Natural Realm

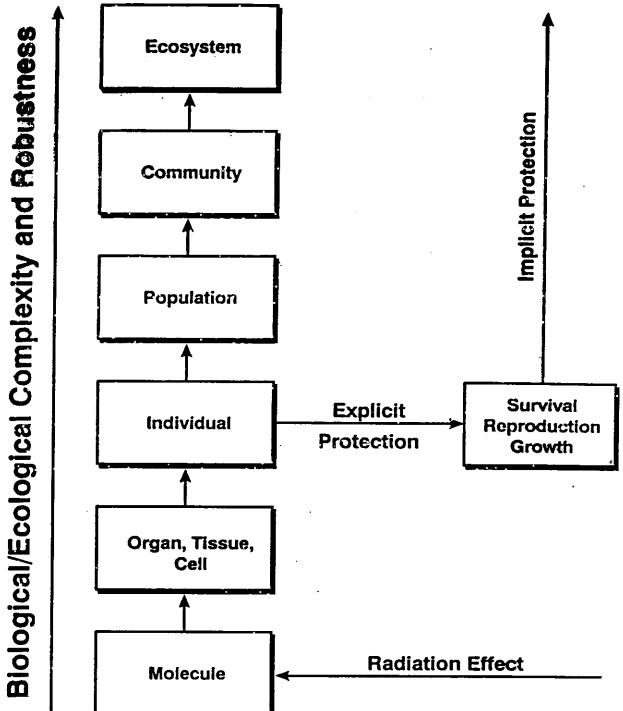
Intrusion

Complex food chains

Burrowing

Bioturbation

Issue of what to protect


Protection of the Environment

To demonstrate environmental protection we have developed and applied a hierarchical screening methodology.

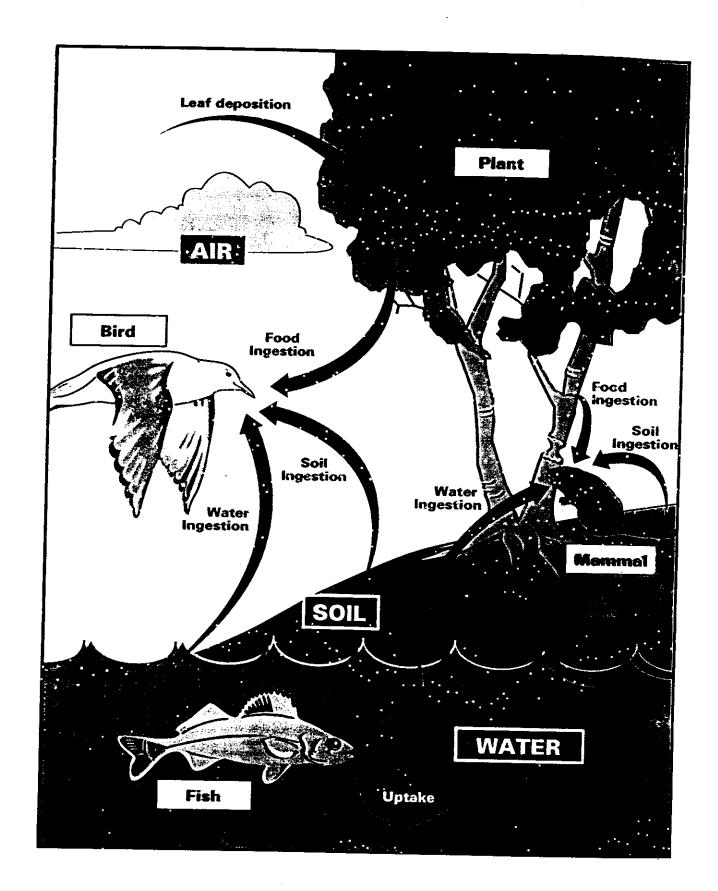
The methodology examines effects on:

- 1. Humans
- 2. Abiotic environment
- 3. Generic organisms
- 4. Specific organisms or species

(RZ (31

Generic Organisms

We use generic organisms because:


- A variety of such organisms can be defined
- Each generic organism can include many individual species and general biological characteristics

NIT

- Generic organisms can be supported by pooled databases
- Evaluation of the disposal concept is generic

Generic organisms selected:

- Fish
- Terrestrial plant
- Bird
- Mammal

e う

.....

Radiological Dose Rate and Consequence

Dose Rate Range Consequence

.100.Gy a¹

10 Gy-a¹

1 Gy a⁻¹ 10,1Gy a¹

10²Gy a¹

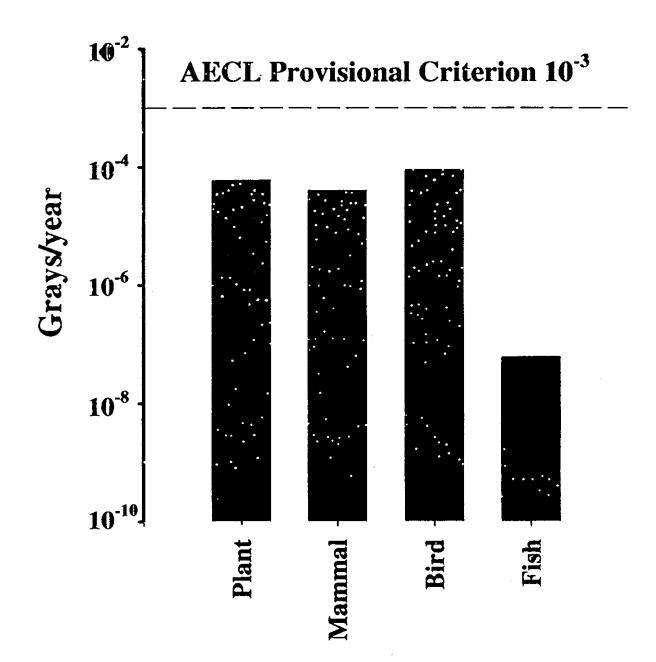
10⁻³ Gy a⁻¹

0²Gya¹

And the second second

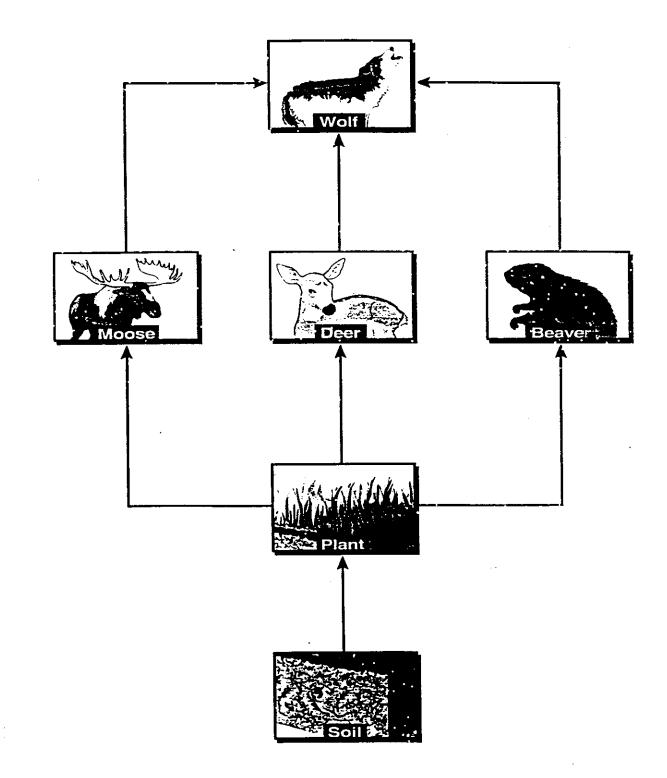
Some organisms affected, effects increase with increasing dose

Potential subtle, chronic effects.


Range of natural background dose rate to a wide variety of plants and animals.

Much below background dose rate; effects unlikely, and not detectable.

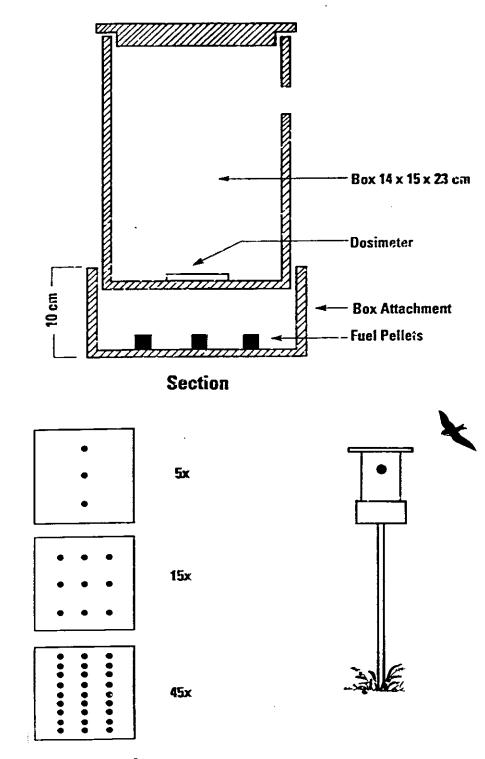
DOSES TO GENERIC ORGANISMS


RZ 15

Maximum dose in 100,000 years

EIS Case Study Including Chlorine-36

RADIONUCLIDE TRANSFER STUDY OF A BOREAL FOOD CHAIN



A

Summary

- We have developed and applied an environmental assessment methodology appropriate for assessing the disposal concept.
- Results show there would be no significant radiological effects on plants and animals.

TREE SWALLOW RADIATION-EXPOSURE EXPERIMENT

Plans of Box Attachment

	Ra	Radiation Treatments			
Dose rate (mGy/h)	1.0	3.0	9.0	0.2	
Number of nests	13	15	11	17	
Clutch size	5.8	5.0	5.1	5.2	
Hatching success (%)	97	88	87	93	
Fledging success	99	88*	98	99	
Body mass 15 d (g)	22.4	23.6	23.4	23.3	

BREEDING PERFORMANCE OF TREE SWALLOWS

* P<0.05

Atomic Energy Control Board Risk Criteria for Humans Corresponds to about 2.5% of the Natural Background Dose or 0.005 µGy/h.

RADIONUCLIDE TRANSFER IN A NATURAL FOOD-CHAIN

Concentration Ratio (CR) for Cs-137

CR = Plant Conc. (wet)/Soil Conc. (dry)

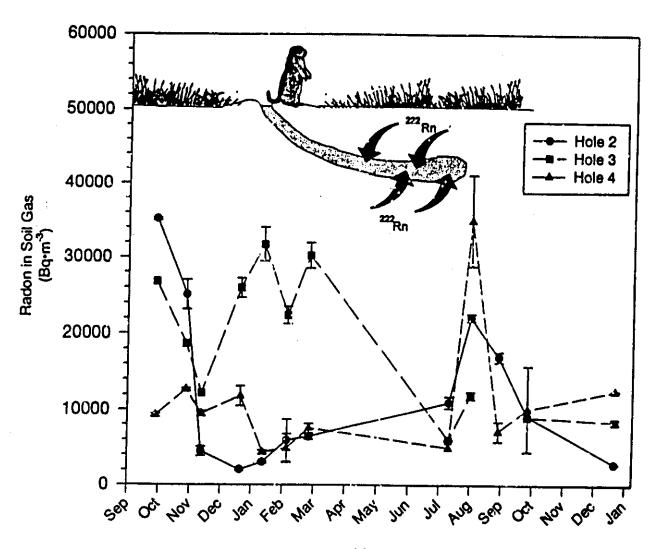
0	Soil Types	Clay Peat Sandy	$\begin{array}{r} 0.057 \pm 0.01 \\ 0.027 \pm 0.00 \\ 0.224 \pm 0.06 \end{array}$
0	Plant Species	Willow Dogwood Balsam Fir	

o Generic Value

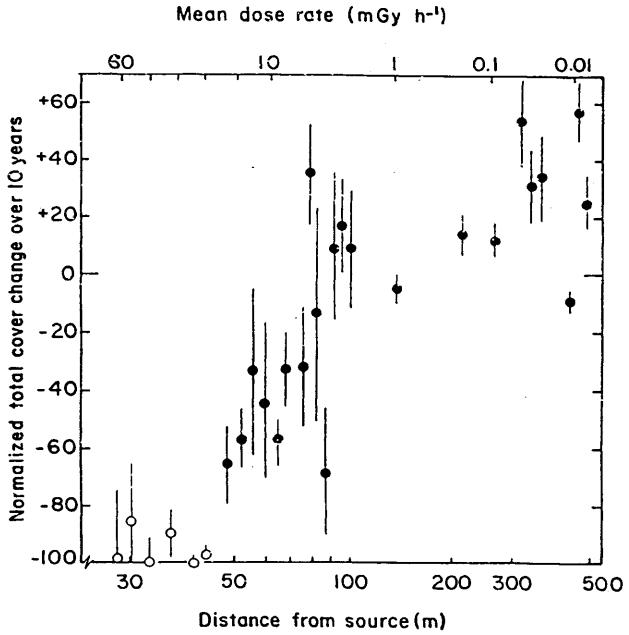
0.08

0 112.

Transfer Coefficient (TC) for Cs-137

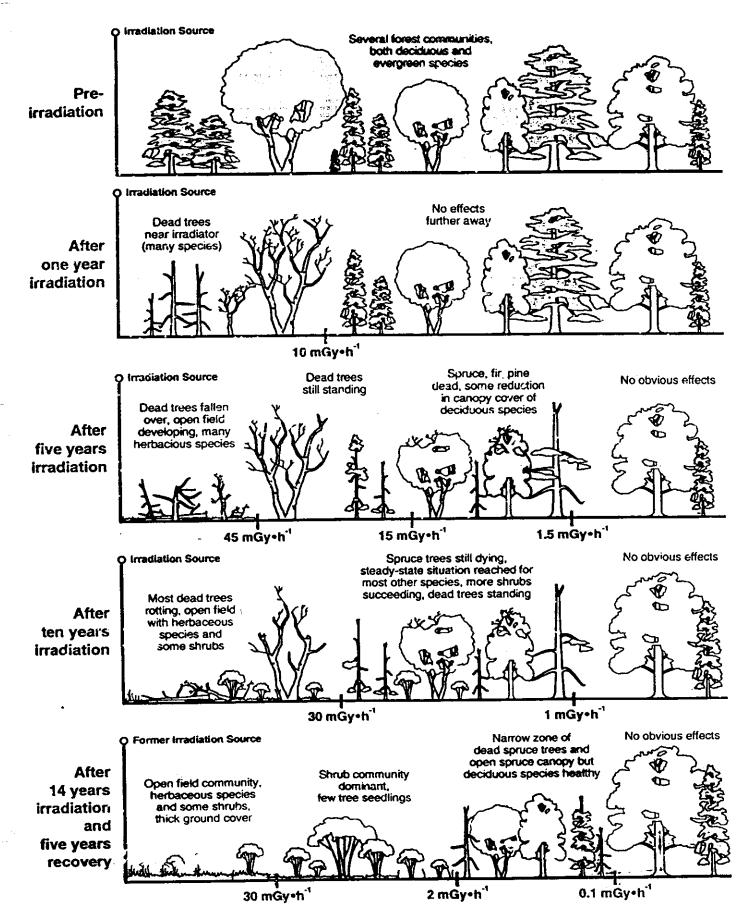

TC = Flesh Conc. (Feed Come Seed Intake) o Moose Deer Beaver 0.08 to 0.22 0.08 to 0.22 0.26 to 0.68 1 to 2.33

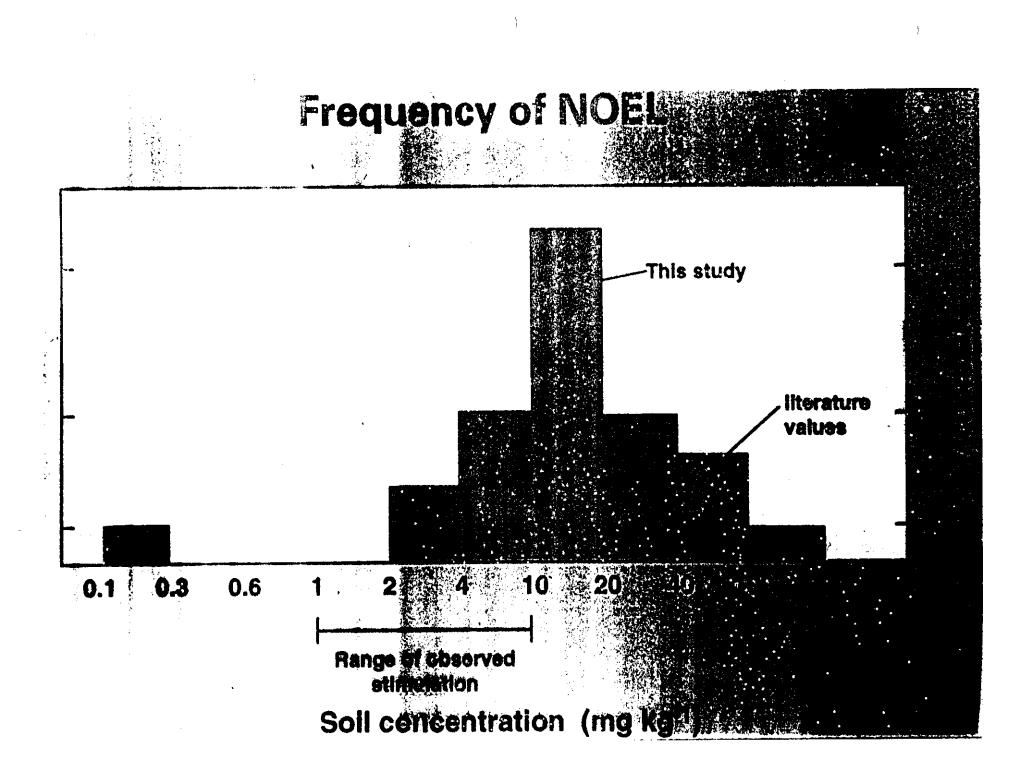
o Generic Value


and the second of the

. . . .

ł



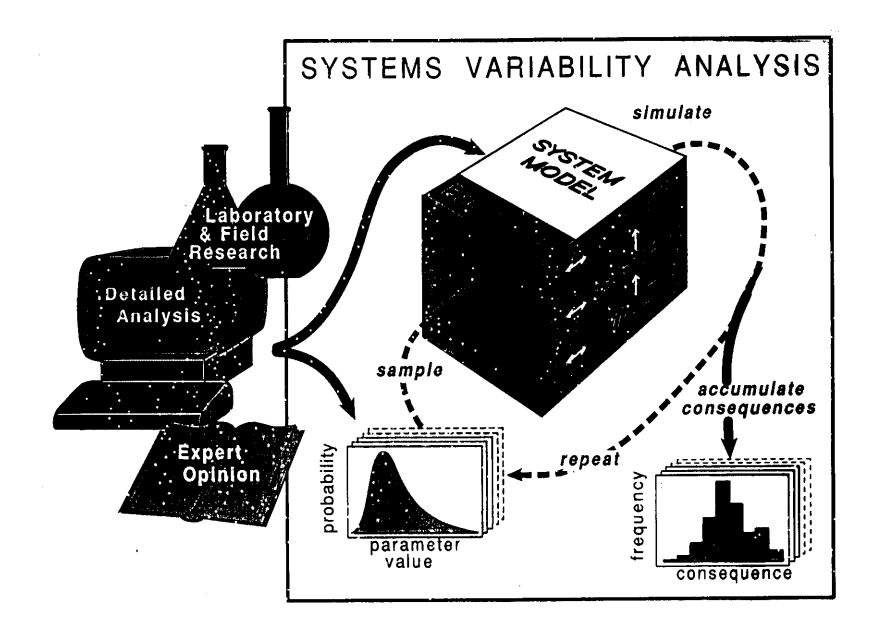

Month

いった、ころろうでもないないなどをあるないものになったの

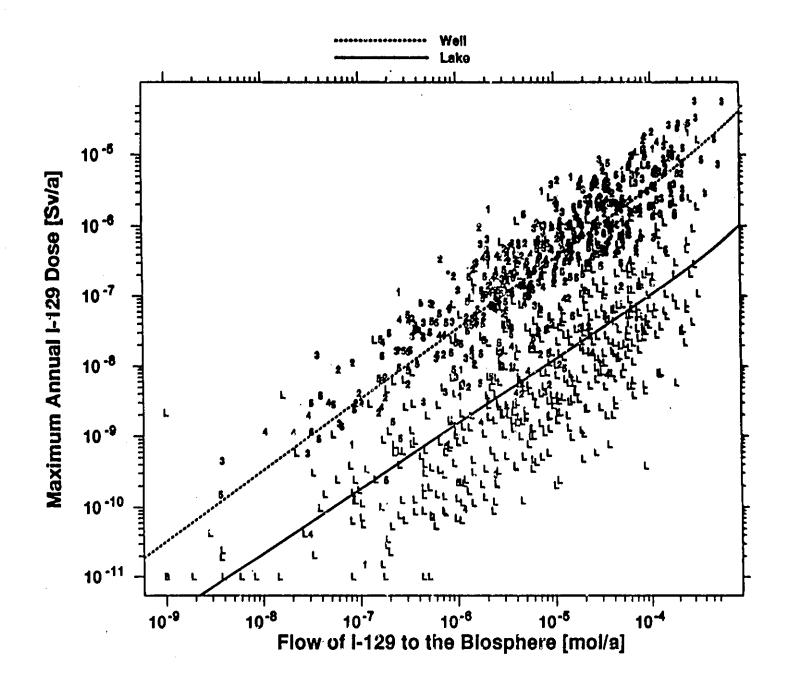
いい、おおいのいたいないため、あっていたいないとうないです。 いい

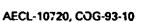
Toxicity of Iodine, Iodide, and Iodate to Daphnia magna and Rainbow Trout (Oncorhynchus mykiss)

M. J. Laverock, M. Stephenson, C. R. Macdonald


AECL Research, Whiteshell Laboratories, Pinawa, Manitoba, ROE 110, Canada

Received: 29 September 1994/Revised: 21 February 1995


Abstract. The acute toxicity (96-h LC₅₀) of aqueous stable iodine species (I^-, IO_3^-, I_2) to rainbow trout and Daphnia magna were measured at three individual concentrations of hardness, total organic carbon, and chloride. Rainbow trout were most sensitive to I_2 (LC₅₀ ≥ 0.53 mg/L), and much less sensitive to IO_3^- (LC₅₀ \ge 220 mg/L) or I^- (LC₅₀ \ge 860 mg/ L). Daphnia magna were equally sensitive to I_2 (LC₅₀ ≥ 0.16 mg/L) and I⁻ (LC₅₀ \ge 0.17 mg/L), but were less sensitive to IO_3^- (LC₅₀ \ge 10.3 mg/L). The external and internal radiological dose imparted by equivalent molar quantities of radioactive ¹²⁵I, ¹²⁹I, and ¹³¹I were calculated for both the Daphnia and trout using the LC₅₀ values obtained from a standard water treatment. As expected, the dose from ¹²⁵I and ¹³¹I would exceed the expected lethal dose rate long before a chemically toxic level is reached. In contrast, a molar concentration of ¹²⁹I likely to cause death by chemical toxicity would impart a radiological dose less than that expected to be lethal. Thus, for short-lived aquatic organisms, risks due to chemical toxicity of ¹²⁹I may exceed risks due to its radioactive emissions.


in the second second

الم من المراجع الم المراجع المراجع الم المراجع الم المراجع الم المراجع المراجع المراجع المراجع المراجع المراجع الم يستعمر المراجع المر الم يستعمر المراجع المر

ROIN'T TH

The Disposal of Canada's Nuclear Fuel Waste: The Biosphere Model, BIOTRAC, for Postclosure Assessment

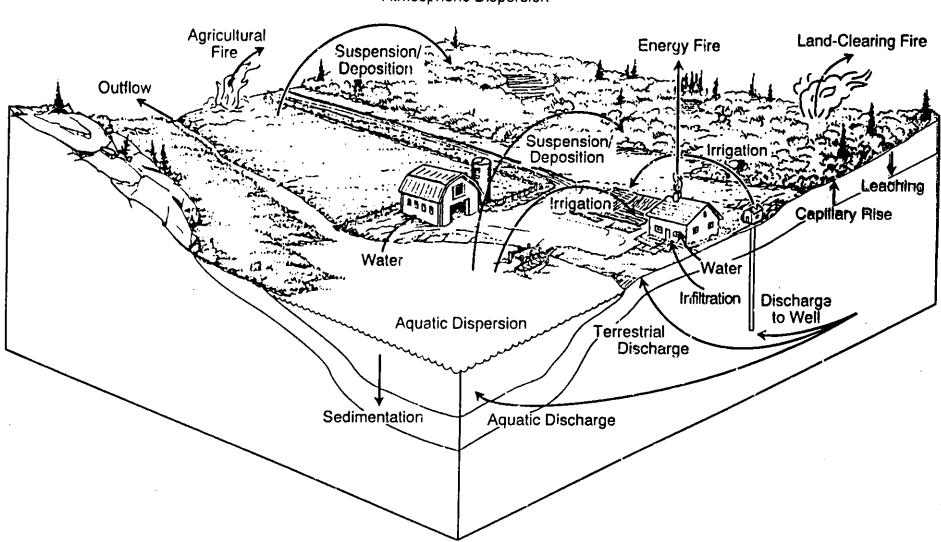
AE

AECL Research

EACL Recherche

Le stockage permanent des déchets de combustible nucléaire du Canada : Le modèle de biosphère, BIOTRAC, pour l'évaluation de post-fermeture

P.A. Davis, R. Zach, M.E. Stephens, B.D. Amiro, G.A. Bird, J.A.K. Reid, M.I. Sheppard, S.C. Sheppard, M. Stephenson


44.3 3

In ICRP 26 (1977), the International Commission on Radiological Protection gave its first guidance on the definition of the critical group. This Committee reflects international consensus at the time:

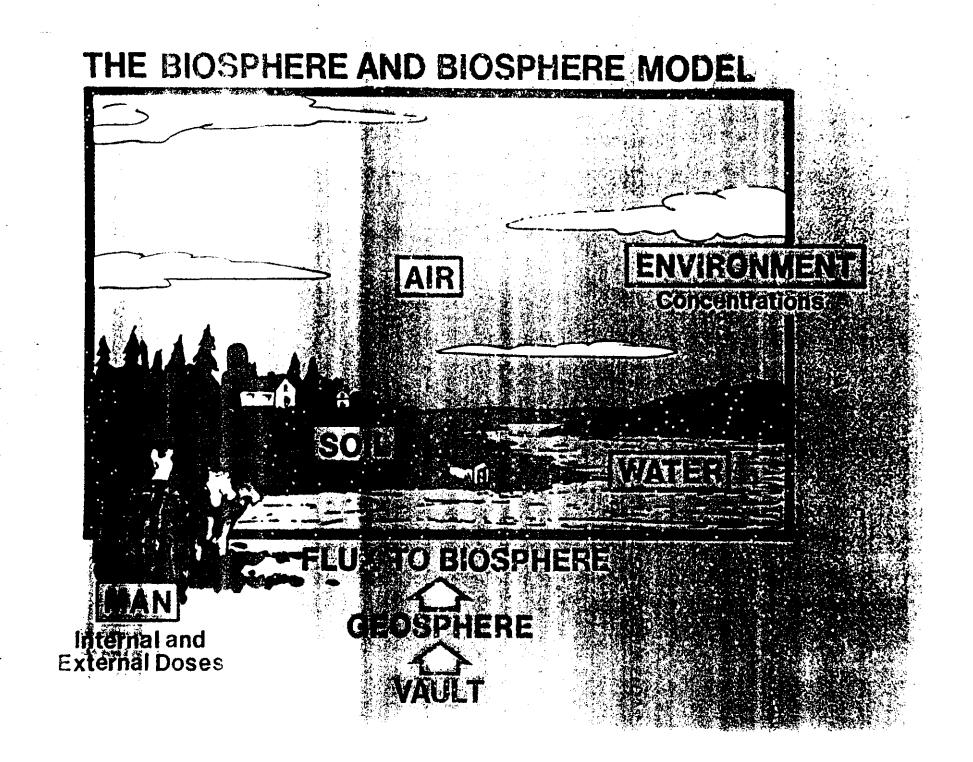
the second second second second states in the second second second second second second second second second s

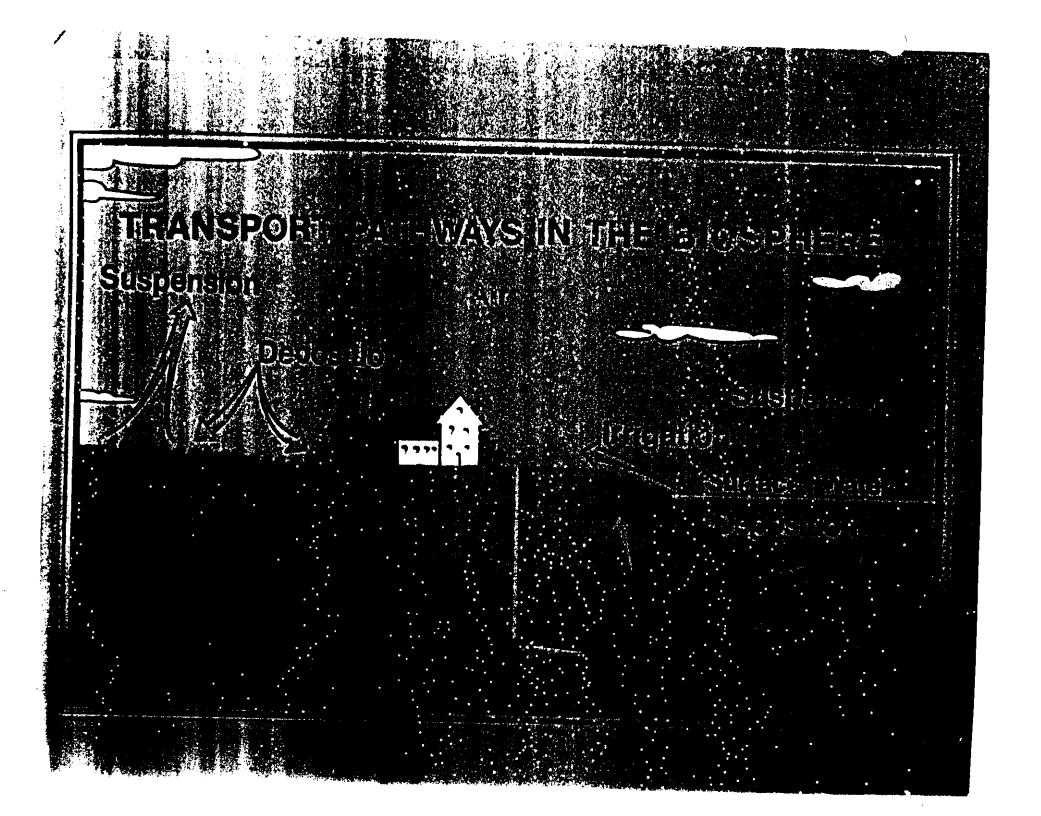
CANADA CANADA

"... the actual doses received by individuals will vary depending on factors such as their age, size, metabolism and customs, as well as variations in their environment.... With exposure of members of the public, it is usually feasible to take account of these sources of variability by selection of appropriate critical groups within the population, provided the critical group is small enough to be relatively homogeneous with respect to age, diet and those aspects of behavior that affect the doses received. Such a group should be representative of those individuals in the population expected to receive the highest (dose), and the Commission believes that it will be reasonable to apply the appropriate (dose) limit for members of the public to the mean (dose received by members of this group). Because of the innate variability within an apparently homogeneous group, some members of the critical group will receive a (dose) somewhat higher than the mean."

Atmospheric Dispersion

Biosphere FEPs


.


- 1

- ✦ Features
- + Events, and

.

+ Processes

LIST OF BIOSPHERE FACTORS CONSIDERED IN SCENARIO DEVELOPMENT

	Factor	Treatment*	Reference**
1	Acid rain	С	SV
2		Q	S
3	Animal grooming and fighting	С	F
- 4	Animal soil ingestion	С	F
5	Animal diets	C C	F
6	Artificial lake mixing	C	V
7	Ashes and sewage sludge fertilizers	С	F
8	Bacteria and microbes in soil	С	FS
9	Bioconcentration	С	BF
10		Q	A
	Biological evolution	Q	BF
12		С	BFT
13		С	SV
14		С	BF
15		С	FS
16		C C	BS
17		C	F
18		Ċ	BFPT
19		Ċ	AB
20		с с с	BSV
21		Ċ	BFP
22		Ĉ	ABFSV
23		ĀC	BT
24		Q	x
25		č	SV
26		-	ABT
20	(atmospheric)	С	AB
27		č	ABFSV
28		č	ABF
29		U	
27	furnishings	Q	BF
30			BF
31		Q C C	BF
32		č	BF
33	Critical group - leisure pursuits	č	BF
33 34		õ	F
35		č	F
36		c	BF
			X
			BAFS
37 38		Q C	

	Factor	Treatment*	Reference**
39	Dermal sorption - nuclides other than		
	tritium	Q	BF
40	Dermal sorption - tritium	č	BF
41	Dispersion	č	ABFSV
	Dust storms and desertification	č	ABS
	Earthmoving projects	Q	S
	Earthquakes	Q	X
	Erosion - lateral transport	· Q	
	Erosion - wind	Q	ABS
	Fires - agricultural	C	ABS
	Fires - forest and grass	c	AB
70 70	Fish farming	C	AB
		Q	BF
	Flipping of earth's magnetic poles	Q	X
	Flooding	Q	В
	Flushing of vater bodies	Ċ	BW
	Food preparation	С	БF
	Game ranching	С	BF
	Gas leakage into basements	С	BA
	Glaciation	A	BT
	Greenhouse food production	С	BF
	Greenhouse effect	Q	AB
	Groundshine (ground exposure)	С	BF
	Reat storage in lakes or underground	Q	X
61	Herbicides, pesticides and fungicides	Q C C	F
62	Household dust and fumes	с	BA
63	Houseplants	Q	X
64	Human diet	č	BF
65	Human soil ingestion	č	BF
	Hydroponics	Q	F
	Industrial water use	Q	X
	Intake of drugs	Q	X
	Intrusion - deliberate	Q	BT
	Intrusion - inadvertent	A	I
	Ion exchange in soil	Ĉ	
	Irrigation	C	BS
	Lake infilling	C C	BSF
	Mutagenic contaminants		BS
	Outdoor spraying of water		BFP
	Ozone layer failure	с о с с с с с с	ABFS
טי רר	verne rayer rarries	Q	X
	Peat and leaf litter harvesting	C	S
	Plant roots	C	BFS
	Precipitation (meteoric)	C	BAS
	Radioactive decay	C	ABFSV
51	Radiotoxic contaminants	С	BFPT
5Z]	Radon emission	С	ABF

- Z -

	Factor	Treatment*	Reference*
83	River-course meander	C	B
84		С	ESW
85	Saltation	С	BA
86	Scavengers and predators	с с с с	BF
87	Seasons	С	ABFSV
88	Sediment resuspension in water bodies	C	BV
89	Sedimentation in water bodies	С	BV
90	Sensitization to radiation	C C C	BF
91	Showers and humidifiers	С	ABF
92	Smoking	Q	F
93	Soil	С	BFS
94	Soil depth	С	BS
95	Soil leaching	c c	BS
96	Soil porewater pH	С	S
97	Soil sorption	С	BS
98	Soil type	C C C C	BS
99	Space heating	С	AB
100	Surface water bodies	С	BW
101	Surface water pE	С	V
102	Suspension in air	C	ABFS
03	Technological advances in food production	Q	BF
l 04	Teratogenic contaminants	Ċ	BFPT
05	Terrestrial surface	С	ABFS
06	Toxicity of mined rock	Q	X
07	Tree sap	С	F
08		С	ABFSWP
.09	Urbanization on the discharge site	Q	X
.10	Water leaking into basements	Q	F
11	Water management projects	Q	v
12	Water source	Ċ	BFSV
13	Wetlands	Ċ	ABFSW
14	Vind	č	AB

- 3 -

×

<mark>논</mark> 彡

A - alternative treatment C - central group of scenarios

C - central group of scenarios Q - qualitative treatment ** A - atmospheric submodel (Amiro 1992) B - biosphere model (this EIS primary reference) F - food-chain and dose submodel (Zach and Sheppard 1992) I - intrusion analysis (Wuschke 1992) P - postclosure assessment (Goodwin et al. 1994) S - soil submodel (Sheppard 1992) V - surface-water submodel (Bird et al. 1992) T - topical reports

- T topical reports
 X scenario analysis report

Biosphere FEP List and RES Interaction Matrix Development Specific to Yucca Mountain
i j i i i i i i i i i i i i i i i i i i

	Contamue -	1.3	E.4	1.5	1.6	1				
	1.2 Contaminatio	n Contaminatio	M Contaminat	hon Coutaminal		1.7 No (No gase release)	ous Yes (Specia local release	1.9	1.10 B.C. (No mediation of release)	the
21	12 PERMANEN		2.1 Flow water	2.5	2.6	2.:		2.9		
	SATURATEU ZONE (Aquif	solute Ti (discharge)	source (dascharge)	• Water trans	Via irrigatio Capillarv ris	n No	Not (main fo our system) Irrigation du human activi	 Not (main fa our situation e to Drinking was 		2.11 Ingestion of water uses
	3.2	17				_1_	ļ	1	1	l l
	Reduirge	SURFACE WATER	Sedimentation Enotion Diffusion Advection	n Recharge (through rive bank)	3.6 Flooding Diffusion Sedimentation Erosion Irrigation	3.7 Acrosols formation Digassing Evaporation Suspension	3.5 Uptake Imgitiwa	39 Uptake	3.10 Water supply	3.11 Uptake Exter Immersion
	l.2 Water + soluter	4.3								
		Sediment Resuspension	SEDIMENTS	Conversion	Conversion Dredging	4.7 Aerosols formation Degassing Evaporation	4.5 Uptake Exten contains nation	4.9 nail Uptake Exter Contamination	4.10	4.11 External and direct contamination
	2	5.3	5.4	5.5					i	
	eroolation olid transport	Excilitiation discharge transport of ensited material	Bank collapse	VARIABLE SATURATED ZONE	5.6 Gis Capillarv transfer Soil formation	5.7	5.5 Deep root apones uptake	5.9 Burrowing species	5.10 Builders land use	5.11 External Idigging,
·····						ļ				
		Erosion Run ott	old Conversion Bank collaps	n.3 Intiltration	6.6 SURFACE SOLL (Topsoil)	6.7 Suspension Evaporation Gas transfer Resuspension	0.5 Uptake Rain splash	Sol Contenenation	6.10 Land uses Materials resource	6.1) Direct exposure
7.1 N.		7.3	7.4	7.5	7.6			1	ł	
		Preapitation Deposition	Wind crosion Raintal! of droi		Deposition Preapitation Wind erotion	7.7 ATMOSPHERE (Air)	7.5 Deposition Precipitation Snow Rain	7.9 inhalation Deposition	7.10 Minimal on Weather depending	7.11 Inhalthon External Entremention
forvery On		5.3	5.4	5.5	5.6					
li piar	nts		Bioturi, anon Death	Deep rooting	Death Organic DiotarDation Fertilisation Wishout Water Extraction	S.7 Exhalation Transpiration Canopy Burning Reduction of wind speed	LI Flora	6.9	8.10 Visbility (Diet and Boundary Conditions)	5.11 Ingestion External
		Contemunenon Trums	7.4 Biotucioation	9.5 Burrowing	9.6 Exerction Bioturbation Burriswang Erosion	Exhalation	9.5 Consumption Fertilising Direct contamination	9.9 Fauna	Depending on	9.11 Ingestion External
10.		3.3	<u>01</u>	10.5						
intendo relevanto Relevanto De originalista Relevanto De originalista Relevanto De originalista Relevanto De originalista Relevanto Rele	anter P.	Vater restrange later extraction Motion Softments Vacui Antané dram	bredgang emovai	Pollution Civil engineer (Deep Howang)		Pollution Filtration (S Ventilation (N	10.5 Recycling Morage Burning Making Mining Mining	10.9 Farming Storage Hunting	HUMAN ACTIVITES E	10.11 Depending on Journians originary
	1	3			11.7	(1. ⁻	1.5	11.9	11	L11 DOSE TO RITICAL

Figure 2-1 Generic biosphere RES matrix for an inland groundwater release source term (taken from BIOMOVS II [1995]).

~

RADIONUCLIDES WITH DECAY CONSTANTS AND CHEMICALLY TOXIC ELEMENTS CONSIDERED IN BIOTRAC

Radionuclide	Decay Constant (a ⁻¹)	Radionuclide	Decay 2 Constant (a ⁻¹)	Radionuclide	Decay Constant (a ⁻¹)
225 _{AC}	2.53 x 10^{1}	32p	1.77 x 10 ¹	219Rn	5 50 100
227Ac	3.18 x 10 ⁻²	231 Pa	2.12×10^{-5}	2 2 0 Rn	5.50 x 10 ⁶
228Ac	9.90 x 10 ²	233Pa	9.38 x 10°	² ² ² ² Rn	3.94 x 10 ⁵
²⁴¹ Am	1.60×10^{-3}	234Pa	9.06×10^2	^{1 2 5} Sb	6.60 x 10 ¹
³⁹ Ar	2.58 x 10 ⁻³	234=Pa	3.11 x 10 ⁵	126Sb	2.50 x 10-
²¹⁷ At	6.80 x 10 ⁸	205 Pb	4.85 x 10 ⁻⁸	¹²⁶ Sb	2.04×10^{1}
¹⁰ Be	4.33 x 10 ⁻⁷	209Pb	1.87×10^3	⁷⁹ Se	1.92 x 104
²⁰⁸ Bi	1.88 x 10-6	210 Pb	3.11×10^{-2}	^{3 2} Si	1.07 x 10-
210Bi	5.06 x 10 ¹	211Pb	1.01×10^4	¹²⁶ Sn	1.54 x 10-
²¹⁰ =Bi	2.31 x 10-7	212Pb	5.73×10^{2}		6.93 x 10-
211 <u>Bi</u>	1.70×10^{5}	214Pb	1.36×10^{4}	⁹⁰ Sr ¹⁸² Ta	2.38 x 10-
²¹² Bi	6.03 x 10 ³	107Pd	1.07×10^{-7}	⁹⁹ Tc	2.20 x 10°
213B1	7.98 x 10 ³	210 PO	$1.83 \times 10^{\circ}$	¹²⁵ Te	3.25 x 10
²¹⁴ Bi	1.83 x 104	211 Po	4.23×10^7	227Th	4.36 x 10°
14C	1.21 x 10-*	21 2 Po	7.17×10^{13}	228 Th	1.35 x 10 ²
€ 1Ca	4.95 x 10-6	213Po	5.21×10^{12}	^{2 2 9} Th	3.62 x 10
113=Cd	5.09×10^{-2}	214Po	1.33×10^{11}	230Th	9.44 x 10
¹³⁵ Cs	3.01×10^{-7}	215 Po	1.23×10^{10}	²³¹ Th	9.00 x 10-0
221 Fr	7.59 x 104	216 Po	1.46×10^8	^{2 3 2} Th	2.38×10^{2}
²²³ Fr	1.67 x 104	218 Po	1.20×10^5	234Th	4.93 x 10 ⁻¹
зН	5.61 x 10^{-2}	238 Pu	7.90 x 10 ⁻³	206Tl	1.05×10^{1}
182Hf	7.70 x 10 ⁻⁸	239 Pu	2.88 x 10-5	207Tl	8.68×10^4
1291	4.41 x 10 ⁻⁸	240 Pu	1.06 x 10-4	208T]	7.63 x 10 ⁴
40 <u>K</u>	5.42 x 10-10	241Pu	4.81 x 10 ⁻²	209Tl	1.19 x 10 ⁵
⁸¹ Kr	3.30×10^{-6}	242 Pu	1.84 x 10 ⁻⁶	232U	1.65×10^5
⁸⁵ Kr	6.48 x 10 ⁻²	223Ra	2.21×10^{1}	233U	9.63 x 10 ⁻³
9 3 Mo	1.98 x 10-4	224Ra	6.93×10^{1}	234U	4.37 x 10-6
⁹³ m Nb	5.10 x 10 ⁻²	225Ra	1.71×10^{1}	235U	2.83 x 10-6
94 Nb	3.41×10^{-5}		4.33 x 10-4	236U	9.85 x 10 ⁻¹
⁵⁹ Ni	9.24 x 10 ⁻⁶	228Ra	1.21 x 10 ⁻¹	238U	2 96 x 10 ⁻⁸
⁶³ Ni	7.22 x 10 ⁻³		1.47×10^{-11}	90Y	1.55×10^{-1}
237Np	3.24×10^{-7}		1.39×10^{-11}	⁹³ Zr	9.50 x 10 ¹ 4.53 x 10 ¹⁷
	Chei	mically Toxic	Elements		
· - · • • • • • • • • • • • • • • • • •	Br	Cs		Se	
	Cd	Mo		Sm	
	Cr	Sb		Зш Тс	

ł

RADIONUCLIDES WITH DECAY CONSTANTS AND CHEMICALLY

TOXIC ELEMENTS CONSIDERED IN BIOTRAC

Radionuclide	Decay Constant (a ⁻¹)	Radionuclide	Decay Constant (a ⁻¹)	Radionuclide	Decay Constant (a ⁻¹)
225AC	2.53 x 10 ¹	32P	1.77 x 10 ¹	219 _{Kn}	5.50 x 10 ⁶
227AC	3.18 x 10 ⁻²	231Pa	2.12×10^{-5}	220 _{Rn}	3.94 x 10 ⁵
228AC	9.90×10^2	233 Pa	9.38 x 10°	222 _{Rn}	6.60×10^{1}
241 Am	1.60×10^{-3}	234 Pa	9.06×10^2	125 Sb	2.50×10^{-1}
39 Ar	2.58 x 10 ⁻³	234=Pa	3.11 x 10 ⁵	126 Sb	2.04×10^{1}
217At	6.80×10^{8}	205PB	4.85 x 10 ⁻⁸	126=Sb	1.92 x 104
10Be	4.33 x 10^{-7}	209 Pb	1.87 x 10 ³	⁷⁹ Se	1.07 x 10-5
208Bi	1.88 x 10 ⁻⁶	210 Pb	3.11 x 10 ⁻²	32 <u>Si</u>	1.54×10^{-3}
210B1	5.06 x 10 ¹	211 Pb	i.01 x 10 ⁴	126 Sn	6.93 x 10 ⁻⁶
210 <u>uBi</u>	2.31 x 10-7	212pb	5.73×10^{2}	90 Sr	2.38×10^{-2}
211Bi	1.70×10^{5}	214Pb	1.36 x 10 ⁴	1#2Ta	2.20 x 10°
212Bi	6.03×10^3	107Pd	1.07×10^{-7}	99 Tc	3.25 x 10 ⁻⁵
213Bi	7.98×10^{3}	210 PO	1.83 x 10°	¹²⁵ =Te	4.36 x 10°
214B1	1.83×10^4	211 Po	4.23×10^{7}	227 <u>Th</u>	1.35×10^{1}
14C	1.21×10^{-4}	212Po	7.17 x 10^{13}	228Th	3.62 x 10 ⁻¹
41 Ca	4.95 x 10-4	213 Po	5.21×10^{12}	229Th	9.44 x 10 ⁻⁵
113=Cd	5.09×10^{-2}	214 Po	1.33×10^{11}	230Th	9.00 x 10-6
135 Cs	3.01×10^{-7}	215Po	1.23×10^{10}	231 Th	2.38×10^2
221Fr	7.59 x 10 ⁴	21620	1.46×10^{8}	232Th	4.93 x 10 ⁻¹¹
223 Fr	1.67×10^4	21 \$ Po	1.20×10^5	234Th	1.05×10^{1}
3 H	5.61×10^{-2}	238 Pu	7.90 x 10 ⁻³	206Tl	8.68 x 10 ⁴
182 <u>Hf</u>	7.70 x 10 ⁻⁴	239 Pu	2.88 x 10 ⁻⁵	207 <u>1</u> .]	7.63 x 10 ⁴
229 <u>1</u>	4.41×10^{-8}	240 Pu	1.06×10^{-4}	208 T1	1.19 x 10 ⁵
40K	5.42 x 10 ⁻¹⁰	241 Pu	4.81 x 10^{-2}	²⁰⁹ Tl	1.65 x 10 ⁵
\$1Kr	3.30×10^{-6}	242Pu	1.84×10^{-6}	232U	9.63×10^{-3}
*5Kr	6.48 x 10 ⁻²	223Ra	2.21 x 10 ¹	233U	4.37 x 10 ⁻⁶
9 3 Ho	1.98 x 10-4	224Ra	5.93 x 10 ¹	234U	2.83 x 10-6
93=No	5.10×10^{-2}	225Ra	1.71×10^{1}	235U	9.85 x 10-10
94Nb	3.41×10^{-5}	226 Ra	4.33 x 10 ⁻⁴	236U	2 96 x 10 ⁻⁸
59N1	9.24 x 10-6	228 Ra	1.21×10^{-1}	238 U	1.55 x 10 ⁻¹⁰
63NI	7.22×10^{-3}	¢7Rb	1.47×10^{-11}	9 O Y	9.50 x 10 ¹
237Np	3.24×10^{-7}	1#7Re	1.39 x 10 ⁻¹¹	³³ Zr	4.53 x 10-7
,	Ch	emically Toxic	Elements		
	Br	Cs		Se	
	Cd	Mo		Sm	
	Cr	Sb		Тс	

Radionuclides with Half-Lives Less than 1 d	Radionuclides with Half-Lives Between 1 d and 20 a
228AC	225Ac (225Ra)*
217At	210Bi (210Pb)
211Bi	93=Nb (93Ho)
212 <u>Bí</u>	93=Nb (93Zr)
213 <u>Bi</u>	32P (32S1)
214 <u>Bí</u>	233Pa (237Np)
221Fr	210 Po (210 Bi)
223Fr	²²³ Ra (²²⁷ Th)
234Pa	224Ra (228Th)
234=pa	225 Ra (229 Th)
209 Pb	228 Ra (232 Th)
21126	126 Sb (126 Sn)
212Pb	$1^{2}Ta$ ($1^{2}Hf$)
214Pb	¹²⁵ Te (¹²⁵ Sb)
211 Po	227Th (227 Ac)
212 20	228 Th (228 Ra)
213 PO	228Th (232U)
214Po	²³¹ Th (²³⁵ U)
215 Po	234Th (238U)
216 PO	90Y (90Sr)
21*Po	
219 _{Rn}	
220 Rn	
126=Sb	
206T1**	
207T1	
20\$T1	
20971	

SHORT-LIVED RADIONUCLIDES CONSIDERED IN BIOTRAC

-

* Precursors shown in brackets.

..

** Not considered in the postclosure assessment because the parent, ²¹⁰ Bi, has a very low vault inventory.