
# Radiation Processing Basics, Current and Emerging Applications

Ajit Singh and Harwant Singh

Research Chemistry Branch, AECL and

AHA Enterprises

Pinawa, MB, R0E 1L0 Canada



## What is "USEFUL" (Beauty is in the Eye of the Beholder)

 If funding can be found for developing a result into a product or process, preferably from industry, it is "USEFUL"

### **Radiation Processing**

Exposure of substrate to high energy radiation to give products that are

- Safe
- Unique
- Useful
- Produced cost-effectively

### **High Energy Radiation**

- $\cdot \alpha$ -,  $\beta$ -, and  $\gamma$  radiation
- X-rays
- Neutrons
- Accelerated Electrons
- Accelerated Positive Ions

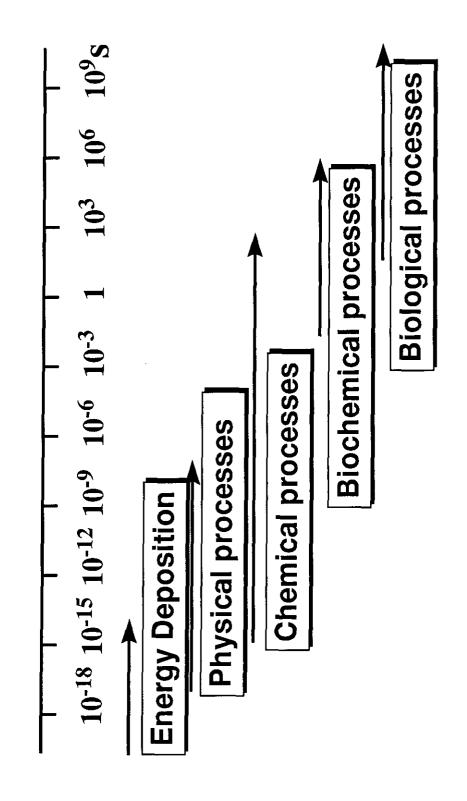
# Useful Effects of High Energy Radiation

# Based on

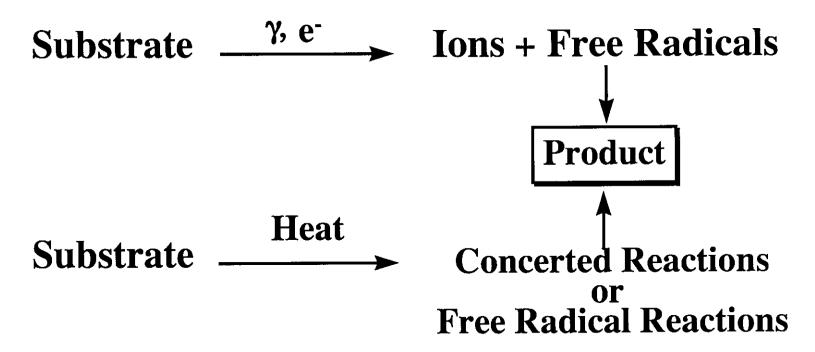
- Physical effects
- · Chemical effects
- Biological effects

# **Examples Of Physical Effects**

- Medical X-rays
- Radiography of materials
- Electron beam welding
- Electron beam heating in metallurgy
- Colour changes of gemstones
- Ion Implantation


### **Examples Of Chemical Effects**

- Crosslinking of polyethylene
- Water purification
- Flue gas treatment
- Polymerization and grafting
- Curing of latex and rubber


### Examples Of Biological Effects

- Radiation sterilization of medical products
- Radiation pasteurization of foods
- Radiation sterilization of foods
- Prevention of sprouting of tubers
- (potatoes and onions)
- Delayed ripening of fruits
- Sewage sludge irradiation

# Time Scale of Radiolytic Events



### **Desired Product Formation**



 Irradiation, a cold method to produce ions and free radicals

### **Factors Favouring Radiation Processing**

- Toxicity of traditionally used chemicals, e.g. ethylene oxide and chlorine
- Uniqueness of product, e.g. heat shrink items
- Quality of product, e.g. coatings
- Removal of low concentrations of organic contaminants, e.g., in drinking water
- Safe pathogen control
- Overall cost savings

### Radiation Processing Constraints

- Public concern, particularly about isotope sources
- Capital cost of radiation sources
- Inadequate knowledge of radiation technology amongst industrialists and industrial workers
- Momentum of current technology

# An Interdisciplinary Endeavour Radiation Processing

# Involving

- Chemistry
- Physics Biology
- Engineering
- Business aspects

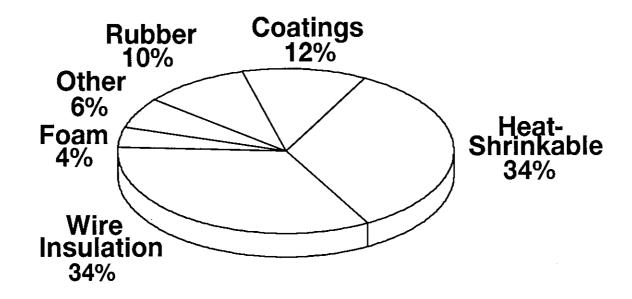
# Radiation Processing Commercial and R&D Aspects

- Supply and demand, competition, market trends
- Support R&D: trouble-shooting, continued optimization of process
- New products/process R&D, as per business plan

# Radiation Processing In-House vs Service Centre

- In-house requires sufficient supply of materials for efficient use of the irradiation facility
- Irradiation Service Centre requires good market surveys, assured supply of base load work, and presence of potential customers within the target area

### Current $\gamma$ – and Electron Applications


- Coatings
- Inks/Printing
- Roofing materials
- Grafting
- Tires
- Magnetic media
- Adhesives
- Crosslinked films

- Heat shrink products
- Silicone release films
- Wood products
- Sterilization
- Immobilized enzymes
- Crosslinked PE
- Immobilized pharmaceuticals

And many more

Woods & Pikaev (1994)

### Electron Processing



- ~500 Accelerators Worldwide (Saunders,1988; now ~1000)
- ~150  $\gamma$  Sources Woldwide for Medical Sterilization and Food Irradiation

# Potential Industrial Applications of Electron- and \( \gamma\)- Sources

- **Disposables**
- Radiation Crosslinking of Polyethylene Products
- Sewage Sludge Irradiation
- Flue Gas Treatment

- Sterilization of Medical Immobilization of Enzymes Disposables
- **Viscose Production**
- **Advanced Composites Food Irradiation**
- **Wood Plastics Composites**
- **Mechanical Pulping**

See Bradley (1984), Singh and Silverman (1992), Woods and Pikaev (1994)

### **Further Requirments**

- Entrepreneurs to invest (sterilization, food, PE)
- Improve properties of advanced composites
- Radiation effects on cellulose and wood
- Use of O<sub>3</sub>/irradiation (waste waters) in other systems (pulp, pulp mill effluent)
- Training of industrial workers and industrialists in radiation technology
- Quantum leaps possible (viscose, advanced composites)

### **Cost Effectiveness of Radiation Processing**

### Depends on

- Uniqueness of the desired change
- Efficiency (chain length) of the radical reactions
- Large volumes, use of high power electron accelerators
- Use of the lowest energy electrons appropriate for a process
- Combination treatment (synergistic effect)

### **Food Irradiation**

# Safety and Wholesomeness of Irradiated Foods

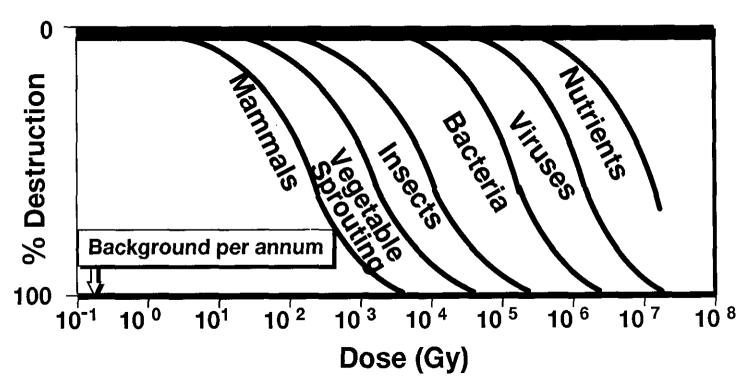
An Examination of the Scientific Evidence and Applications

### Safety and Wholesomeness of Irradiated Foods

- The term "wholesome" means nutritious, clean, and otherwise fit for human consumption
- With regard to irradiated foods, considerations of wholesomeness or safety for consumption involve aspects of radiological safety, toxicological safety, microbiological safety, and nutritional adequacy
- Confidence in safety and wholesomeness of irradiated food is central to consumer acceptance of such food
- Consumer acceptance is central to industry acceptance
- Therefore, when examining questions associated with safety and wholesomeness of irradiated foods, one must consider all of the above

### Why Food Irradiation?

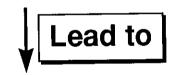
- 1. Pathogen Control
  - · Salmonella (chicken)
  - Enteropathogenic E. coli (O157 : H7, Hamburger)
- 2. Substitute for Toxic Fumigants (for Quarantine)
  - Methyl Bromide
  - Ethylene Oxide
- 3. Shelf-life Extension
  - Fruits/Vegetables
  - Meats
  - Fish/Sea Food


### Foodborne Disease is Serious Business

- Foodborne Disease can Cause Serious Illness and Death
  - Morbidity: diarrhea, fever, kidney failure, birth defects
  - Mortality: generally the very young and the very old
- Significant Costs to National Economies
  - Health care costs
  - Loss of productivity
  - Loss estimates are in billions of dollars annually for North America

#### **Technical Basis for Food Irradiation**

- The beneficial effects of irradiation are due to differential sensitivities of different biological species, to inactivation by irradiation
- Free radicals (·OH, ·H and e-aq) formed from water present in foods are responsible for most of the radiation effects observed in foods
- The most crucial target of the free radicals is DNA (or the genome) which results in inactivation (killing) of the microbes/insects
- It does not significantly affect the nutritive value of the food

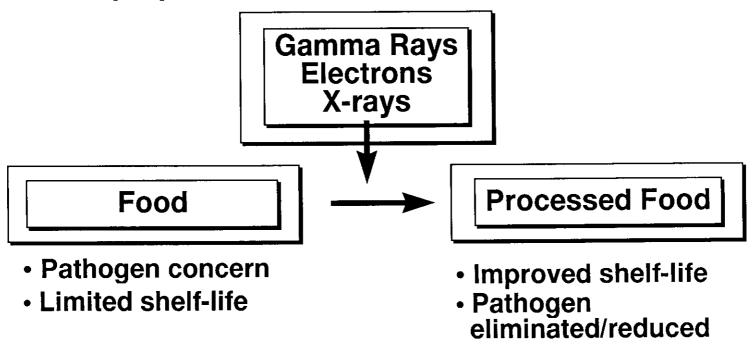

#### **Basis for Beneficial Effect of Irradiation**



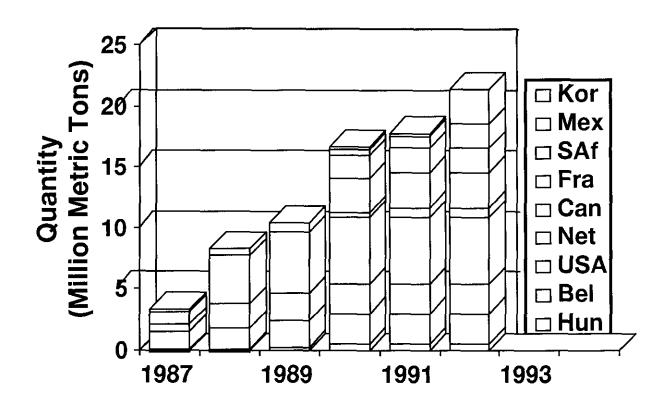
 These differential sensitivities of different functional entities to inactivation are the basis of beneficial effects of irradiation

### **Achievable Technical Benefits**

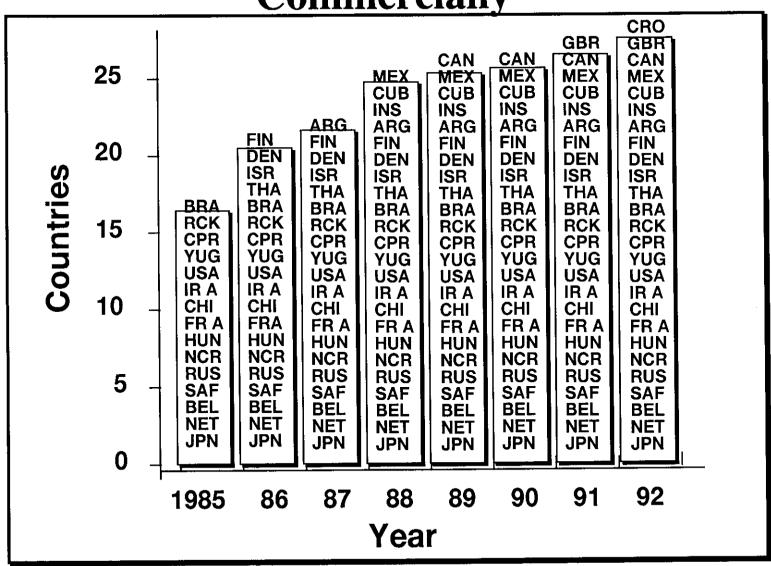
- Pathogen control
- Spoilage microorganism control
- Insect disinfestation
- Delay of ripening or maturation
- Sprout inhibition




### **Consumer and Social Benefits**


- Safer foods
- Better quality
- Less spoilage (shelf-life extension)
- Overall economic gain

### **Technology for Food Irradiation**


 Involves the exposure of a food to ionizing radiation for the purpose of achieving desired technical benefit



### Commercial Irradiation of Spices and Vegetable Seasonings in Different Countries



 Since 1992, the number of countries irradiating spices and seasonings has grown enormously Countries Irradiating Food/Ingredients
Commercially



#### List of Foods Cleared for Irradiation in Thailand (1986)

| Product                         | Purpose                                  | Clearance     | Dose (kGy) |
|---------------------------------|------------------------------------------|---------------|------------|
| Potatoes, onions & garlic       | Sprout inhibition                        | Unconditional | 0.15       |
| Dates                           | Disinfestation                           | Unconditional | 1          |
| Mangoes, papayas                | Disinfestation and delay of ripening     | Unconditional | 1          |
| Wheat, rice, pulses             | Disinfestation                           | Unconditional | 1          |
| Cocoa Beans                     | Disinfestation                           | Unconditional | 1          |
| Fish and fishery products       | Disinfestation                           | Unconditional | 1          |
| Fish and fishery products       | Reduce microbial load                    | Unconditional | 2.2        |
| Strawberries                    | Shelf-life extension                     | Unconditional | 3          |
| Nham                            | Decontamination                          | Unconditional | 4          |
| Moo yor                         | Decontamination                          | Unconditional | 5          |
| Sausage                         | Decontamination                          | Unconditional | 5          |
| Frozen shrimps                  | Decontamination                          | Unconditional | 5          |
| Cocoa beans                     | Reduce microbial load                    | Unconditional | 5          |
| Chicken                         | Decontamination and shelf-life extension | Unconditional | 7          |
| Spices & condiments, dehydrated | Insect disinfestation                    | Unconditional | 10         |
| Onions and onion powder         | Decontamination                          | Unconditional | 10         |