Principles of Nuclear Safety

#### <u>Module 7</u>

## LICENSING PRINCIPLES & SAFETY ASSUMPTIONS

Slide 1

#### *Risk* = *Frequency X Consequences*

- Therefore, for a defined limit of risk, the more serious the consequences, the lower the tolerable frequency of occurrence
- This concept can be shown on a graph of frequency versus consequences

### Frequency vs Consequences Diagram



Stide 3

## Basic Requirement on License Applicants

- To provide evidence that public dose risks are within licensing limits
  - chronic risks due to normal operation
  - acute risks due to nuclear accidents
- Licensing limits apply to both frequency and consequences
- The Utility completes a Safety Analysis and publishes the results in the Safety Report

## Siting Guide

- An AECB document
- Defines limits of acceptable risk to Public:
  - due to chronic and acute (accidental) releases
  - serious process system failure frequency (<1/3y)

-

- Special safety system unavailability (<10-3)
- individual & population dose limits for single & dual failures

Slide 5

### Siting Guide Limits on Public Risk

| Operating Condition                                                                                         | Maximum<br>Frequency | Individual Does Limits                     | Population Dose Limits         |
|-------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|--------------------------------|
| Normal operation                                                                                            | Continuous           | 0.5 renn'y whole body                      | 104 man-remly                  |
| Serious process<br>system failure<br>(single failure)                                                       | 1 per 3 years        | 3 rerrity to thyroid*                      | 104 thyroid-renny              |
| Serious process system failure<br>coincident with a failure of a<br>special aafety system<br>(dual failure) | 1 per1,000 years     | 25 rem whole body;<br>250 rem to thyroid** | 10° man-rem<br>10° thyroid-rem |

#### Additional Siting Guide Requirements

- Each Special Safety System tested to <u>demonstrate</u> Q < 10<sup>-3</sup>
- Independence amongst SSSs themselves, and between SSSs and process systems, to prevent failures from escalating
- Failure rate estimates based on real operating experience
- Design & maintain to ASME, ANSI & CSA codes & standards
- Life cycle QA program per CSA standards

Slide 7

### Consultative Document C-6

"Requirements for the Safety Analysis of CANDU NPPs"

- An evolution of the Siting Guide
- Used for licensing Darlington
- Defines 5 classes of failures
  - to the Siting Guide's 2 classes--single and dual
  - corresponding to 5 regions of acceptable public risk on the frequency-consequence graph
  - class 2 and 5 events correspond roughly to single and dual failures, respectively

#### Why is Change Approval Necessary?

- > Changes can have unintended impact on Nuclear Safety
  - due to unforeseen effects on other systems,
  - due to impaired capability under abnormal conditions
  - due to unanalyzed configuration
- Management Supervisors can authorize minor deviations to procedures
- Otherwise, minimum level to approve changes is SS
- Manager approves jumpers to Special Safety Systems
- AECB approves changes affecting safety analysis assumptions

Slide 3

# Why must Changes be Procedurally Controlled?

- ► to facilitate good configuration management
  - ➤ ie, consistency between actual field conditions and those described in the licensing documents
  - ie, between the *real* plant and the *paper* plant
- ➤ to preserve the integrity of the safety analysis
  - ➤ ie, to ensure changes do not invalidate the safety analysis, nor compromise design intent
- ➤ to ensure compliance with legal codes & standards

#### SS's Concerns when Approving Changes

- ► Will the change give the desired result with minimal risk?
- Will it affect the 3C's (including abnormal conditions)?
  - $\succ$  complies with OP&Ps? PROL?
- ► Are operating instructions adequate?
- ► Do staff need retraining?
- Are tests/verifications specified to ensure that the change will meet performance expectations?
- What notifications are required?
- > Have the necessary reviews & approvals been obtained?

Slide 5

#### CRO Change Control Responsibility

- ► to log the change, and include it in shift turnover
- ➤ to become familiar with any new operating requirements
- ➤ to inform SS of any concerns--eg, unexpected operational effects

| Event<br>Class | Event Frequency<br>(Occurrences<br>per reactor-year) | Individual Do<br>Whole Body rem | se Limit<br>Thyroid rem |
|----------------|------------------------------------------------------|---------------------------------|-------------------------|
| 1              | > 10 <sup>-2</sup>                                   | 0.05                            | 0.5                     |
| 2              | 10 <sup>-3</sup> to 10 <sup>-2</sup>                 | 0.5                             | 5                       |
| 3              | 10 <sup>-4</sup> to 10 <sup>-3</sup>                 | 3                               | 30                      |
| 4              | 10 <sup>-4</sup> to 10 <sup>-5</sup>                 | 10                              | 100                     |
| 5              | < 10 <sup>-5</sup>                                   | 25                              | 250                     |

## C-6 Limits of Public Risk

Slide 9

# Siting Factors affecting Licensing

- Demographics affects population dose for a given release
  - population density
  - land use (residential, industrial, park land...)
- Meteorological conditions affect public dose due to chronic emissions
  - prevailing wind direction
  - average wind velocity as a function of direction
  - precipitation pattern
- Seismic stability affects risk of common mode incidents
  - DBE qualification of key process & safety systems

## The safety Analysis

Includes: -Safety Report

-Safety Design Matrices -Probability Risk Assessments

#### Demonstrates to AECB that plant design

- meets serious process failure frequency < 1/3y
- meets individual & population dose limits for single & dual failures

Slide 11

Safe Operating Envelope

- Defined by the safety analysis assumptions
- Embodied in the OP&P
- To operate outside of the SOE is to operate in a state which has not been analyzed to be safe, and violates the Operating License

#### Examples of Safety Analysis Assumptions

- 1) HT lower isotopic limit
  - limits fuel channel void coefficient
- 2) HT I-131 inventory limit
  - limits public thyroid dose in event of LOCA via boiler tube rupture
- 3) Reactivity banking limit
  - limits effect of diluting moderator poison during in-core LOCA
- 4) Reactivity mechanism configuration

- ensures adequate SDS protection

Slide 13

## Safety Design Matrices

- Developed in late 1970's to refine Siting Guide approach, accounted for...
  - more event combinations, including human error
  - widely differing event frequencies
  - cross-link failures--eg, safety support systems
  - common mode events
- Event tree for each Design Basis Accident
- Event tree terminated when safe state reached, or when frequency < 10<sup>-7</sup>

## Prababilistic Risk Assessments

- Developed mid 1980's
- Still more comprehensive accounting for...
  - initiating event combinations
  - human reliability
  - validation of assumptions
- Quantify both public and economic risk
  - Estimated Darlington annual public dose risk (rem/y) due to accidents was less than that due to normal emission targets, and annual economic risk (costs of repairs and replacement power) were a small fraction of annual operating costs

Slide 15

SS Responsibilities re Safety Analysis

- know the limitations on the validity of the safety analysis
- continually confirm that plant is operating within those limitations

# The Power Reactor Operating License (PROL)

- Issued by the AECB
- Contract between the Utility and AECB as to how the station will be operated
- Specifies about 20 generic conditions under which the license is granted

Slide 17

## Generic Conditions of PROL

- Comply with the OP&P
- Secure access to fissionable material
- AECB to authorize Key positions
- Maintain minimum complement
- Maintain & drill emergency procedures
- Limit bundle, channel & reactor power

## Generic Conditions of PROL II

- SDS trip set points fixed at approved values
- Radioactive emissions monitored & controlled
- Obey all relevant Provincial laws
- AECB to approve all uses of exclusion zone
- Maintenance standards to be rigorous
- Actions on Utility completed expeditiously

Slide 19

## Generic Conditions of PROL III

- Test to substantiate claimed system reliability
- AECB to approve SSS changes
- AECB to approve changing nature of hazards
- AECB to approve fuel design
- Report plant performance per R-99
- Maintain records--O&M, tests, SERs
- Keep register of all licensing documentation

# Licensed Staff Positions

- Operations Manager
- Production (Generating Units) Manager
- Engineering Services Manager
- Senior Health Physicist
- SS/SOS/ANO on shift

Ensures key personnel have appropriate knowledge, experience and commitment to operate safely

Slide 21

### Minimum Complement

Provides capability to:

- 1. Operate plant safely under normal conditions
- 2. Perform emergency response operations credited in the safety analysis
  - event diagnosis, manual initiation of NPC...
  - execution of AIM procedures
  - execution of radiation emergency procedures (notifications, search & rescue, off-site surveys, public dose projection, ...)