Lubomir Zikovsky, Nuclear Engineering Institute Ecole Polytechnique of Montreal

Radioactive waste management Definition, Oregon legislatur

Definition, Oregon legislature: burial of radioactive materials; <recognized by regulatory authorities> risk to health, isolation from the biosphere, excludes routine releases, Ra, 'de minimis' below regulatory concern (BRC)

RW problem: scope, decay, volume: 1% of toxic waste, NY: barge 3100 tons of garbage-NC-gulf of Mexico-NY, incineration; NIMBY

LLW 1986:60000 m3=30000 t, HLW:8 km2 site, LLW site for 1 Mm3:0.8 km2

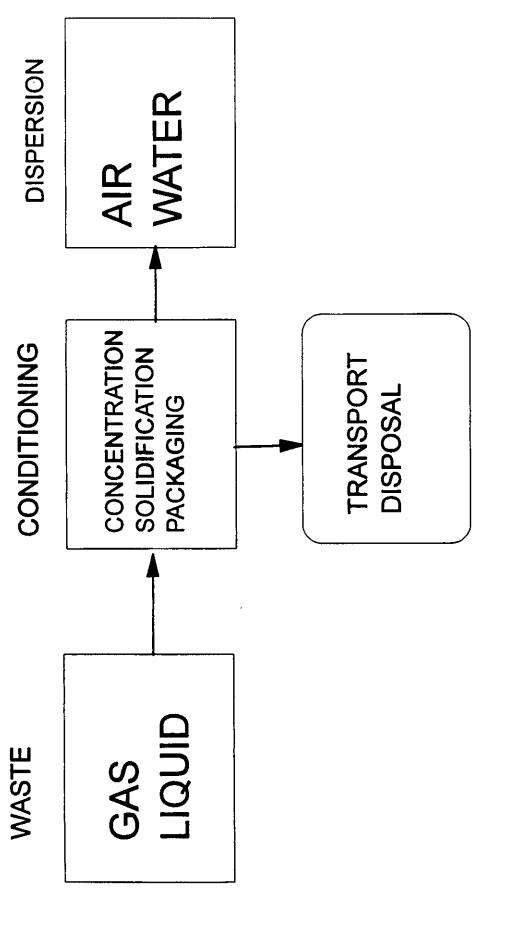
NYS garbage = 15 Mt/y; Hazard: decay, Pb, As, Hg

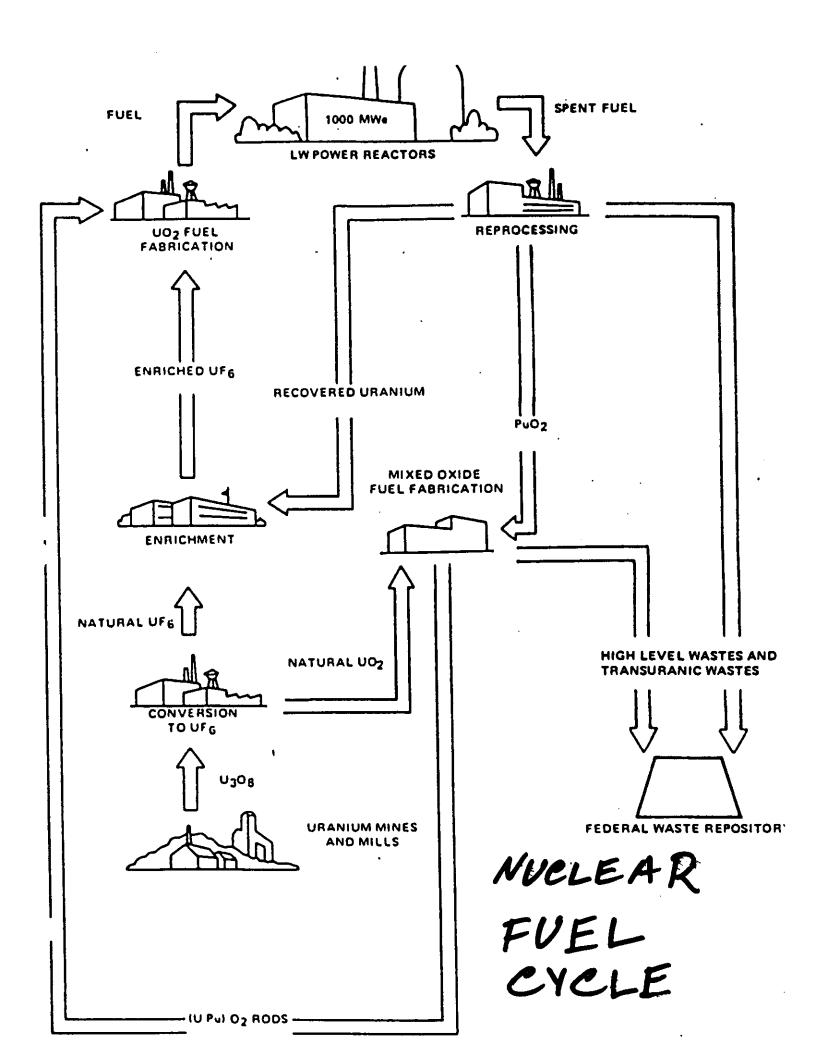
Basic management principles*: disposable/dispersible form, immobilisation of RI, storage, transport, safe disposal; conditionning: stability + resistance, leaching, \$

Classification: activity, phase, source, lifetime, property, designation; confusion, communication, US Standard Institute: MPC; premises: health +

safety

Solid RW: France - 200 mr/h at 0 m, 10 mR/h at 1 m, Japan : 1,0.001, 0.000001 mcCi/cm3, Sweden: activity/container; premises : composition, specific activity, treatment, handling, transportation; problems : mixtures, detection, errors, criticality > 4 categories R/h 0.2, 2 alpha : mcCi/ml


Liquid RW: low, medium, high; high in Poland = low in UK = medium elsewhere > 5 categories mcCi/ml: 1E-6, 1E-3, 0.1, 10


Gaseous RW: total activity, atmospheric diffusion, ALARA > 3 categories mcCi/ml: 1E-10, 1E-6,

Category	gas	liquid	solid	treatment
1, BRC	<1E-10	<1E-6	<0.2 R/h	no, dischargé
2, low	1E-10 1E-6	1E-6 1E-3	0.2 - 2 R/h	simple
3, medium	>1E-6	1E-3 0.1	> 2 R/h	conditioning
4, high	-	0.1 - 10		+ shielding
5, ?	-	> 10		++ cooling

Forms + sources : many, HLW, LLW, TRU, tailings; nuclear fuel cycle*, industry: radiopharmaceutical, consumer products; Institutions : RI, medical, Co-60, Tc-99m, C-14,

BASIC PRINCIPLES OF MANAGEMENT

vials, 10 Ci/y, academic, BRC

Mines: U, Sn, phosphates

HLW in the US: 10 CFR P-50/A-F: HLW = extraction solvent, 1981 HLW = spent fuel + PUREX, no reprocessing*, Carter, storage tank* Spent fuel*: hot (6 % Mwth, FP+AP, TRU) + radioactive, cooling, shielding, fission and activation products, decay

Commercial HLW in US*: West Valley, NY, 2000 m3, 3 Mci, West Valley, PUREX, THOREX, liquid + sludge

Defense HLW in US: bombs + propulsion reactors, Hanford, SR, INEL, low RI concentration, large volume

TRU in US: Np-237, Pu-239, Am-241, Cm-243 231000 m3, 2636 kg, 3693 kCi, 87 kW <100 nCi/g TRU=LLW ore, >100 nCi TRU=TRU 40 CFR P-191, Np-239, remote handling

Generation of RW: characteristics > disposal

Reactor LLW: BWR: 2043 m3, 15 kCi; PWR:

1166 m3, 7 kCi

Other LLW: H-3, C-14, Tc-99m, Mo-99

TABLE 2-1 Radioactivity and Thermal Power (in watts) in Spent LWR Fuel per One retric Ton of Uranium in Fresh Fuel

	Years after Discharge		
	0	2	5
Radionucli	de Content (curies)	
Important Activation Products		4	
14Cb	6.6×10^{-1}	6.6×10^{-1}	6.6×10^{-1}
55Fe	2.0×10^{3}	1.2×10^3	5.2×10^2
⁶⁰ Co	6.3×10^{3}	4.8×10^3	3.3×10^3
63Ni	5.5×10^2	5.5×10^2	5.3×10^2
⁹⁵ Zr	2.8×10^{4}	1.2×10^1	1.0×10^{-4}
Total Activation Products	1.4×10^5	6.7×10^3	4.3×10^3
Important Fission Products			3.9×10^2
³ H	5.1×10^2	4.6×10^2	
⁸⁵ Kr	1.1×10^4	1.0×10^4	8.3×10^3
⁹⁰ Sr	7.8×10^4	7.5×10^4	6.9×10^4
¹⁰⁶ Ru	5.3×10^5	1.3×10^5	1.7×10^4
¹²⁹ I	3.7×10^{-2}	3.7×10^{-2}	3.7×10^{-2}
¹³⁷ Cs	1.1×10^{5}	1.0×10^{5}	9.6×10^4
Total Fission Products	1.4×10^8	1.2×10^6	4.8×10^{5}
Important Transuranium Products			0.0 103
²³⁸ Pu	2.7×10^3	2.8×10^3	2.8×10^{3}
²³⁹ Pu	3.2×10^2	3.2×10^2	3.2×10^2
²⁴⁰ Pu	4.7×10^2	4.7×10^2	4.7×10^{2}
²⁴¹ Pu	1.0×10^5	9.4×10^4	8.1×10^4
²⁴¹ Am	8.4×10^{1}	4.0×10^2	8.0×10^2
²⁴⁴ Cm	2.2×10^3	2.1×10^3	1.8×10^3
Total Transuranium Products	3.8×10^7	1.0×10^{5}	8.7×10^4
Thern	ial Power (watts)		
	1.0×10^{6}	5.9×10^3	2.1×10^3

Source: (DOE 1980b).

^{*}Calculated with the ORIGEN code for PWR fuel irradiated to 33,000 MWD/MTU at a specific power of 30 MW/MTU.

Based upon 2.5 ppm nitrogen (by weight) in UO₂.

Figure 2.5 Metallic swarf stripped off Magnox fuel elements as a first step in reprocessing. Such fuel cladding debris can constitute one of the highest activity intermediate level waste streams. Reproduced by permission of UKAEA

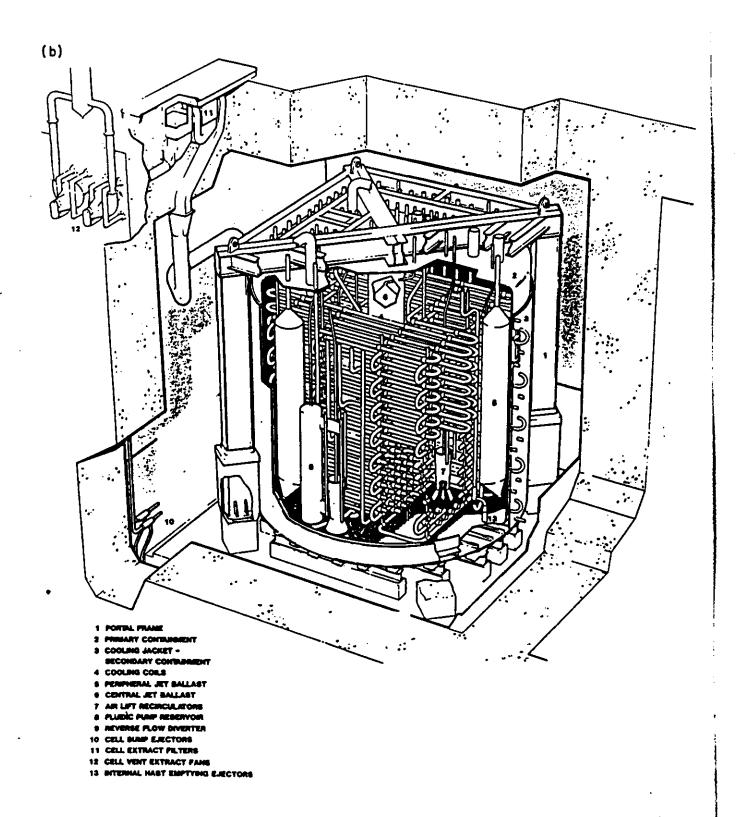


Figure 2.4(b) Diagram of the internal equipment of a liquid high-level waste storage tank. Reproduced by permission of British Nuclear Fuels plc

Decommissioning RW: 1 GW > 5000 - 15000 m3, options: dismantlement (5 y, 40 M\$, 11700 m3), mothballing (6 M\$ + 80 k\$/y), encasement >10 m3/MW, 1 kCi/MW

Medical RW*: Tc-99m, I-123, In-111, I-125, Co-57, Yb-169 T>28 d, 14.6 m3, diagnostic (imaging - scintigrams, tumour detection) 12 M/y; H-3, C-14, P-32, S-35, I-125, 235 m3, research (in vitro radioassays 100 M/y) 50% of papers + 40 % of grants, WUMC 9 Ci/y; Co-60, Y-90, P-32, I-125, Cs-137, Ir-192, 0.1 m3 therapy (injections, sealed sources) 400 k/y

RW inventories in the US*:

Radiotoxicity*: low, medium, high, effective half-life, type of emitter, energy, ingestion/
Laws and regulations: AEA 1946, NEPA 1969
(CEQ,EIS,EPA), ERA 1974 AEC=ERDA+NRC,
EOA 1977 ERDA=DOE, LLWPA 1980, NWPA
1982 (0,1 C/KwH), LLRWPAA 1985, NWPAA

Regulations on LLW: NRC 10 CFR P-61 classes: BRC, A, B, C (inadvertent intruder), >C

TABLE 1-1 Summary of Radioactive Waste Inventories as of December 31, 1980

Waste Type	Volume (ft³/m³)	Activity (Ci)	Thermal Power (W)
	High-Level Wa	ste (HLW)	
Defense	1.3(7)/3.7(5) ^a	1.4(6)	4.4(6)
Commercial	8.2(4)/2.3(3)	3.1(6)	9.1(3)
Spent fuel	2.1(5)/6.0(3)	1.6(10)	5.9(4)
Spenie raei	1.4(4) metric tons		
•	heavy metal		
	Transuranic W	aste (TRU)	
Retrievably stored			
CH ^b	1.7(6)/4.9(4)	2.9(6)	7.6(4)
	<i>\''</i>	1.8(3) kg	
RH ^b	4.8(4)/1.4(3)	4.7(5)	4.5(3)
		4.0(0) kg	
	Low-Level W	aste (LLW)	
DOE sites	8.1(7)/2.3(6)	1.2(7)	1.7(4)
Commercial	4.3(7)/1.2(6)	4.6(6)	3.6(4)
Active	3.2(7)/9.0(5)		
Closed	1.2(7)/3.1(5)		
Remediation	3.3(6)/9.5(4)	No	ot available
	Uranium M	ill Tailings	
Active sites	3.6(9)/1.0(8)	N	ot available
Remediation	3.7(7)/1.1(6)	No	ot available
	Phosphogyp	sum Wastes	·
Gypsum piles ^c	1.04(9) metric tons	N	ot available

Source: DOE/RW-0006, Rev. 3, "Integrated Data Base for 1987: Spent Fuel and Radioactive Inventories, Projections, and Characteristics," September 1987.

Table 4. Low-Level Radioactive Waste Disposal Costs, Washington University, 1984

Category	Method	Unit Cost	Annual Co
Dry Solids	Burial	\$1.00/lb	\$ 59,000
5 ,, 5	Incineration	\$0.80/lb	1,000
Absorbed Liquids	Burial	\$40.00/gal	228,000
Scintillation Vials	Burial	10.5 cents/vial	63,000
and Contents	Incineration	3.5 cents/vial	16,000
Animal Carcasses	Burial	\$2.25/lb	14,000
			\$ 381,000
		+ Labor Cost	28,000
		Total Annual Cost	\$ 409,000

Table 5. Forms of Low-Level Radioactive Waste, Washington University, 1984

	Annual Quantity		
	Weight (lbs) (%)	Volume (ft ³) (%)	Activity (Ci)
Dry Solid	61,000 (28%)	2,200 (25%)	2.80 (30%)
Absorbed Liquid	71,000 (32%)	3,100 (35%)	5.80 (62%)
Scintillation Vials and Contents	78,000 (35%)	3,100 (35%)	0.31 (3%)
Animal Carcasses	11,000 (5%)	500 (6%)	0.47 (5%)
Total	221,000 (100%)	8,900 (100%)	9.38 (100%)

Toxicity of radioelements

High

Pa-231, Cf-249, Th-Nat, Pu-239, Pu-240, Pu-242, Th-232, Pu-238, Ac-227, Th-230, Np-237, Th-228, Am-241, Am-243, Cm-243, Cm-245, Cm-246, Cf-250, Cf-252, Cm-244, U-232, Ra-226, Ra-228, Sm-147, U-Nat, Nd-147, U-238, Pu-241, Pb-210, U-230, U-233, U-234, U-235, U-236, Cm-242, Th-227, Po-210, Ra-223, Sr-90

Medium: group A

Ra-224, Pa-230, Bk-249, i-129, Eu-154, Ru-106, Ce-144, Bi-210, At-211, Na-22, Co-60, Ag-110m, I-126, I-131, Cs-134, Eu-152(13 ans), Cs-137, Bi-207, Pb-212, Ac-228, In-114m, Sb-124, Ta-182, Cl-36, Sc-46, Sb-125, Ir-192, Tl-204, Ca-45, Mn-54, Y-91, Zr-95, Sr-89, In-115, Cd-115m, Te-127m, Te-129m, I-133, Ba-440, Tb-160, Tm-170, Hf-181, Th-234.

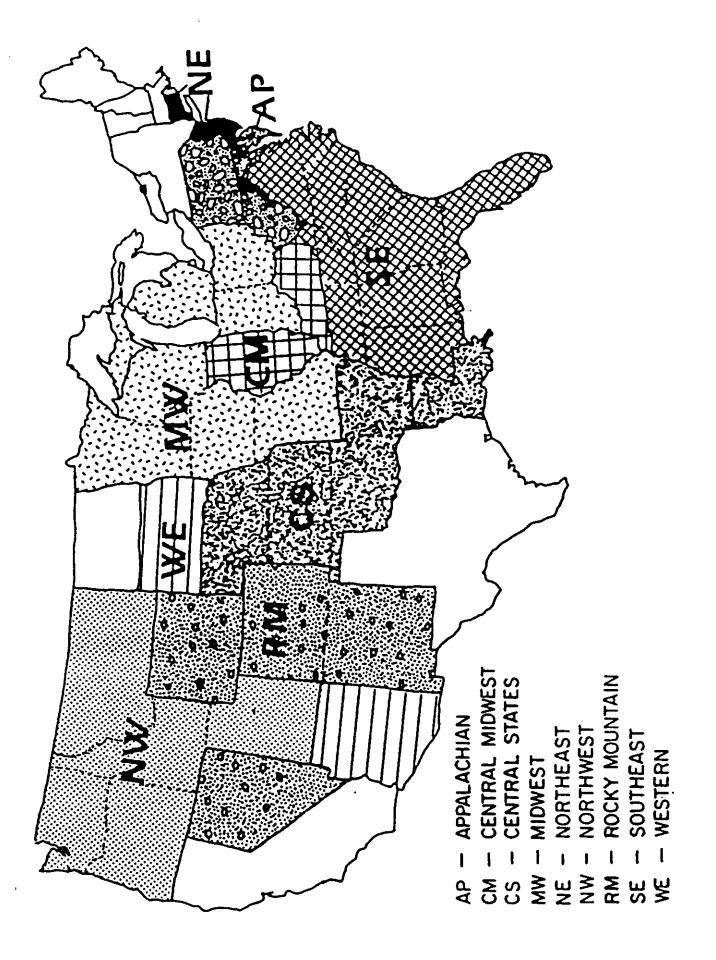
Medium : group B

P-32, V-48, Fe-59, Co-58, Ni-63, Zn-65, Rb-86, Rb-87, Tc-99, Cd-109, Sn-113, Pm-147, Sm-151, Os-185, Hg-203, As-76, Y-90, Zr-97, Nb-95, Ru-103, Ag-105, Sn-125, Cs-135, Eu-155, Gd-153, Bi-212, K-42, As-74, Se-75, Sr-85, Nb-93m, Zr-93, Te-125m, Te-132, I-135, La-140, Tm-171, W-181, W-185, Na-24, Sc-48, Mn-52, Y-93, Tc-97m, Sb-122, Ce-141, Pr-142, Re-183, Ir-194, Bi-206, Ca-47, Co-57, Ga-72, Br-82, Cd-115, Te-131m, Cs-136, Pr-143, Ho-166, Re-188, Pa-233, Mo-99, Ce-143, Dy-166, Tc-96, Ag-111, I-132, Nd-147, Pm-149, Re-186, Au-198, TI-202, S-35, Sr-91, Os-143, Zn-69m, As-73, As-77, Sr-92, Y-92, Tc-97, Pd-109, Ba-131, Sm-153, Eu-152(9h), Gd-159, Er-169, W-187, Os-191, Ir-190, Pt-193, Rn-220, Rn-222, Sc-47, Mn-56, Ni-59, Ni-65, Kr-87, Ru-105, Rh-105, I-134, Er-171, Yb-175, Lu-177, Re-187, Pt-191, Pt-197, Au-196, Np-239, Si-31, Fe-55, Pd-103, Te-127, Au-199, Hg-197m, TI-200, TI-201, Be-7, Ar-41, Cu-64, Hg-197, Th-231, Nd-149, Ru-97, In-115m, Pb-203, CI-38, Dy-165, Cr-51, F-18, C-14, Kr-85m, Te-129, Xe-135, Cs-131.

Low

H-3, Zn-69, Ge-71, Nb-97, In-131m, Cs-134m, Pt-193m, Pt-197m, Tc-99m, Co-58m, Kr-83, Xe-133, Os-191m, Xe-131m, Y-91m, Sr-85m, Tc-96m, Rh-103m, Ar-37

boundaries = f(T, SA), H-3 40 Ci/m3 A-B, Cs-137 4600 Ci/m3 >C; site licence 20 - 30 y, monitoring 100 y, protection 500 y, interstate compacts*


Regulations on HLW: 10 CFR 60: risk, safety, multiple barriers, performance objectives, geologic stability, population, ressources, retrivable for 50 y, inert waste, 300 y security, groundwater 1000 y, release < 0.001% of inventory, safety assessment, cumulative releases*

Environmental standards: EPA: 40 CFR, NRC, fuel cycle, public 25/75/25 mrems; 40 CFR 190: air emissions (Ci): Kr-85 50000, I-129 0.005, Pu-239 0.0005; 40 CFR 191: groundwater (pCi/l) Ra 5; 40 CFR 192: tailings Rn 20 pCi/m2, Ra 5 pCi/l; Bellow regulatory concern: CFR 30.14-30.19, 1 mcCi of Co-60 5 mcCi Cs-137, 0.05 pCi/g H-3 + C-14

Releases for 10,000 Years

	Release
•	Limit per
	1000
	MTHM or
•	Other Unit
Radionuclide	of Waste (Ci)
Americium-241 or -243	100
Carbon-14	100
Cesium-135 or -137	1,000
Iodine-129	100
Neptunium-237	100
Plutonium-238, -239, -240, or -242	100
Radium-226	100
Strontium-90	1,000
Technetium-99	10,000
Thorium-230 or -232	10
Tin-126	1,000
Uranium-233, -234, -235, -236, or -238	100
Any α-emitting radionuclide with a	
half-life greater than 20 yr	100
Any other radionuclide with a half-	
life greater than 20 yr that does not	
emit α particles	1,000

Source: (EPA 1985).

Interstate compacts for low-level waste disposal. The states without shading have not ioined a compact. (Courtesv of *Nuclear News*. American Nuclear Societv.)