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REVIEW OF INDUSTRIAL CORROSION PROBLEMS
IN SALINE ENVIRONMENTS

Conditions when corrosion problems expected are well understood.
CREVICE CORROSION

e For Ti-2, high temperatures (>70°C) and/or low pH (<3) required

e Conditions inevitably continuously oxidizing

e At flanges or under certain gasket materials

o In heat exchangers at tube-to-tubesheet joints, under salt deposits,
in the presence of hydrolyzable salts (e.g., Mg, Ca, Zn, Al chlorides)

o Not observed under biofilms or antifouling paints
e Problems avoided by selection of Ti-12 or Ti-7 (0.2wt.% Pd)

PITTING

e Not failure'process in seawater applications

e Observed in hot salt evaporators for T > 130°C

e Shallow pitting when embedded Fe particles present
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SEAWATER APPLICATIONS

Titanium is fully resistant to natural seawater regardless of chemistry
variations and pollution effects.

Corrosion rates (over 20 a) <<0.3 um-a’

**(Similar rates measured for Ti buried in soils)

Since 1959, Ti-2 has become the material of choice for heat transfer
applications

‘o Wall thickness steadily reduced from 1.24 mm to 0.7 mm

o Not one failure has been reported in this application over 35 a of
service

e 120,000 km of welded Ti tube used in seawater-cooled power plant

condenser service with no reported failures due to seawater corrosion
in25 a

e 15,000 km of welded Ti tube used in Japanese desalination plants
(since 1974)
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SEA WATER APPLICATIONS

¢ 6,000 tonnes (last 10 years) of welded tube and tube plate
used in Japanese power plant condensers

o Fatigue strength and toughness of titanium are unaffected by
seawater exposure

¢ Lean Ti alloys (e.g., Ti-2, Ti-12) are immune to SCC in
seawater

e Various test exposures of titanium alloy samples In the sea
for periods as long as 20 years have demonstrated lmmumty
to microbially induced corrosion despite extenswe micro-
and macrogrowth on metal surfaces
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MICROBIALLY INDUCED CORROSION

¢ “The resistance of titanium alloys to MIC in operating systems
and laboratory experiments has been repeatedly demonstrated.”
(5 references). B.J. Little et al. (Corrosion 93; paper 308)

¢ A review of the literature and service experience fails to reveal a
single titanium alloy component failure related to MIC. This
record exists despite its extensive use in plate/frame and shell-
tube heat exchangers, vessels, pumps, valves and piping
systems handling highly biologically active processes and raw
cooling water streams over the past 30 a......”

e Various test exposures of titanium alloy samples in the sea for
- periods as long as 20 years have demonstrated immunity to
attack despite extensive micro- and macrogrowth on metal
surfaces.”

R.W. Schutz (Materials Performance 30, 58 (1991))
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EFFECT OF WELDING ON THE
CORROSION OF TITANIUM ALLOYS

e The welding of Ti-2 and Ti-12 is a common and
well-established process with QA procedures for
producing qualified welds

e Poor welding of Ti-12 can change the
microstructure and precipitate intermetallics, but
these changes are not detrimental to the corrosion
performance of the weld or the heat affected zone

e Susceptibility to HIC is reduced by welding, partly
due to an increased randomization of the
microstructure in the heated zones
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Crevice Corrosion is the most likely localized Corrosion
process under Disposal Vault Conditions

NN 05705 e
T
Hydrolysis / .
Acidification -Cl'in
Oxyge-n . 4/ Praton -RO:;Y gte-en
feduction Titanium Reduction T

9*:" Hydrogen

"Absorption

-~

-
-----------

Passive < A-ctive > Passive

Factors Controlling Crevice Corrosion

— Vault Temperature
— Availability of Oxvgen
— Groundwater Salinity
— Materials Propeﬁies

Container failure is assumed to occur when the
crevice corroded front exceeds the corrosion
allowance. Then, mechanical integrity is assumed to
be lost and the container will collapse er buckle.
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QEPENDENCE OF THE CREVICE CORROSION
CORRENT FOR Te¢—-2 ON TEMPERATURE
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Assessment of Container Lifetimes |
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The second possible Localized Corrosion Process
is Hydrogen - Induced Cracking (HIC)

e Hydrogen
o \'\lftj’on

. Hydrogen
Ti Hx Precipitation
_ —_—
H20 Crack
Propagation
[H] > [H¢]
H2

o Hydrogen absorption rapid under acidic
crevice conditions.

e Hydrogen absorption slow or negligible
under passive conditions.

Crack propagation occurs when the concentration

- of hydrogen in the metal is greater than the
critical amount ([H¢]) required to make the
material susceptible to HIC.

The container is then assumed to fail rapidly,
since tensile stresses are assumed to be always
sufficient to drive crack growth.

MP96-028.4



THE CRITICAL HNYDROGEN CONCENTRATION IS DETERMINED
USINE SLOW STRAIN RATE TESTS ON COMPRACT TENS/ION
SPECIMENS PRELORDED TO R ANOWN HNYDROSGEN LEVEL.

STRESS

OUCTILE
RUPTURE

STRAIN

BRITTLE
FRACTURE

EIS 74.10

Stress Intensity Factor, K —»

Fast
Fracture

No Failure |

Hl.

Hydrogen Concentration -——»

THE FRACTURE TOUOSHNESS OF Ti-2 (Ano T¢-127) ARe
NOT SIGNIFICANTLY RAFFECTED ONTIL THE KYOROGEN

CONTENT EXCEEOS A CRITICAL VALUE,

Clarke et al. CoORR. scl.

36, 487509  19%4).
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‘Criteria for Failure by Hydrogen Induced Cracking
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be Susceptibl

Determined by Corrosion
Testing and a Model for Crevice
and Uniform Corrosion

Time Since Emplacement

Since Crack Growth Rates could be
fast and difficult to predict, we assume
Failure occurs as soon as the material
becomes susceptible

— )
: Stre..s Crack Growth
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The measurement of corrosion penetration rates
is a widely accepted procedure in determining
lifetimes of corrodible structures and fitness for

service guidelines.

o statistical analyses of pit depths.

e measurement of crack growth rates. |

e This approach has been peer-reviewed in many
publications, conference presentations and international
workshops. '

¢ A model based on the inability to initiate crevice corrosion
has been developed for Ti-16.(0.06 wt % Pd), and is
referenced in the Vault Model Report.



A Totally Independént Procedure has Been
used to check our Model Predictions

Development of a Damage Function

1200
1000 -
800 -
600 -
400 -

0.27 mol-L"* NacCl
200 -

o 100°C
I | 1
500 1000 1500

Time (hours)

Viaximum Depth

Increasing Time

The Form of this Damage Function is common to many materials
~— Pitting of Copper

—— Underdeposit Corrosion/
Pitting of Carbon Steel

—— Pitting of Stainless Steel
MP96-028.9



Predictions of Container Lifetimes using
a Damage Function approach are consistent
with those of the Vault Model

antainer
imension
(mm)
|_WallThickness 'K -~ |
6 =
| __Corrosion Allowance W&~ |
4 o

T
102 1 102 10* 10°

Time Since Emplacement (years)

Lifetimes
- Predictions from 1200a - 7000a
- Vault Model
%%%% Predictions from 350a - 230000a
T Extrapolated Damage
Function at100°C
— ‘Depth of penetration when

all the O2 available in a borehole
has been consumed
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Evolution or vauit conaiuons

The Potential Corrosion Scenario
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Physical Layout of Disposal Room
Buffer Containers

Light Backfill Excavation
. Damage
Dense Backfill Zone
Buffer
Plugs

Concrete

Excavation

Point Source Damage Zone
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MECHANISHM FOR TME CORROSION OF COPPER NUCLERR WRSTE
CONTAINERS IN COMPRCTED BUFFER HNTERIAL

IN CONTACT
WITH Oy~ CONTRINING CHLORIDE SOLUTION
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CORROSION TESTS 1N _COMPACTED BUrFER.
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CURKOUSION OF COFPFPER CONTRINERS
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The rate of consumption of oxygen for the in-room
Emplacement Configuration has been calculated using
a one dimensional representation of the
layers around the container

Major

. | ’
Excavation | Sparsely
Fracture

Disturbed Fractured
Zone Rock

@ @ @

Backfill

Ll T T T T ——

0.0020
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0.0008 —

[02(aq}] (mol/dm3)

0.0006 -

0.0004 -

0.0002 -
0

0.001 0.01 01 1 } 10
Distance (m) 670 years

{Calculation for 75°C; oxidation of
organic material not included)
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PREDICTED CORROSION POTENTIRAL AND
CORROSION CUORRENT,

<0.30 100
-0.35 E23umea?t
-0.40
<0.45
i &
? 050 £
% 3
o -0.55 =
ur i
-0.60
-0.65
0.70 2 PR | N el 1 P | M M | " N 1 0-6

0.01 0.1 1 10 100 1000
t(a) -

— (Intform Corroscon effectivel. é/v S afir
{ #0,_ mgame; Fk
— . Mazx wall penefration -~ 38,..», (IO"VQ

— Subsequent corrosion oue fo traces of o
‘n ﬁroandm#r ncy(yc'éle a,ofo /O"ymr:.-

— £ << Ep, En; ,oc'téc'qg should not
CORR oceer,

TOTRL CORROSION RLLOWANCE REQUIRE
FOR (0Cycars CONTRAINMENT .‘f 7».,..0

CONTA!NER ODESIEN WALL THICANESS &Smm,



Uniform corrosion

11umr

Pitting

Extreme-value statistical analysis

Max. pit depth after 10%a:
6.0mm

Iotal wall penetration

o <ITmm

Container lifetime
>10%

All O, trapped in vault (27 mol/container),
evenly distributed as Cu(l) over container

170pm
Pitting

Pitting factor of 5

Pit depth 0.85mm

Total wall penetration

<2mm

Container lifetime

>10%s




Evolution of Vault Conditions and Predicted
Qpn‘t_aine(._ Ljfetimes
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