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A
%Clin Used Fuel -

o 36CI anses froin — 350! impumy in fuel (n,gamma)
~ pure beta emitter |
- half life 300,000 years

X Ohlorrne impurity levels | |n Zr/2. 5 Nb pressure tubes measured to be from 1t0b
| ppm_. . . P ,

° Typrcally Cl impurrtres in fuel have been assurried to be negligrble or <5 ppm
(typrcal detection Ilmrt) A C ,




36C] Release with CANDU Fuel Burnup

0.045 * e(0.02“[Bumu.pj)". p
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THE DISPOSAL VAULT ENVIRONMENT

NATURAL CONDITIONS
GROUNDWATER CHEMISTRY

Cl  5000- to 50000 ppm
pH 6 to 9
REDOX OXYGEN FREE - MILDLY REDUCING

INDUCED CHANGES -
BENTONITE BUFFER - 1 TO 3 MPA SWELLING PRESSURE
- DIFFUSIVE MASS TRANSPORT
- ENTRAPPED O, IN PORES

DECAY HEAT - T = 8§0:- 100°C AT 100 YR
= 40 - 70°C AT > 1000 YR

GAMMA RADIATION - PRODUCTION OF RADICAL AND
MOLECULAR OXIDANTS AND
REDUCTANTS (< 500 YR)



Uranium Solubility (mol « L)
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w Increase in Potential -
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REDOKX CHEMISTRY OF WO,
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PREDICTED DISSOLVTION RATES
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Log (Dissolution
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Log (Corrosion Rate / {microg/d.cm**2))
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Composition
and Microstructure
of the Metal

Corrosiveness of
the Groundwater

Properties of the
Materials Around
the Container

Presence
of Stress

Corrosion

Product or

Deposited
. Films




Determine susceptibilities
to specifics corrosion
processes

Determine detailed
imechanism of important
corrosion parameters

-

Measure values of
important modelling
parameiers

Conservative assumptions |

to cover uncertainties

ORI I
P - Fadfurs:
UETHID Tt & ;

BESIGH

A er e

Multicomponent tests to
define important variables

-

Establish mathematical
framework for a predictive
model

Variability accounted
for in parameter
distributions

Predictions of the
distribution of container
failure times
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‘Container Surface Temperature (°C)

250 —-~----- } .
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THE RADIATION FIELD ON THE
OUVTSIOE OF THE CONTRINER
DEPENDS ON THE DESISN AND
MATERIAL OF CONSTRUC TION

TITANICH ~ GHELL PRACKED - PRRTICULRTE
CONTRINER 7

6. 38 mme THICKNESS

/ ~ SO 63./1"

COPPER — SHELL PRACKRED-
PRARTICOLPATE CONTRINER

AS. Fmm THICKNESS
~ It 6’91/. A

DUVAL - SHELL COPPER / CARBON
STEEL CONTRINER

2s. +mm Cu THicaNESS
GE. Omm CS THICKENESS

-~ ~ 028 Gy AT

a)
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Table 1. General characteristics of candidate
materials for nuclear waste containers

Corrosion-allowance Corrosion-resistant
materiais materials -
Thermodynamically Thermodynamically
unstable inwater and/or  unstable in water but
oxygenated water. protected from
: comosion by the
presence of a protective
oxide.’
Possess measurable . General corrosion rates.
rates of general negligible in warm
corrosion inwam saline  saling vault
vault environments. environments.
Inability to form May be susceptible to
pretective oxide films localized corrosion
reduces their processes (e.g., pitting,
susceptibility to crevice corrosion,
localized corrosion stress-corrosion
processes. cracking).
A thick-walled A thin-walled container
container may be may suffice.
required. '
Development of a Development of a
model to predict model to predict
container failure times container failure times
relatively simple. difficutt.
Use of cheap materiais Materials inevitably
possible. expensive, but less
, material required.
Examples Examplos
irons, carbon steels, Stainless steels,
copper and copper nickel-based alloys,
alloys titanium alloys




80Cu-20Ni
90Cu-10Ni

Corrosion
Allowance

Copper mm

I-Bronze mal

i:":}i L

.08  -04
Potential (V vs. SCE)




Categories of Materials Studied

@ Iron and Carbon Steels
Copper and Qopper Alloys
Stainless Steels

Nickel-Based Alloys

Titanium Alloys



Iron and Carbon Steels

Uniform Corrosion

Rates (80°C to 100°C)
- 2to0 30 pm-a™

Model Predictions (Marsh)
- 15t0 97 pm-a’

Pitting k
- could occur in initially oxidizing vault
- estimates vary widely {2.2 mm to 166G mm)

Stress Corrosion Cracking
- avoidable with stress-relief heat treatments

Microbial Corrosion
- likely, but nutrient limited

Hydrogen Production
- will occur under anoxic conditions
- consequences difficult to evaluate



Copper and_ Copper Alloys

(Canada, Sweden)

Uniform Comrosion

Susceptible to corrosion under aqueous oxidizing conditions but
stable in non-oxidizing aqueous enwronmen’s providing
sulphide is absent

1. Rates
- High in aerated enwronments
(200 decreasing to 15 pm-a™)
2. Mechanism

- Detailed mechanism, well defined

- Corrosion rate is determined by the adsorptiory/
Transport properties of the compacted clay

- Oxidant can be oxygen or sulphide
- Analog supportt - bronze cannon buried in Baltic Sea

sediment (310 a) and Swedish copper lightning
conductors buried in soil (60 - 80 a)

3. Pitting
- Generally not observed under vault conditons

- Cond|t|ons for which pitting is possible (coexistence of
cul, cu' solids in the presence of oxygen) will initially
exist



4. Microbially Induced Corrosion

Not expected to be significant when radiation fields
are high

Sulphides, produced by the action of SRBs at a
distance from the container could eventually be
transported to the container surface and enhance
corrosion by making Cu reactive to water

5. Modeliing

A mcedel based on uniform corrosion and an extreme
value statistical analysis of pitting data, for
pemanently oxidizing conditions predicted container
lifetimes of 31 000 a to 10° years (container wall
thickness 25 mm)

more realistic models based on deaerated conditions
with and without sulphide corrosion indicate lifetimes
> 10° years



Natural Analogues for Copper

Uniform Corrosmn <

Bronze cannon %]
submerged in seabei '
sediments for 316a

, o L IT

Pitting
Cu pipes and Bronze-Age artifacts
buried for perieds of up to 3000 years

A e

% 2-14 yr

Proposed Mechanism

Cu(ll)

O,, Fe(il)

) CUCI A CuCl(

....... H-, Fe(Ill)
CuCl W

L R L CuCl; < 03! F'(")
I,‘:.ac ...n:‘-.'::z:

o ﬂ OH", Fe(lll)
o }} Cu(ll)

N P

Maximum pit depth per unit area for
different exposure periods

2 3
Maximum pit depth(mm)



STAINLESS STEELS

Likely to be susceptible to localized corrosion processes
such as pitting, crevice-_cOrrosion and SCC in the initially
oxidizing saline environment expected in a Canadian vault.



NICKEL ALLOYS

Materials Selection

@® Good phase stability, materials can be designed for
specific environments
@ Hastelloys C4, C276 and Inconel 625 most studied

Uniform Corrosion

@ Rates « 1pym-a™ for aerated and deaerated conditions
at T<100°C .

Localized Corrosion

@® Not susceptible to pifting or crevice corrosion
below_ ~100° under vauit conditions

@ Tests on susceptibility to crevice corrosion and
SCC were inconclusive

Influence of Radiation

@ Susceptibility to pitting increased significantly in
the presence of gamma radiation (102-10° Gy-h™).
This Is particularly evident in highly saline brines.



TITANIUM AND TITANIUM ALLOYS

Ti-2 (commeicially pure)
Ti-<12 (0.8 Ni 0.3 Mo)
Ti-7 (0.2 Pd)

Ti-16  (0.05 Pd)

Uniform Corrosion

® Insignificant («0.1 pm-a™)
Localized Corrosion

@ Not susceptible to SCC, MIC or pitting but could be susceptible to
hydrogen induced cracking (HIC) under oxidizing saline vault
conditions

@ Resistance to crevice corrosion and the accompanying
susceptibility to HIC increases in the order

Ti-2 < Ti-12 « Ti-7, Ti-16
The last two alloys appear immune
@® Radiation suppresses crevice propagation and induces

repassivation

@ Lifetimes of >10° years achievable for Ti-12, Ti-16



Titanium is a passive material protected by a strongly
adherent, chemically inert passive film.

Potentlal vs. SHE (V)

Titanium
| 1 1 ] 1 | |
-2 0 2 4 6 8 10 12 14
. pH

1. General corrosion rates extremely slow

2. Not susceptible to many modes of corrosion under
anticipated vault conditions including
* pitting
» stress corrosion cracking
 microbiaily induced corrosion

3. May be susceptible to
* crevice cormosion
« hydrogen induced cracking
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