setback some stations)
- Boiler level low (setback backed up by trip)
- High Rate Log N (stepback backed up by trip)

Slide 7

Reacsaf04.ppt

Control Room Neutron Power Indication


							_	
- F	- 14							
			. 1					
						1		
					 	4	 	
		_		_	_		_	

Required at <u>all</u> times to confirm:

- during normal operation, that neutron power is within heat sink capability
- during accident conditions, that neutron power is responding predictably

Slide 9

Slide 10

Factors Affecting Fuel Cooling

Under Operator control:

- Reactor thermal (fission + decay) power
- coolant inventory
- subcooling/saturation margin to dryout
- coolant flow
- heat sink availability and capability

```
Slide 11
```

Reacsaf04.ppt

Primary & Backup Heat Sink Availability Requirements

- Primary & backup are an OP&P requirement

 total loss of heat sink results in fuel failures
 <u>Exception</u>: no backup <u>full power</u> heat sink available
- Backup *independent* of primary
 - including the power supply
 - single equipment failure cannot disable both
- O&M planned to keep backup heat sink available
- seismically qualified heat sink (except PNGS-A)

Slide 12

Containment

- last line of defence against releases
- If CONTROL and COOL fail, resulting in fuel failures, public safety depends absolutely on CONTAINment integrity
- barrier to chronic and acute tritium releases

Slide 13